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Abstract
We develop an O-ring production function characterized by specialization and divi-

sion of labor and where shirking or negative shocks can have major adverse conse-

quences. We show that when the principal can monitor individual output, the firm

tends be large (potentially larger than first best), with a high degree of specialization

and division of labor, weak incentives, and low pay as in traditional nonunion manu-

facturing. Moral hazard can only limit the size of the firm relative to the first best when

the principal can only monitor team output, in which case the firm has the opposite

characteristics.

One man draws out the wire, another straights it, a third cuts it, a fourth points it, a fifth grinds it at the top for
receiving the head; to make the head requires two or three distinct operations; to put it on, is a peculiar business,
to whiten the pins is another; it is even a trade by itself to put them into the paper; and the important business of
making a pin is, in this manner, divided into about eighteen distinct operations, which, in some manufactories, are
all performed by distinct hands, though in others the same man will sometimes perform two or three of them. I have
seen a small manufactory of this kind where ten men only were employed, and where some of them consequently
performed two or three distinct operations.

Smith (1904, Book I, Chapter I)

1 INTRODUCTION

The above production process described by Smith has several features in common with many modern production technologies,

particularly in manufacturing. The first is that production can be divided into a number of distinct tasks: drawing the wire,

straightening it, etc. It is this aspect of the production process that allows for a division of labor (an allocation of tasks across

agents) and specialization (investments in task-specific human capital). Becker and Murphy (1992) develop a model along these

lines where an increase in employment leads to a more extensive division of labor (fewer tasks per agent), greater specialization,

and therefore higher productivity.

A second feature is that a breakdown at one stage of production due to shirking, poor decision-making, or a negative shock can

have serious adverse consequences. A batch of bent pins or an automobile with defective brakes is at best useless. Automobile

recalls can be extremely costly in terms of damage to the firm’s reputation even when the corrective fix is relatively inexpensive.

This feature is the central element in Kremer’s (1993) O-ring theory of the firm coined after the source of the space shuttle

Challenger disaster.

Finally, the O-ring nature of the production technology implies something about the nature of the moral hazard problem.

If the principal can directly monitor individual effort (the first best case) or individual output (the second best), then shirkers

I thank Editor Casadesus-Masanell and an anonymous Co-Editor and referee for comments that substantially improved the paper. I also thank conference

participants at the International Industrial Organization Conference (IIOC) in 2015 and 2016, especially Dongsoo Shin. This paper was supported by a Kelley

School of Business summer grant. It is a revised and retitled version of the previous working paper “Moral hazard, firm size, and the size-wage differential.”

82 © 2017 Wiley Periodicals, Inc. J Econ Manage Strat. 2018;27:82–101.wileyonlinelibrary.com/journal/jems

http://orcid.org/0000-0002-9971-549X


RAUH 83

will be discovered and punished with probability 1. In the second best case, agents who experience negative shocks will also

be punished. For example, if pins lack sharp points, then under a clear division of labor, the principal will presumably know

which agent is responsible. In other settings, such as restaurants, things may not be so clear. Was it the food? The service? The

principal may not know unless the customer can communicate the source of the dissatisfaction. If the principal can only monitor

team output (the third best), the entire team will be punished for sure if any worker shirks. In each of these cases, there is no

free-rider problem because shirkers cannot hide behind the efforts of other workers.

In this paper, we develop an O-ring theory of the firm that combines the main elements in Becker and Murphy (1992) and

Kremer (1993) and extends those two papers to the case of moral hazard. In the contract theory literature, the production function

is usually nondescript and generic. In contrast, we show that the O-ring production technology developed here has powerful

implications for the nature of the moral hazard problem, incentive contracting, the size of the firm in terms of employment, and

the extent of specialization and division of labor.

We consider a production process where the set of tasks is the unit interval. The number of agents is endogenous and chosen

by the principal, who divides the set of tasks equally across all employed agents. Each agent chooses his production effort and

investment in task-specific human capital for each of his assigned tasks. A unit of output requires one unit of output in each

task (e.g., one automobile requires one headlight assembly, one steering column, etc.), so output is zero if any agent shirks or

experiences a negative shock in any of his assigned tasks. As in Becker and Murphy (1992), an increase in employment implies

fewer tasks per agent, which allows each agent to make greater investments in human capital for each of his smaller set of

assigned tasks. The result is an increase in productivity, which leads to increasing returns to employment.

We motivate the stochastic component of the production technology as follows. In addition to production effort and invest-

ments in human capital, each agent monitors his assigned tasks and makes decisions about whether or not a problem has arisen,

whether or not to halt production to fix it, whether he can fix it himself, and which potential solution is appropriate. When

there is only one agent, there is a high probability that at least some of these decisions will be faulty because he has limited

cognitive resources and performs all the tasks himself. When there are two agents, the probability that either one will make a

mistake should be lower because each performs only half the set of tasks and can therefore devote more care and attention to

each of them. On the other hand, we now have two probabilities instead of one, so the effect of an increase in employment is

ambiguous.1

Formally, we assume that the probability that the agent experiences a negative shock in at least one of his assigned tasks is an

increasing function of the proportion of tasks he performs. Assuming independence, the probability of a product defect is the

product of the individual probabilities. An increase in the number of agents therefore has two effects: it reduces the probability

that each individual will experience a negative shock but it also increases the number of stages of production where a negative

shock can occur. We say that the production process exhibits the O-ring property if eventually the probability of a product defect

is increasing in the number of agents and converges to one as the number of agents increases without bound.2

A central question of the paper is: what limits the size of the firm? The seminal answer, due to Coase (1937), is that there

exist certain transaction costs associated with conducting economic activity within firms. In this paper, we focus on the trans-

action costs associated with moral hazard; that is, agency costs. In our model, there is a one-to-one correspondence between

employment and the extent of the division of labor, so the same question can also be posed as: what limits the extent of the

division of labor? Becker and Murphy (1992, p. 1138) take issue with Smith’s contention that the division of labor is lim-

ited by the extent of the market and argue that “a variable of great importance is the cost of combining specialized work-

ers.” But in their model, the relevant cost function is exogenous and only loosely justified in terms of “principal-agent con-

flicts, free-riding, and the difficulties of communication.” In contrast, in this paper, the cost function is constructed from the

optimization problem of the principal whose objective is to implement effort and investments in human capital at minimum

cost.

To determine the effect of moral hazard on the size of the firm and the extent of the division of labor, we start with the

first best benchmark where the principal can directly monitor effort so there is no moral hazard. Regardless of the moni-

toring technology, the optimal employment level balances the following considerations: (i) the increasing returns to employ-

ment due to specialization and division of labor, (ii) the O-ring property of the production technology, where the prob-

ability of team failure increases with the size of the team, and (iii) the marginal cost of employment (the cost of hiring

another agent). We obtain the standard result that the first best contract provides zero incentives and full insurance. Since

each agent receives a constant transfer, the first best cost of employment (the number of agents times the expected transfer

to each agent) is linear in employment and the marginal cost of hiring another worker is constant. But a linear cost function

cannot contain the increasing returns to employment due to specialization and division of labor so that the size of the first

best firm can only be limited either by the extent of the labor market (the total number of available workers) or the O-ring

property.
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We then consider the second best monitoring technology, where the principal cannot monitor effort but she can monitor

individual output. We show that the optimal second best contract is to award a bonus when individual output is high (when the

agent’s actions are first best and the shock is positive) and to fire the agent otherwise. We then show that the bonus (what we

call the second best incentive) is decreasing in employment. This is because an increase in employment reduces the proportion

of tasks performed by each agent, which increases the individual probability of a positive shock. This increases the expected

transfer when the agent chooses the first best actions, which allows the principal to reduce the second best incentive. We also show

that the reduction in the second best bonus reduces the second best expected transfer, which is therefore also decreasing with

employment. When this effect is sufficiently large, the marginal cost of hiring another worker can decline with employment and

can even be negative. In that case, the second best marginal cost of employment is less than the (constant) first best marginal cost

of employment and the second best firm can be larger than first best. When the second best firm is inefficiently large, it resembles

a traditional nonunionized manufacturing firm with weak incentives, low expected pay, and an excessive degree of specialization

and division of labor. Motivation is achieved not through strong incentives but rather because a worker who shirks will be fired for

sure.

As employment increases, agents perform fewer and fewer tasks, the probability that the agent experiences a positive shock

converges to 1, and the second best expected transfer converges to the first best transfer. The second best cost function therefore

asymptotes to the linear first best cost function. As before, the increasing returns to employment due to specialization and

division of labor cannot be contained by an asymptotically linear cost of employment. We conclude that when the principal can

monitor individual output, the size of the O-ring firm under moral hazard is limited either by the extent of the market or the

O-ring property but not the marginal cost of employment as suggested by Becker and Murphy.

Finally, we consider the third best monitoring technology, where the principal can only observe team output. In this case,

the third best incentive depends on the team probability that all agents experience positive shocks rather than the individual

probabilities. Under the O-ring property, an increase in employment increases the individual probability of a positive shock

but reduces the team probability that all shocks are positive. The third best results are therefore the exact opposite of the sec-

ond best case. An increase in employment reduces the team probability of success, which reduces the expected transfer to

each agent when he chooses the first best actions. This induces the principal to increase the third best incentive, which also

increases the third best expected transfer and marginal cost of hiring another worker. It follows that the third best incentive,

expected transfer, and marginal cost of employment are all increasing in employment, which is the opposite of the second best

case.

