Dynamics of Surface‐Water Connectivity in a Low‐Gradient Meandering River Floodplain

High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems.

Publication Date:
May 22 2019
Date Submitted:
Jun 21 2019
Water Resources Research

 Record created 2019-06-21, last modified 2019-08-06

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)