As employment increases still further, the third best incentive, expected transfer, and marginal cost of employment all explode

rather than asymptoting to their first best levels as in the second best case. We show that the third best marginal cost of employ-

ment always exceeds the first and second best marginal costs of employment; therefore, the third best firm is generally smaller

than the other two. It is only in this context, where the principal can only observe team output, that the size of the firm and the

extent of the division of labor can be limited by moral hazard alone.

The relevant literature consists of only a handful of papers. This is because employment is endogenous in our model and an

integral feature of our results, whereas in most of the contract theory literature, the number of workers is fixed and exogenous.

Ziv (1993) considers a version of Holmström (1982) where team size is endogenous under specific functional forms for the

production function, the agents’ utility function, and the distribution of signals. When the signals of individual performance are

contractible and exponentially distributed, the second best firm can be larger than first best. This is because the variance of the

signal is increasing in effort under the exponential distribution. The principal therefore chooses less effort and more agents. In

this paper, we obtain the same result under the assumption that the probability of a positive shock is decreasing in the number

of tasks performed by the agent. It is therefore an intrinsic and robust feature of the O-ring firm rather than a consequence of

specific distributional assumptions.

The remaining literature is set within the linear framework of Holmström and Milgrom (1987). Liang, Rajan, and Ray (2008)

assume that only team performance is contractible and normally distributed, where the variance is assumed to be exogenously

increasing in team size. Their paper is primarily interested in results where the optimal incentive is independent of the parame-

ters of the model. Auriol, Friebel, and Pechlivanos (1999) consider the case where greater employment reduces the effectiveness

of helping efforts (effort by one agent that increases the outputs of other agents). In their model, the second best firm is always

smaller than first best when agents are risk averse. Their paper is primarily focused on commitment issues. Rauh (2014) pro-

vides conditions under which incentives and employment are substitutes or complements when only team performance is con-

tractible. Like Becker and Murphy (1992), the model includes an ad hoc employment cost function to keep the optimal team size

finite.

The plan for the rest of the paper is as follows. In Section 2, we present the model primitives. We consider the first best in

Section 3, the second best in Section 4, and the third best in Section 5. Section 6 concludes. All proofs are in the Appendix.
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2 MODEL PRIMITIVES

There is one principal (she) and a large number 𝑁 of identical agents (he). Let 𝑛 be the number of agents employed by the

principal, where 𝑛 is an integer such that 0 ≤ 𝑛 ≤ 𝑁 . We call 𝑁 the extent of the (labor) market.

Let 𝑆 = [0, 1] be the set of tasks and 𝑞𝑠 the level of output in task 𝑠 ∈ 𝑆. Each unit of output 𝑄 requires one unit of output 𝑞𝑠

in each task 𝑠 ∈ 𝑆, so output is essentially the minimum of the task output levels

𝑄 = inf
𝑠∈𝑆

𝑞𝑠. (1)

If 𝑞𝑠 = 0 for any task 𝑠 ∈ 𝑆, then 𝑄 = 0. This captures the idea that a mistake at one stage of production can have serious

consequences for the firm.

After choosing the employment level 𝑛, the principal allocates the set 𝑆 of tasks across the 𝑛 employed agents. Let 𝑆𝑖 ⊆ 𝑆

be the set of tasks assigned to agent 𝑖. We assume an equal division of labor in the sense that the principal partitions 𝑆 into 𝑛

intervals with equal measure 𝜌 = 1∕𝑛. For example, if 𝑛 = 3, then

𝑆1 = [0, 1∕3), 𝑆2 = [1∕3, 2∕3), and 𝑆3 = [2∕3, 1], (2)

and 𝜌 = 1∕3. An increase in employment 𝑛 implies a finer partition of tasks and fewer tasks per worker and therefore a more

extensive division of labor.

As discussed in Section 1, Becker and Murphy (1992) focus on Smith’s contention that the division of labor is limited by

the extent of the market, but it can also be limited by purely technological considerations. For example, Smith suggests that

pin-making can be divided into at most 18 distinct operations. We can incorporate this technological constraint into the model

as follows. Abusing notation, let 𝑁𝐿 be the extent of the labor market and 𝑁𝐷 the technological upper bound on the division

of labor. The employment constraint is therefore 𝑛 ≤ 𝑁 , where 𝑁 = min{𝑁𝐿, 𝑁𝐷}. For simplicity, we continue to refer to 𝑁

as “the extent of the labor market” because of our focus on the question “why is there not one big firm?” but for many small

firms, it is the technological constraint that binds. In the case of pins, Smith states that in some manufactories, the 18 distinct

operations “are all performed by distinct hands” but also that “I have seen a small manufactory of this kind where ten men only

were employed...” In the former case, the effective constraint was presumably technological, and this alternative interpretation

should be borne in mind in cases where the employment constraint binds.3

Given his task assignment 𝑆𝑖, agent 𝑖 makes the following choices. First, he chooses his total effort level 𝑇𝑖 ∈ {0, 1}. Let 𝑞𝑖𝑠

denote output in task 𝑠 ∈ 𝑆𝑖 and

𝑞𝑖 = inf
𝑠∈𝑆𝑖

𝑞𝑖𝑠, (3)

the individual output of agent 𝑖. If the agent shirks 𝑇𝑖 = 0, then 𝑞𝑖𝑠 = 0 for all 𝑠 ∈ 𝑆𝑖, 𝑞𝑖 = 0, and 𝑄 = 0. If he chooses

𝑇𝑖 = 1, he must decide how to allocate it across his assigned tasks. Let 𝜏𝑖𝑠 be the proportion of 𝑇𝑖 = 1 devoted to task 𝑠 ∈ 𝑆𝑖,

where4

𝑇𝑖 = ∫𝑠∈𝑆𝑖

𝜏𝑖𝑠 𝑑𝑠. (4)

Finally, the agent must allocate the total time 𝜏𝑖𝑠 devoted to task 𝑠 ∈ 𝑆𝑖 between production effort 𝑒𝑖𝑠 and investments in task-

specific human capital 𝑙𝑖𝑠 (the time spent learning about the task). This allocation must satisfy the constraints 𝑒𝑖𝑠 ≥ 0, 𝑙𝑖𝑠 ≥ 0,

and

𝑒𝑖𝑠 + 𝑙𝑖𝑠 ≤ 𝜏𝑖𝑠. (5)

We refer to 𝑙𝑖𝑠 as the level of specialization of agent 𝑖 in task 𝑠.

After making these decisions, each agent experiences an idiosyncratic shock. With probability 𝜋(𝜌), the shock is positive and

output in task 𝑠 ∈ 𝑆𝑖 is given by

𝑞+
𝑖𝑠
= 𝐴𝑙

𝛾

𝑖𝑠
𝑒𝑖𝑠, (6)
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where 𝐴 > 0 and 𝛾 > 0 are productivity parameters. Note that specialization 𝑙𝑖𝑠 improves the productivity of production effort

𝑒𝑖𝑠. In this case, individual output is given by

𝑞+
𝑖
= inf

𝑠∈𝑆𝑖

𝑞+
𝑖𝑠
. (7)

With probability 1 − 𝜋(𝜌), the shock is negative and his output is zero in at least one of his tasks. It follows that individual output

𝑞𝑖 and team output 𝑄 are zero.

We assume that shocks are independent across agents so that 𝜋(𝜌)𝑛 is the probability that all agents experience positive shocks,

whereas 1 − 𝜋(𝜌)𝑛 is the probability that at least one agent experiences a negative shock. Let

𝑄+ = min
1≤𝑖≤𝑛

𝑞+
𝑖
. (8)

The O-ring production function is therefore

𝑄 =
{

𝑄+ with probability 𝜋(𝜌)𝑛
0 with probability 1 − 𝜋(𝜌)𝑛. (9)

We make the following assumptions throughout the paper.

Assumption 1. The probability 𝜋(𝜌) that an agent experiences a positive shock is

(i) a continuous function of 𝜌 on [0, 1] and continuously differentiable on (0, 1] with 𝜋′ < 0,
(ii) 𝜋(1) > 0 and 𝜋(0) = 1, and

(iii) 𝜋(𝜌)𝑛 → 0 as 𝑛 → ∞ (the first O-ring property).

Since 𝜋′ < 0, the probability that an agent experiences a positive shock is decreasing in the proportion of tasks 𝜌 assigned to

him as discussed in Section 1. The condition 𝜋(1) > 0 means that the probability of a positive shock remains positive even when

one agent performs all the tasks. We do not want to rule out a single agent firm ex ante. At the opposite end of the spectrum,

𝜋(0) = 1 means that the probability of a positive shock approaches one as the proportion of assigned tasks approaches zero.5

An increase in employment 𝑛 reduces the proportion of tasks 𝜌 = 1∕𝑛 performed by each agent and raises the probability 𝜋(𝜌)
of a positive shock. But it also increases the number of shocks, so the effect of employment on the probability 𝜋(𝜌)𝑛 that the

team is successful is ambiguous. We assume that eventually, the latter effect dominates in the sense of the first O-ring property:

𝜋(𝜌)𝑛 → 0 as 𝑛 → ∞ (there will be a second O-ring property later). This will act as one force that limits the size of the firm. In

the Appendix, we show that the following example satisfies all of the above assumptions.

Example. Let 𝜋(𝜌) = (𝜌∕𝐷)𝜌 and 𝜋(0) ≡ 1, where 𝐷 is a constant such that 𝐷 > 𝑒, where 𝑒 ≈ 2.718 is Euler’s constant.

Each agent has the utility function

𝑈 (𝑡𝑖, 𝑇𝑖) = 𝑢(𝑡𝑖) − 𝑐(𝑇𝑖), (10)

where 𝑡𝑖 is the transfer from the principal to agent 𝑖, 𝑐(0) = 0, and 𝑐(1) = 𝜓 > 0. We assume that agents cannot be forced to pay

a fine, so the transfer must be nonnegative 𝑡𝑖 ≥ 0. We make the following standard assumptions.

Assumption 2. The utility of money 𝑢 ∶ [0,∞) → ℝ is

(i) continuous,
(ii) twice continuously differentiable on (0,∞) with 𝑢′ > 0 and 𝑢′′ < 0, and

(iii) 𝑢(0) = 0.

Since 𝑢 is increasing, we can define its inverse 𝑡 = ℎ(𝑢), where ℎ = 𝑢−1. Note that 𝑢′ > 0 and 𝑢′′ < 0 imply ℎ′ > 0 and ℎ′′ > 0.

All agents have an outside option of zero. The following example will be used repeatedly throughout the paper.

Main Example. Let 𝑢(𝑡𝑖) =
√

𝑡𝑖 and 𝜋(𝜌) = (𝜌∕𝐷)𝜌 as defined above.

The production function (9) combines the main elements in Becker and Murphy (1992) and Kremer (1993). Becker and

Murphy develop a model of specialization and division of labor that leads to the production function defined by (1) and (6).

Their model is deterministic in the sense that 𝜋(𝜌) is identically equal to 1. Kremer considers an O-ring production function
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similar to that in (9) but without specialization and division of labor and where 𝜋(𝜌) is a constant that varies across workers but

does not depend on 𝜌. Neither paper explicitly considers moral hazard.

3 THE FIRST BEST

We begin with the first best benchmark where the principal can monitor all the agents’ choices. In this case, the princi-

pal can effectively make all the agents’ choices for them because she can specify the actions that she prefers as part of

the contract.6 The principal therefore chooses employment 𝑛 ≥ 0, total efforts {𝑇𝑖}, task efforts {𝜏𝑖𝑠}, production efforts

{𝑒𝑖𝑠}, and task-specific human capital {𝑙𝑖𝑠} to maximize her expected profit. Given these choices, the individual output 𝑞𝑖 of

agent 𝑖 is

𝑞𝑖 =
{

𝑞+
𝑖

with probability 𝜋(𝜌)
0 with probability 1 − 𝜋(𝜌), (11)

where 𝑞+
𝑖

is defined in (7) above. Let 𝑡𝑖 be the transfer to agent 𝑖 when 𝑞𝑖 = 𝑞+
𝑖

and 𝑡
𝑖

the transfer when 𝑞𝑖 = 0. The principal

chooses all of the above to maximize

Π𝐹 = 𝜋(𝜌)𝑛𝑄+ −
𝑛∑

𝑖=1

{
𝜋(𝜌)𝑡𝑖 + [1 − 𝜋(𝜌)]𝑡

𝑖

}
(12)

subject to the constraints (4) and (5), 𝑇𝑖 ∈ {0, 1} for all 𝑖, and the relevant participation constraints discussed in a moment. The

first term in (12) is expected output from the O-ring production function (9) and the second is the sum of the expected transfers

across employed agents.7 If 𝑛 = 0, then Π𝐹 ≡ 0.

Given that agent 𝑖 does not shirk, so that 𝑇𝑖 = 1, our first result shows how the total time 𝑇𝑖 = 1 should be allocated across

tasks and between production efforts and investments in human capital within tasks.

Lemma 1. The allocation of 𝑇𝑖 = 1 that maximizes 𝑞+
𝑖

is given by

𝑒𝑖𝑠 =
1

𝜌(1 + 𝛾)
, 𝑙𝑖𝑠 =

𝛾

𝜌(1 + 𝛾)
, and 𝜏𝑖𝑠 =

1
𝜌

(13)

for all 𝑖 and 𝑠 ∈ 𝑆𝑖. In that case, 𝑞+
𝑖
= 𝐵𝑛1+𝛾 for all 𝑖, where

𝐵 = 𝐴

𝛾

(
𝛾

1 + 𝛾

)1+𝛾

. (14)

When agent 𝑖 experiences a positive shock, his individual output 𝑞+
𝑖

in (7) is essentially the minimum of his task outputs

𝑞+
𝑖𝑠

in (6). It is therefore clearly optimal to allocate the total time 𝑇𝑖 = 1 equally across all assigned tasks: 𝜏𝑖𝑠 = 𝑇𝑖∕𝜌 = 1∕𝜌

for all 𝑠 ∈ 𝑆𝑖. One can then easily verify that 𝑒𝑖𝑠 and 𝑙𝑖𝑠 in (13) maximize 𝑞+
𝑖𝑠

subject to the constraints 𝑒𝑖𝑠 ≥ 0, 𝑙𝑖𝑠 ≥ 0,

and (5). Substituting the efficient allocation (13) into (6), individual output is 𝑞𝑖 = 𝐵𝑛1+𝛾 when the shock is positive. When

all shocks are positive, team output is the minimum of the individual outputs 𝑄 = 𝐵𝑛1+𝛾 , which exhibits increasing returns

to employment 𝑛. This is because an increase in employment implies fewer tasks per agent, who can then devote more

time 𝜏𝑖𝑗 to each of their assigned tasks. This improves productivity through greater investments 𝑙𝑖𝑗 in task-specific human

capital.

Definition 1. We say the principal implements efficient effort if all agents 𝑖 choose 𝑇𝑖 = 1 and allocate it as in Lemma 1. We
refer to 𝑞ℎ = 𝐵𝑛1+𝛾 as high individual output and 𝑄ℎ = 𝐵𝑛1+𝛾 as high team output. We say the principal implements inefficient

effort if all agents 𝑖 choose 𝑇𝑖 = 1 but at least one of them allocates it differently.

We now list the options available to the principal:

(1) zero employment 𝑛 = 0, which gives zero profit Π𝐹 = 0,

(2) 𝑛 ≥ 1, at least one agent shirks 𝑇𝑖 = 0 (so team output is zero for sure), and Π𝐹 ≤ 0,

(3) 𝑛 ≥ 1 and inefficient effort, and

(4) 𝑛 ≥ 1 and efficient effort.
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We assume that the principal prefers 𝑛 = 0 over 𝑛 ≥ 1 and 𝑇𝑖 = 0 for all 𝑖,8 so the principal’s choice boils down to options

(1) and (4). For the rest of the paper, we assume that in all contexts, the principal chooses the latter.9 Under this assumption, the

principal chooses 𝑛 ≥ 1 and the transfers 𝑡𝑖 ≥ 0 and 𝑡
𝑖
≥ 0 to maximize

Π𝐹 = 𝜋(𝜌)𝑛𝑄ℎ −
∑

𝑖

{
𝜋(𝜌)𝑡𝑖 + [1 − 𝜋(𝜌)]𝑡

𝑖

}
(15)

subject to the participation constraints

𝜋(𝜌)𝑢(𝑡𝑖) + [1 − 𝜋(𝜌)]𝑢(𝑡
𝑖
) − 𝜓 ≥ 0. (16)

Lemma 2. The first best solution entails a constant transfer 𝑡𝑖 = 𝑡
𝑖
= ℎ(𝜓) for all 𝑖.

As usual, the first best transfers provide full insurance 𝑡𝑖 = 𝑡
𝑖
= ℎ(𝜓), which is the same constant transfer as in the text-

book model with one agent.10 In our model, this standard result is important because it implies that the first best cost of

employment

𝐶𝐹 (𝑛, 𝜓) = 𝑛ℎ(𝜓) (17)

is linear in employment 𝑛. Substituting these transfers into (15),

Π𝐹 = 𝜋(𝜌)𝑛𝑄ℎ − 𝐶𝐹 (𝑛, 𝜓). (18)

Let 𝑛𝐹 (𝐵, 𝛾, 𝜓) denote the first best employment correspondence.11

The first best optimal employment level(s) is determined by the interaction of four factors. The first is the extent 𝑁 of

the labor market. The second is the increasing returns to employment 𝑄ℎ = 𝐵𝑛1+𝛾 due to specialization and division of

labor. The third is the first O-ring property, which states that the team probability 𝜋(𝜌)𝑛 gets arbitrarily small as employ-

ment increases. Finally, there is the cost of employment 𝐶𝐹 . But since 𝐶𝐹 is linear in employment, it cannot limit the

size of the firm or the extent of the division of labor. The first best O-ring firm will therefore hire the entire labor pool

unless the first O-ring property is sufficiently strong. In that case, it is efficient for all production to take place in one big

firm.

Proposition 1. Let 𝐿 = lim𝑛→∞ 𝜋(𝜌)𝑛𝑛𝛾 .

(i) If 0 ≤ 𝐿 <
ℎ(𝜓)

𝐵
and 𝑁 is sufficiently large, then 𝑛 < 𝑁 for all 𝑛 ∈ 𝑛𝐹 (𝐵, 𝛾, 𝜓).

(ii) If ℎ(𝜓)
𝐵

< 𝐿 ≤ ∞ and 𝑁 is sufficiently large, then 𝑛𝐹 = 𝑁 .

The limit 𝐿 is determined by two factors that work in opposite directions: the first O-ring property 𝜋(𝜌)𝑛 → 0 and the

increasing output per head
𝐵𝑛1+𝛾

𝑛
= 𝐵𝑛𝛾 → ∞. In (i), the limit 𝐿 is relatively small, which requires 𝜋(𝜌)𝑛 → 0 to occur

sufficiently rapidly. In this case, the first O-ring property is stronger than the increasing output per head effect and the

size of the first best firm and the extent of the division of labor are limited by the O-ring property and not the extent

𝑁 of the labor market. Indeed, 𝑛 < 𝑁 for all optimal employment levels 𝑛 ∈ 𝑛𝐹 (𝐵, 𝛾, 𝜓). In (ii), 𝐿 is relatively large,

so the divergence in output per head is stronger and the first best firm is limited only by the size 𝑁 of available labor

pool.

Main Example. In our Main Example, ℎ(𝜓)
𝐵

= 𝜓2

𝐵
and 𝜋(𝜌)𝑛𝑛𝛾 = (1∕𝐷)𝑛𝛾−1, which converges to

𝐿 =
⎧⎪⎨⎪⎩

0 when 0 ≤ 𝛾 < 1
1∕𝐷 when 𝛾 = 1
∞ when 𝛾 > 1.

(19)

The first best expected profit is

Π𝐹 = 𝐵

𝐷
𝑛𝛾 − 𝑛𝜓2 (20)
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with critical point

𝑛∗
𝐹
=
(

𝐵𝛾

𝐷𝜓2

) 1
1−𝛾

(21)

for all 0 ≤ 𝛾 < 1. If 𝐿 = 0, we are in case (i) of the above result where the first best firm is limited by the first O-ring property.
In fact, (21) is the first best employment level if it happens to be an integer. If not, then the first best employment level is one or
both of the two closest integers. If 𝐿 = 1∕𝐷, then

𝑛𝐹 =
⎧⎪⎨⎪⎩

0 if 1
𝐷

<
𝜓2

𝐵

indeterminate if 1
𝐷

= 𝜓2

𝐵

𝑁 if 1
𝐷

>
𝜓2

𝐵
.

(22)

The first case 1∕𝐷 < 𝜓2∕𝐵 falls under (i) of the proposition, while the third 1∕𝐷 > 𝜓2∕𝐵 falls under (ii). Note that the second
case 1∕𝐷 = 𝜓2∕𝐵, where optimal employment is indeterminate, is not covered by the proposition. Finally, if 𝐿 = ∞, then (ii)
applies, where 𝑛𝐹 = 𝑁 .

4 THE SECOND BEST

We now introduce moral hazard. In this section, we consider the second best case where the principal can monitor individual

output 𝑞𝑖 but not the agents’ choices {𝑒𝑖𝑠}, {𝑙𝑖𝑠}, {𝜏𝑖𝑠}, or {𝑇𝑖}. Let 𝑡𝑖(𝑞𝑖) be the transfer to agent 𝑖 conditional on 𝑞𝑖. Note that

the principal does not condition transfers on team output 𝑄 because that would impose additional risk without adding any new

information.

As before, the principal effectively chooses between zero employment and positive employment with efficient effort. When

agent 𝑖 exerts efficient effort, his individual output is given by

𝑞𝑖 =
{

𝑞ℎ with probability 𝜋(𝜌)
0 with probability 1 − 𝜋(𝜌). (23)

A principal who implements positive employment with efficient effort chooses employment 𝑛 ≥ 1 and transfers 𝑡𝑖(𝑞𝑖) to maxi-

mize expected profit

Π𝐼 = 𝜋(𝜌)𝑛𝑄ℎ −
𝑛∑

𝑖=1

{
𝜋(𝜌)𝑡𝑖(𝑞ℎ) + [1 − 𝜋(𝜌)]𝑡𝑖(0)

}
(24)

subject to the limited liability constraints 𝑡𝑖(𝑞𝑖) ≥ 0 for all 0 ≤ 𝑞𝑖 ≤ 𝑞ℎ, the participation constraints

𝜋(𝜌)𝑢(𝑡𝑖(𝑞ℎ)) + [1 − 𝜋(𝜌)]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 0, (25)

and the relevant incentive compatibility constraints. To determine the latter, we list the alternatives available to agent 𝑖. If he

shirks 𝑇𝑖 = 0, then 𝑞𝑖 = 0 for sure. If he chooses inefficient effort, then

𝑞𝑖 =
{

𝑞𝑖 with probability 𝜋(𝜌)
0 with probability 1 − 𝜋(𝜌), (26)

where 0 ≤ 𝑞𝑖 < 𝑞ℎ. The incentive compatibility constraints are therefore

𝜋(𝜌)𝑢(𝑡𝑖(𝑞ℎ)) + [1 − 𝜋(𝜌)]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 𝑢(𝑡𝑖(0)) (27)

𝜋(𝜌)𝑢(𝑡𝑖(𝑞ℎ)) + [1 − 𝜋(𝜌)]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 𝜋(𝜌)𝑢(𝑡𝑖(𝑞𝑖)) + [1 − 𝜋(𝜌)]𝑢(𝑡𝑖(0)) − 𝜓 (28)

for all 0 ≤ 𝑞𝑖 < 𝑞ℎ. Constraint (27) states that agent 𝑖 prefers efficient effort over shirking, while (28) states that 𝑖 prefers efficient

effort over inefficient effort.
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Lemma 3.

(i) For any employment level 𝑛 ≥ 1, the transfers

𝑡𝑖(𝑞𝑖) =

{
ℎ

[
𝜓

𝜋(𝜌)

]
if 𝑞𝑖 = 𝑞ℎ

0 if 0 ≤ 𝑞𝑖 < 𝑞ℎ
(29)

minimize the expected cost of implementing efficient effort.
(ii) The second best incentive ℎ(𝜓∕𝜋) is increasing in the proportion 𝜌 of tasks assigned to agent 𝑖 and decreasing in employ-

ment 𝑛.
(iii) ℎ(𝜓∕𝜋) ↓ ℎ(𝜓) as 𝑛 → ∞.

When the agent chooses efficient effort and the shock is positive, his individual output is 𝑞𝑖 = 𝑞ℎ and the principal rewards

him with the bonus ℎ(𝜓∕𝜋). We call this the second best incentive. In all other cases (when the shock is negative or if he chooses

inefficient effort or shirks), then 0 ≤ 𝑞𝑖 < 𝑞ℎ and the transfer is zero. Since his outside option is zero, this is effectively the same

as firing the agent.12 An increase in employment 𝑛 implies fewer tasks per agent 𝜌 and a higher probability 𝜋(𝜌) of a positive

shock. An increase in 𝜋(𝜌) raises the expected payoff of the agent when he chooses efficient effort (the left-hand side of the

incentive compatibility constraint (28)), which allows the principal to continue implementing efficient effort but with weaker

incentives. It follows that ℎ(𝜓∕𝜋) is increasing in 𝜌 and decreasing in employment 𝑛. As 𝑛 → ∞, 𝜋(𝜌) → 1, and the second best

incentive ℎ(𝜓∕𝜋) converges to the first best transfer ℎ(𝜓). This must be the case because in the limit, when the probability of

a positive shock is one, the principal can perfectly monitor the agents: if 𝑞𝑖 = 𝑞ℎ, she can deduce that the agent chose efficient

effort and if 0 ≤ 𝑞𝑖 < 𝑞ℎ, she can deduce that the agent either shirked or chose inefficient effort.

It is sometimes stated that workers on an assembly line should not receive any incentives, even under moral hazard, because

they cannot vary the intensity of their effort. For example, consider the case with only one agent who chooses a continuous effort

level 𝑒 at cost 𝐶(𝑒). Assume the agent has a negative exponential utility function with constant coefficient of risk aversion 𝑟 > 0.

Output is given by 𝑞 = 𝑒 + 𝜖, where 𝜖 is normally distributed with mean zero and variance 𝑉 . Let 𝑃 (𝑒) be the expected benefit

of effort to the principal who is restricted to the class of linear contracts 𝛼 + 𝛽𝑞. As is well known, under these assumptions, the

optimal incentive is

𝛽 = 𝑃 ′(𝑒)
1 + 𝑟𝑉 𝐶 ′′(𝑒)

, (30)

where primes indicate derivatives. Milgrom and Roberts (1992, p. 222) define 1∕𝐶 ′′ as the agent’s responsiveness to incentives
and argue that “an employee working on a fixed rate production line cannot increase his or her own output in response to piece

rate incentives” so that responsiveness and the optimal incentive should both zero.

There are two issues with this argument. First of all, it neglects the fact that under moral hazard, the agent still has the

option of withholding effort altogether. In our model, the optimal incentive contract in Lemma 3 is a Mirrlees contract where

the agent is rewarded when output is 𝑞ℎ and punished otherwise. The optimal contract is therefore designed and dedicated to

deterring shirking (zero effort) and inefficient effort. Furthermore, it is well known that linear contracts are not optimal under the

assumptions in the previous paragraph and that the principal can approximate the first best outcome using a Mirrlees contract.13

In our model, the decision to exert efficient effort depends on the reward 𝑡𝑖(𝑞ℎ) as well as the probability 𝜋(𝜌) of a positive shock.

Since 𝜋(𝜌) increases with employment 𝑛, the incentive ℎ(𝜓∕𝜋) declines. In our model, it is only at high employment levels that

the principal offers weak incentives (i.e., a bonus close to the first best transfer) and incentives can be quite strong when the

team size is small.

We now consider the second best expected transfer

𝐻𝐼 (𝜌, 𝜓) = 𝜋(𝜌)ℎ
[

𝜓

𝜋(𝜌)

]
. (31)

Lemma 4.

(i) The second best expected transfer exceeds the first best transfer 𝐻𝐼 (𝜌, 𝜓) > ℎ(𝜓) for all 0 < 𝜌 ≤ 1 and 𝜓 > 0.
(ii) 𝐻𝐼 (𝜌, 𝜓) is increasing in 𝜌 and decreasing in 𝑛 for all 𝜓 > 0.

(iii) 𝐻𝐼 (𝜌, 𝜓) ↓ ℎ(𝜓) as 𝑛 → ∞.
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The second best expected transfer exceeds the first best transfer for the usual reason that it includes agency costs. In particular,

under moral hazard, the principal can only implement efficient effort by offering incentives. This imposes risk on the agents that

obliges the principal to pay a risk premium. An increase in employment 𝑛 reduces the proportion 𝜌 of tasks performed by each

worker, which has two conflicting effects on the expected transfer 𝐻𝐼 : it increases the probability 𝜋(𝜌) of a positive shock but

reduces the incentive ℎ(𝜓∕𝜋). Since agents are risk averse, ℎ is strictly convex, and the latter effect dominates. The second

best expected transfer is therefore decreasing in employment 𝑛. As 𝑛 → ∞, 𝜌 → 0, and 𝜋(𝜌) → 1, the second best incentive

ℎ(𝜓∕𝜋) and expected transfer 𝐻𝐼 (𝜌, 𝜓) decline monotonically to their first best levels ℎ(𝜓). In the present context, an increase

in employment reduces agency costs that disappear in the limit.

The model therefore predicts that incentives and expected pay are decreasing in the level of specialization and division of labor

when individual performance can be monitored. This seemingly contradicts the fact that in many occupations such as medicine,

we observe that specialists are better paid than nonspecialists. But it is important to note that in our model, specialization makes

the worker more productive within the O-ring firm but does not affect the agents’ outside option. Our model therefore focuses

on firm-specific specialization and is more appropriate for manufacturing, for example, than physicians whose specialization

increases their general human capital.

Substituting the second best transfers into (24), we obtain

Π𝐼 = 𝜋(𝜌)𝑛𝑄ℎ − 𝐶𝐼 (𝑛, 𝜓), (32)

where

𝐶𝐼 (𝑛, 𝜓) = 𝑛𝐻𝐼 (𝜌, 𝜓) (33)

is the second best cost of employment. The second best expected transfer 𝐻𝐼 exceeds the first best transfer ℎ(𝜓), so 𝐶𝐼 > 𝐶𝐹

for all 𝑛 ≥ 1 because 𝐶𝐼 includes the cost of moral hazard. This suggests two questions. First, can moral hazard limit the size

of the second best firm? And second, how does the size of the second best firm compare to the first best?

In the first best benchmark, the size of the firm and the division of labor are limited either by the extent 𝑁 of the labor

market or the first O-ring property 𝜋(𝜌)𝑛 → 0 but not the first best cost of employment 𝐶𝐹 because it is linear. In the present

context, the second best expected transfer 𝐻𝐼 (𝜌, 𝜓) converges to the first best transfer ℎ(𝜓) as 𝑛 → ∞, so the second best cost

𝐶𝐼 of employment is approximately the same as 𝐶𝐹 at high employment levels. It follows that 𝐶𝐼 is asymptotically linear and

therefore cannot compete with the increasing returns to employment due to specialization and division of labor. As before, the

size of the firm is limited by the extent of the labor market or the first O-ring property and not by agency costs when individual

output can be monitored. The following result is almost exactly the same as Proposition 1 in the first best case. Let 𝑛𝐼 (𝐵, 𝛾, 𝜓)
be the second best employment correspondence.

Proposition 2. Let 𝐿 = lim𝑛→∞ 𝜋(𝜌)𝑛𝑛𝛾 .

(i) If 0 ≤ 𝐿 <
ℎ(𝜓)

𝐵
and 𝑁 is sufficiently large, then 𝑛 < 𝑁 for all 𝑛 ∈ 𝑛𝐼 (𝐵, 𝛾, 𝜓).

(ii) If ℎ(𝜓)
𝐵

< 𝐿 ≤ ∞ and 𝑁 is sufficiently large, then 𝑛𝐼 = 𝑁 .

We now turn to the second question, on the size of the second best firm relative to the first best. The answer depends on the

second best marginal cost of employment 𝐶𝐼
𝑛

, where the subscript indicates partial differentiation.14 Let

𝜖𝜋 = 𝜌𝜋′

𝜋
(34)

be the elasticity of 𝜋 with respect to 𝜌 and

𝜖ℎ = 𝜓

𝜋

ℎ′(𝜓∕𝜋)
ℎ(𝜓∕𝜋)

, (35)

the elasticity of ℎ with respect to 𝑢 = 𝜓∕𝜋.

Lemma 5. The second best marginal cost of employment is given by

𝐶𝐼
𝑛
= 𝐻𝐼 (𝜌, 𝜓)Δ𝐼 (𝑛, 𝜓), (36)



92 JOURNAL OF ECONOMICS & MANAGEMENT STRATEGY

F I G U R E 1 First and second best marginal costs of employment [Color figure can be viewed at wileyonlinelibrary.com]

where

Δ𝐼 (𝑛, 𝜓) = 1 − 𝜖𝜋(1 − 𝜖ℎ) < 1. (37)

The marginal cost of employment 𝐶𝐼
𝑛

can be decomposed into two separate components. The first component 𝐻𝐼 reflects

the fact that each additional hire must be paid the expected transfer, while the second Δ𝐼 reflects the reduction in 𝐻𝐼 due to an

increase in employment 𝑛. Since 𝐻𝐼 = 𝜋ℎ, the magnitude of Δ𝐼 depends on the elasticities 𝜖𝜋 and 𝜖ℎ, where 𝜖𝜋 < 0 because

𝜋′ < 0 and 𝜖ℎ > 1 (we prove this in the Appendix) because agents are risk averse and ℎ is therefore strictly convex. It follows that

Δ𝐼 < 1, so the marginal cost of employment is less than the expected transfer. In the textbook monopsony model, the marginal

cost of employment exceeds the wage because the firm must increase the wage to hire more labor and this wage increase must

be applied to its current workers as well as the marginal ones. In contrast, the second best marginal cost of employment is less

than the expected transfer because the latter is decreasing in employment.

The larger the elasticities 𝜖𝜋 and 𝜖ℎ are in absolute value, the smaller the marginal cost of employment. When 𝜖𝜋 is large in

absolute value, an increase in employment 𝑛 leads to a large increase in the probability 𝜋 of a positive shock. When 𝜖ℎ is large,

an increase in 𝜋 leads to a large reduction in the incentive ℎ(𝜓∕𝜋). Combining these two effects, an increase in employment will

lead to a large reduction in the expected transfer 𝐻𝐼 , which implies small values for Δ𝐼 and the marginal cost of employment

𝐶𝐼
𝑛

. In fact, our next example shows that the marginal cost of employment can even be negative.

Example. Consider our Main Example with 𝐵 = 7, 𝛾 = 1∕2, 𝐷 = 100, and 𝜓 = 1∕10. In Figure 1 above, we plot the first
𝐶𝐹

𝑛
= 𝜓2 and second

𝐶𝐼
𝑛
= 𝜓2

(
𝐷

𝜌

)𝜌 [
1 + 𝜌

(
1 + log 𝜌

𝐷

)]
(38)

best marginal costs of employment as functions of 𝑛.
Although not shown in the figure, Δ𝐼 < 0 and therefore 𝐶𝐼

𝑛
< 0 from 𝑛 = 1 until 𝑛 ≈ 5.27. For example, one can verify by

hand that 𝐶𝐼 = 1 when 𝑛 = 1 and 𝐶𝐼 ≈ 0.28 when 𝑛 = 2. In this range, an increase in employment reduces the expected transfer
so much that the marginal cost of employment is actually negative. The two marginal cost curves cross at 𝑛 ≈ 29. After that, the
second best marginal cost 𝐶𝐼

𝑛
gradually asymptotes to the first best 𝐶𝐹

𝑛
as the second best expected transfer 𝐻𝐼 (𝜌, 𝜓) converges

to the first best transfer ℎ(𝜓). In Figure 2 below, we plot first best Π𝐹 and second best Π𝐼 expected profit as functions of
employment.

Not surprisingly, first best expected profit exceeds second best expected profit at every employment level. From (18) and
(32), we observe that expected revenue 𝜋(𝜌)𝑛𝑄ℎ is the same for the first and second best O-ring firms, so any difference
between the first and second best employment levels is explained entirely by the difference in the marginal cost of employment.
Note that Π𝐼 < 0 for all 𝑛 ≥ 28 so 𝐶𝐼

𝑛
< 𝐶𝐹

𝑛
for all employment levels where the second best expected profit is nonnegative.

We would therefore expect that 𝑛𝐼 > 𝑛𝐹 and indeed, 𝑛𝐼 = 14 and 𝑛𝐹 = 12 assuming that 𝑁 ≥ 14 and imposing the integer
constraint.
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F I G U R E 2 First and second best expected profit [Color figure can be viewed at wileyonlinelibrary.com]

Our final result in this section provides conditions under which the second best firm is smaller than the first best firm. Since

both problems can have multiple solutions, we consider the largest first best employment level defined by

𝑛
𝐹 (𝐵, 𝛾, 𝜓) = max

𝑛
𝑛𝐹 (𝐵, 𝛾, 𝜓). (39)

Proposition 3. Let ℕ𝐼
+(𝐵, 𝛾, 𝜓) be the set of integers 0 ≤ 𝑛 ≤ 𝑁 such that Π𝐼 ≥ 0. If 𝐶𝐼

𝑛
(𝑛, 𝜓) ≥ 𝐶𝐹

𝑛
(𝜓) = ℎ(𝜓) for all 𝑛 ∈

ℕ𝐼
+(𝐵, 𝛾, 𝜓), then 𝑛 ≤ 𝑛

𝐹 (𝐵, 𝛾, 𝜓) for all 𝑛 ∈ 𝑛𝐼 (𝐵, 𝛾, 𝜓).

From Lemma 5, the size of the second best firm relative to the first best depends on the absolute values of the elasticities 𝜖𝜋

and 𝜖ℎ. When these elasticities are small in absolute value, Δ𝐼 is close to one and the second best marginal cost of employment

𝐶𝐼
𝑛

is close to the second best expected transfer 𝐻𝐼 , which exceeds the first best marginal cost of employment 𝐶𝐹
𝑛
= ℎ(𝜓). This

is the situation described in the above result. In contrast, when the elasticities 𝜖𝜋 and 𝜖ℎ are large, the second best marginal cost

of employment is small and can even be negative as in the above example. In that case, the second best firm will be inefficiently

large with an excessive degree of specialization and division of labor, weak incentives, and low expected pay relative to the

outside option. Motivation is achieved through a combination of weak incentives and the fact that the agent knows that he will

be fired for sure if he shirks. At high employment levels, the individual probability of a negative shock and the probability that

a given individual agent will be fired are both relatively low. But the team probability 𝜋𝑛 that all shocks are positive is also

relatively low, resulting in occasional breakdowns in production (e.g., product recalls) and subsequent firings. The agents who

are not fired receive relatively low wages (the second best bonus). The overall picture resembles a traditional manufacturing firm

with extensive specialization and division of labor, weak incentives, and low pay.

5 THIRD BEST

We now consider the third best case where the principal can only monitor team output 𝑄. A principal who chooses positive

employment and implements efficient effort chooses 𝑛 such that 1 ≤ 𝑛 ≤ 𝑁 and transfers 𝑡𝑖(𝑄) to maximize expected profit

𝜋(𝜌)𝑛𝑄ℎ −
𝑛∑

𝑖=1

{
𝜋(𝜌)𝑛𝑡𝑖(𝑄ℎ) + [1 − 𝜋(𝜌)𝑛]𝑡𝑖(0)

}
(40)

subject to the limited liability constraints 𝑡𝑖(𝑄) ≥ 0 for all 0 ≤ 𝑄 ≤ 𝑄ℎ, the participation

𝜋(𝜌)𝑛𝑢(𝑡𝑖(𝑄ℎ)) + [1 − 𝜋(𝜌)𝑛]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 0 (41)

and incentive compatibility constraints

𝜋(𝜌)𝑛𝑢(𝑡𝑖(𝑄ℎ)) + [1 − 𝜋(𝜌)𝑛]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 𝑢(𝑡𝑖(0)) (42)
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𝜋(𝜌)𝑛𝑢(𝑡𝑖(𝑄ℎ)) + [1 − 𝜋(𝜌)𝑛]𝑢(𝑡𝑖(0)) − 𝜓 ≥ 𝜋(𝜌)𝑛𝑢(𝑡𝑖(𝑄̂)) + [1 − 𝜋(𝜌)𝑛]𝑢(𝑡𝑖(0)) − 𝜓 (43)

for all 𝑖 and 0 ≤ 𝑄̂ < 𝑄ℎ. The incentive compatibility constraints ensure that it is a Nash equilibrium for all employed agents to

exert efficient effort. Given that all other agents choose efficient effort, (42) ensures that agent 𝑖 prefers efficient effort over zero

effort, while (43) ensures that 𝑖 prefers efficient effort over inefficient effort. The proof of the following result is similar to that

for Lemmas 3 and 4 and is omitted.

Lemma 6.

(i) For any employment level 1 ≤ 𝑛 ≤ 𝑁 , the transfers that minimize the expected cost of implementing the efficient effort Nash
equilibrium are

𝑡𝑖(𝑄) =

{
ℎ

[
𝜓

𝜋(𝜌)𝑛

]
if 𝑄 = 𝑄ℎ

0 if 0 ≤ 𝑄 < 𝑄ℎ
(44)

for all 𝑖.
(ii) The third best expected transfer

𝐻𝑇 (𝑛, 𝜓) = 𝜋(𝜌)𝑛ℎ
[

𝜓

𝜋(𝜌)𝑛

]
(45)

exceeds the first and second best ℎ(𝜓) < 𝐻𝐼 < 𝐻𝑇 for all 1 < 𝑛 ≤ 𝑁 and 𝜓 > 0.

The third best incentive and expected transfer have the same structure as their second best counterparts except that they depend

on the probability 𝜋(𝜌)𝑛 that all shocks are positive rather than the individual probability 𝜋(𝜌) as before. The team probability is

less than the individual probability for all 𝑛 > 1, so the third best incentive exceeds the second best incentive and the first best

transfer

ℎ

[
𝜓

𝜋(𝜌)𝑛

]
> ℎ

[
𝜓

𝜋(𝜌)

]
> ℎ(𝜓). (46)

Intuitively, a lower probability of success requires a higher reward for success to implement efficient effort. Since ℎ is strictly

convex, the third best expected transfer 𝐻𝑇 exceeds the second best expected transfer 𝐻𝐼 , which, in turn, exceeds the first best

transfer ℎ(𝜓) by Lemma 4. We make the following assumptions for the rest of the paper.

Assumption 3.

(i) The marginal utility of money 𝑢′ → 0 as 𝑡 → ∞ and
(ii) the team probability 𝜋(𝜌)𝑛 is decreasing in 𝑛 (the second O-ring property)

The first assumption is that the marginal utility of money goes to zero as income gets arbitrarily large. Alternatively, ℎ′ → ∞
as 𝑢 → ∞.15 This property is satisfied by many utility functions such as

√
𝑡 and ln 𝑡. The second O-ring property is that the

team probability 𝜋(𝜌)𝑛 is decreasing in employment for all 𝑛 ≥ 1.16 The example below shows that our Main Example sat-

isfies this assumption. The individual 𝜋(𝜌) and team probabilities 𝜋(𝜌)𝑛 therefore behave quite differently. Under the first

O-ring property, 𝜋𝑛 → 0 as 𝑛 → ∞, whereas 𝜋 → 1. Under the second O-ring property, 𝜋(𝜌) is increasing, whereas 𝜋(𝜌)𝑛
is decreasing in employment 𝑛. This explains why the monitoring technology (second or third best) is so decisive for our

results.

Lemma 7. For all 𝜓 > 0,

(i) the third best incentive ℎ(𝜓∕𝜋𝑛) and expected transfer 𝐻𝑇 (𝑛, 𝜓) are increasing in employment 𝑛 and
(ii) ℎ(𝜓∕𝜋𝑛) → ∞ and 𝐻𝑇 (𝑛, 𝜓) → ∞ as 𝑛 → ∞.

An increase in employment 𝑛 reduces the probability 𝜋(𝜌)𝑛 the agent will be rewarded when he exerts efficient effort. To

continue implementing efficient effort, the principal must increase the incentive. Since ℎ is strictly convex, the increase in

ℎ(𝜓∕𝜋𝑛) dominates the reduction in the team probability 𝜋(𝜌)𝑛 and the expected transfer 𝐻𝑇 (𝑛, 𝜓) also increases. As 𝑛 → ∞
and 𝜋𝑛 → 0, the principal has to increase the incentive more and more because the marginal utility of money is declining and
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converging to zero. The incentive and expected transfer therefore explode, which is quite different from the second best case

where they both converge to their first best levels.

Substituting the third best transfers into (40), we obtain

Π𝑇 = 𝜋(𝜌)𝑛𝑄ℎ − 𝐶𝑇 (𝑛, 𝜓), (47)

where 𝐶𝑇 (𝑛, 𝜓) = 𝑛𝐻𝑇 (𝑛, 𝜓).

Lemma 8.

(i) The third best marginal cost of employment is given by

𝐶𝑇
𝑛
(𝑛, 𝜓) = 𝐻𝑇 (𝑛, 𝜓)Δ𝑇 (𝑛, 𝜓), (48)

where

Δ𝑇 (𝑛, 𝜓) = 1 + 𝜖𝜋𝑛(1 − 𝜖ℎ), (49)

and 𝜖𝜋𝑛 is the elasticity of 𝜋(𝜌)𝑛 with respect to 𝑛.
(ii) Δ𝑇 > 1 for all 𝑛 ≥ 1 and 𝜓 > 0.

(iii) 𝐶𝑇
𝑛
→ ∞ as 𝑛 → ∞.

As before, the marginal cost of employment can be decomposed into two components: the first 𝐻𝑇 is that each additional

hire receives the expected transfer, while the second Δ𝑇 captures the effect of the marginal hire on 𝐻𝑇 .17 Since 𝐻𝑇 = 𝜋𝑛ℎ, Δ𝑇

depends on the elasticities 𝜖𝜋𝑛 and 𝜖ℎ. As before, the inverse utility of money is elastic 𝜖ℎ > 1 because ℎ is strictly convex. The

difference is that 𝜖𝜋𝑛 < 0 because the team probability 𝜋𝑛 is decreasing in employment 𝑛. It follows that Δ𝑇 > 1, so the marginal

cost of employment exceeds the expected transfer. This is similar to the textbook monopsony model where the marginal cost

of employment exceeds the wage because the firm must increase the wage to all workers, old and new, to hire additional labor.

The difference is that in our model, the explanation is in terms of moral hazard rather than a traditional upward-sloping supply

curve. Since Δ𝑇 > 1 and 𝐻𝑇 → ∞, 𝐶𝑇
𝑛
= 𝐻𝑇Δ𝑇 → ∞ as 𝑛 → ∞.

Proposition 4.

(i) The third best marginal cost of employment 𝐶𝑇
𝑛

is strictly greater than the first best ℎ(𝜓) and second best 𝐶𝐼
𝑛

marginal costs
of employment for all 𝑛 ≥ 1 and 𝜓 > 0.

(ii) Assuming unique solutions for employment, the third best employment level is at least weakly less than the first and second
best employment levels.

The first part of the proposition follows from previous results: 𝐻𝑇 ≥ 𝐻𝐼 > ℎ(𝜓), Δ𝑇 > 1 > Δ𝐼 , and therefore

𝐶𝑇
𝑛
= 𝐻𝑇Δ𝑇 > 𝐶𝐼

𝑛
= 𝐻𝐼Δ𝐼 , (50)

𝐶𝑇
𝑛
= 𝐻𝑇Δ𝑇 > 𝐶𝐹

𝑛
= ℎ(𝜓). (51)

Intuitively, the third best marginal cost of employment 𝐶𝑇
𝑛

exceeds the third best expected transfer 𝐻𝑇 because the team prob-

ability 𝜋𝑛 is decreasing in employment 𝑛, which necessitates an increase in the third best incentive. The third best expected

transfer 𝐻𝑇 exceeds the second best expected transfer 𝐻𝐼 because the team probability 𝜋𝑛 is less than the individual probability

𝜋, so the third best incentive must be greater. Finally, the second best marginal cost 𝐶𝐼
𝑛

is less than the second best expected

transfer 𝐻𝐼 because the individual probability 𝜋 is increasing in employment, which allows the principal to reduce the second

best incentive. The ranking is therefore clear:

𝐶𝑇
𝑛

> 𝐻𝑇 ≥ 𝐻𝐼 > 𝐶𝐼
𝑛
. (52)

The comparison between 𝐶𝑇
𝑛

and the first best marginal cost ℎ(𝜓) is similar.
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Since expected revenue as a function of employment is the same for all three institutions, the comparison of optimal employ-

ment levels in the second part of the proposition follows immediately from the comparison of the marginal costs in the first part.

The uniqueness assumption simplifies the exposition. Otherwise we would have to make a more complicated statement similar

to that in Proposition 3 above.

Main Example. We illustrate these ideas using our Main Example. Recall that the first best cost function 𝐶𝐹 = 𝑛ℎ(𝜓) is linear
in employment 𝑛 and the second best cost function 𝐶𝐼 is asymptotically linear in employment because

𝐶𝐼

𝐶𝐹
= 𝑛𝐻𝐼

𝑛ℎ(𝜓)
= 𝐻𝐼

ℎ(𝜓)
→ 1 (53)

as 𝑛 → ∞. In our Main Example, the team probability is 𝜋𝑛 = 1
𝑛𝐷

and 𝐶𝑇 = 𝐷𝜓2𝑛2, which dominates the returns to employment
𝑄ℎ = 𝐵𝑛1+𝛾 when 0 ≤ 𝛾 < 1. It is only in the third best case, when the principal can only monitor team output 𝑄, that moral
hazard alone can limit the size of the firm and the extent of the division of labor.

The third best expected profit is given by

Π𝑇 = 𝜋𝑛𝐵𝑛1+𝛾 − 𝐶𝑇 (𝑛, 𝜓) = 𝐵

𝐷
𝑛𝛾 − 𝐷𝜓2𝑛2, (54)

with critical point

𝑛∗
𝑇
=
(

𝐵𝛾

2𝐷2𝜓2

) 1
2−𝛾

(55)

when 0 ≤ 𝛾 < 2. When the constraint 𝑛 ≤ 𝑁 does not bind, the third best employment level will be an integer on either side of
𝑛∗

𝑇
. We assume

𝐵𝛾 > 2𝐷2𝜓2, (56)

which implies 𝑛∗
𝑇

> 1, so the third best employment level is at least one after accounting for the integer constraint. To simplify
the exposition, we ignore the integer constraint from now on. The third best employment level is therefore18

𝑛𝑇 =
{

min{𝑛∗
𝑇
, 𝑁} if 0 < 𝛾 < 2

𝑁 if 𝛾 ≥ 2. (57)

We now return to the first best problem. The critical point (21) satisfies 𝑛∗
𝐹

> 1 under the condition (56). The first best employment
level is therefore

𝑛𝐹 =
{

min{𝑛∗
𝐹

, 𝑁} if 0 < 𝛾 < 1
𝑁 if 𝛾 ≥ 1. (58)

We can now compare the two institutions. We first note that if 𝛾 ≥ 2, then 𝑛𝑇 = 𝑛𝐹 = 𝑁 . Next, we consider the case where
0 < 𝛾 < 1, so that 1

1−𝛾
> 1 and 1

2−𝛾
< 1. Since 𝐷 > 𝑒 ≈ 2.718,

1 <
𝐵𝛾

2𝐷2𝜓2 <
𝐵𝛾

𝐷𝜓2 (59)

and 𝑛∗
𝑇

< 𝑛∗
𝐹

. If 𝑁 > 𝑛∗
𝑇

, then 𝑛𝑇 < 𝑛𝐹 . In particular, if 𝑛∗
𝑇

< 𝑁 ≤ 𝑛∗
𝐹

, then the first best firm is limited by the extent of the market
𝑛𝐹 = 𝑁 , while the second best firm is limited by moral hazard alone. If 𝑁 ≤ 𝑛∗

𝑇
, then 𝑛𝑇 = 𝑛𝐹 = 𝑁 . Finally, we consider the

case where 1 ≤ 𝛾 < 2 so that 𝑛𝐹 = 𝑁 . If 𝑛∗
𝑇

< 𝑁 , then 𝑛𝑇 < 𝑛𝐹 but if 𝑛∗
𝑇
≥ 𝑁 , then 𝑛𝑇 = 𝑛𝐹 = 𝑁 . In all cases, the third best

firm is at least weakly smaller than the first best firm.

6 CONCLUSION

In this paper, we developed a stochastic production function that incorporates specialization and division of labor and the possi-

bility that negative shocks or shirking can have major adverse consequences for the firm. The purpose of the paper was to show
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that this O-ring production function has important implications not only for incentive contracting but also for the size of the firm

in terms of employment and the extent of the division of labor.

Under the first best monitoring technology, there is no moral hazard problem because the principal can directly monitor the

agents’ choices. In this case, the O-ring production function has limited effects because the principal does not provide any incen-

tives. Instead, the principal provides full insurance that implies a constant transfer regardless of output or employment. The firm

therefore behaves like a perfectly competitive wage-taker despite the fact that it is a monopolist. In the absence of any con-

straints, the first best employment level would be infinite because of the increasing returns to employment due to specialization

and division of labor. The size of the first best firm and the extent of the division of labor are bounded either by the extent of

the labor market or the first O-ring effect, which states that the team probability that all shocks are positive converges to zero as

employment increases without bound.

Under moral hazard, the O-ring production function affects incentive contracting in two ways. First, the optimal contract is

a Mirrlees contract where agents are rewarded when output is high (individual or team output, depending on the monitoring

technology) and fired otherwise. Second, the incentive and expected transfer depends on the probability of success (individual

or team) that, in turn, depends on employment. The expected transfer then determines the cost of employment through which

moral hazard and agency costs can affect the size of the firm and the extent of the division of labor.

In the second best case, the principal cannot monitor choices but she can monitor individual output. The relevant probability

is therefore the individual probability of a positive shock, which is increasing in employment because fewer assigned tasks

reduce the chance of errors. It follows that the second best incentive and expected transfer are decreasing in employment and

we obtain the novel result that the second best marginal cost of employment is less than the expected transfer. In fact, the

second best marginal cost of employment can be less than first best (and even negative), so the second best firm can be larger

than first best. As a result, the second best firm tends to be large, with a high degree of specialization and division of labor,

weak incentives, and low expected pay. As employment increases, in the limit the moral hazard problem vanishes and the

second best incentive, expected transfer, and marginal cost of employment all converge to their first best levels. In our model,

agency costs cannot bound the size of the firm or the extent of the division of labor when the principal can monitor individual

output.

In the third best case, the principal can only monitor team output and the relevant probability is the team probability that all

shocks are positive. Whereas the individual probability increases to one with employment, under the O-ring property, the team

probability declines to zero. It follows that the third best incentive and expected transfer are increasing in employment, so the

third best marginal cost of employment exceeds the expected transfer like a traditional monopsonist. As employment increases,

the moral hazard problem, the third best incentive, expected transfer, and the marginal cost of employment all explode. As

a result, the third best firm tends to be small (smaller than the other two institutions), with a low degree of specialization

and division of labor, strong incentives, and high expected pay relative to the agents’ outside option. In our model, agency

costs can only bound the size of the firm and the extent of the division of labor when the principal can only monitor team

output.

E N D N O T E S
1 Note that the agents, and not the tasks, are the source of the negative shocks. It is not clear why the number of probabilities would equal the number

of agents if the tasks themselves were the sole source of the negative shocks. I thank an anonymous referee for remarks on this issue.

2 Shah, Ball, and Netessine (2016) find that automobile recalls are positively associated with product variety, plant utilization, and the interaction

between the two. The finding that recalls are increasing in product variety at the plant level is analogous to our assumption that the probability of a

negative shock is increasing in task variety at the agent level.

3 I thank the referee for remarks on this issue.

4 We assume that 𝜏𝑖𝑠 is a measurable function on 𝑆𝑖 such that 0 ≤ 𝜏𝑖𝑠 ≤ 1 for all 𝑖 and 𝑠 ∈ 𝑆𝑖.

5 Note that 𝜋′ < 0 and 𝜋(1) > 0 imply that 𝜋(𝜌) > 0 for all 𝜌 ∈ [0, 1].
6 We make the standard assumption that an indifferent agent chooses as the principal directs. If an agent does not take the actions specified in the

contract, then he will be fired and receive his outside option (zero). Since the participation constraints bind (see the proof of Lemma 2 in the

Appendix), the agent is indifferent and will therefore adhere to the contract as directed by the principal.

7 We have normalized the price of output to be 1. Otherwise it would appear in the expression for 𝐵.

8 This would be the case if agents had a positive instead of zero outside option.

9 A simple sufficient condition for the first best problem is 𝜋(1)𝐵 > ℎ(𝜓) that ensures positive expected profit from hiring at least one agent.

10 See Laffont and Martimort (2002, p. 152).
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11 Since the principal chooses 𝑛 from a finite set {0, 1,… , 𝑁}, a solution to the first best problem exists but we cannot ensure uniqueness even if Π𝐹

is strictly quasi-concave in 𝑛. When the solution is unique and equal to 𝑛0, we write 𝑛𝐹 = 𝑛0 instead of 𝑛𝐹 (𝐵, 𝛾, 𝜓) = {𝑛0}.

12 For example, if the agent exerts efficient effort and the shock is negative, then his payoff will be 𝑢(0) − 𝜓 = −𝜓 because 𝑢(0) = 0. If he is fired, then

he receives his outside option (zero) and his payoff is 0 − 𝜓 = −𝜓 .

13 See Bolton and Dewatripont (2005, p. 139).

14 For simplicity, we refer to 𝐶𝐼
𝑛

as the marginal cost of employment when, in fact,

𝐶𝐼 (𝑛 + 1, 𝜓) − 𝐶𝐼 (𝑛, 𝜓) = ∫
𝑛+1

𝑛

𝐶𝐼
𝑛

𝑑𝑛. (60)

15 The fact that ℎ is strictly convex does not imply that ℎ′ → ∞. For example, 𝑓 (𝑥) = 𝑥 − log(𝑥 + 1) is increasing and strictly convex but its derivative

converges to one as 𝑥 → ∞.

16 All we really need is that the team probability is eventually decreasing in employment. With the appropriate modifications, our results would hold

if 𝜋(𝜌)𝑛 was decreasing in 𝑛 for all 𝑛 ≥ 𝑛0 for some 𝑛0 ≥ 1.

17 In this section, 𝜖𝜋𝑛 is the elasticity of 𝜋𝑛 with respect to 𝑛, whereas in the previous section, 𝜖𝜋 is the elasticity of 𝜋 with respect to 𝜌. This explains

why Δ𝐼 = 1 − 𝜖𝜋(1 − 𝜖ℎ) (note the minus sign) whereas Δ𝑇 = 1 + 𝜖𝜋𝑛 (1 − 𝜖ℎ).
18 The condition (56) implies that 𝑛𝑇 = 𝑁 when 𝛾 = 2 and 𝑛𝐹 = 𝑁 when 𝛾 = 1.
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APPENDIX
Main Example. We first show that the Main Example satisfies Assumptions 1. Write 𝜋(𝜌) = 𝑒𝜌 log(𝜌∕𝐷) > 0. Using L’Hôpital’s
rule,

𝜌 log 𝜌

𝐷
=

log 𝜌

𝐷

1
𝜌

→ 0 (A1)

as 𝜌 → 0 so 𝜋 is continuous at 𝜌 = 0. It is smooth (i.e., infinitely differentiable) on (0, 1] with derivative

𝜋′ = 𝜋

[
1 + log

(
𝜌

𝐷

)]
< 0 (A2)

https://doi.org/10.1111/jems.12216
https://doi.org/10.1111/jems.12216


RAUH 99

for all 𝐷 > 𝑒. Assumption 3 holds because 𝜋(𝜌)𝑛 = 1
𝐷𝑛

.

Proof of Lemma 1. Let 𝑇𝑖 = 1. Given 𝜏𝑖𝑠 ≥ 0 for some task 𝑠 ∈ 𝑆𝑖, the optimal allocation of 𝜏𝑖𝑠 between 𝑒𝑖𝑠 and 𝑙𝑖𝑠 is

𝑒𝑖𝑠 =
𝜏𝑖𝑠

1 + 𝛾
and 𝑙𝑖𝑠 =

𝛾𝜏𝑖𝑠

1 + 𝛾
. (A3)

In that case,

𝑞+
𝑖𝑠
= 𝐴

𝛾

(
𝛾 𝜏𝑖𝑠

1 + 𝛾

)1+𝛾

= 𝐵𝜏
1+𝛾

𝑖𝑠
. (A4)

Let 𝜏𝑖𝑠 be an integrable function of 𝑠 ∈ 𝑆𝑖 that satisfies 𝜏𝑖𝑠 ≥ 0 and (4) with 𝑇𝑖 = 1. Let 𝐼𝑖 = inf 𝑠∈𝑆𝑖
𝜏𝑖𝑠. Suppose there exists a

subset 𝑆′
𝑖

of 𝑆𝑖 of positive measure such that 𝜏𝑖𝑠 > 𝐼𝑖 for all 𝑠 ∈ 𝑆′
𝑖
. In that case, the principal could adjust 𝜏𝑖𝑠 such that 𝜏𝑖𝑠 = 𝐼𝑖

for all 𝑠 ∈ 𝑆′
𝑖

and then increase 𝐼𝑖 slightly so as to preserve (4). This shows that an optimal assignment 𝜏𝑖𝑠 must be almost
everywhere constant. It is therefore optimal to divide 𝑇𝑖 = 1 evenly 𝜏𝑖𝑠 = 1∕𝜌 across tasks. □

Proof of Lemma 2. The principal’s problem is to choose 𝑡𝑖 ≥ 0 and 𝑡
𝑖
≥ 0 to minimize

𝜋(𝜌)𝑡𝑖 + [1 − 𝜋(𝜌)]𝑡
𝑖

(A5)

subject to the participation constraint (16). Since 𝑢 is not necessarily differentiable at 𝑡𝑖 = 0, we first consider the case where
the domain of the objective function and participation constraint is (𝑡𝑖, 𝑡𝑖) ∈ (0,∞) × (0,∞). Note that the objective function
is linear and the constraint is strictly concave, so the standard concave programming theorem applies. The Lagrangean and
first-order conditions are

 = −𝜋𝑡 − (1 − 𝜋)𝑡 + 𝜆
[
𝜋𝑢(𝑡) + (1 − 𝜋)𝑢(𝑡) − 𝜓

]
, (A6)

𝑡 = −𝜋 + 𝜆𝜋𝑢′(𝑡) = 0, (A7)

𝑡 = −(1 − 𝜋) + 𝜆(1 − 𝜋)𝑢′(𝑡) = 0, (A8)

𝜆 = 𝜋𝑢(𝑡) + (1 − 𝜋)𝑢(𝑡) − 𝜓 ≥ 0, (A9)

where we omit the argument 𝜌 in 𝜋, drop the 𝑖 subscript, and omit the complementary slackness condition. From the first two
first-order conditions, we observe that 𝜆 > 0 and 𝑡 = 𝑡 because 𝑢′′ < 0. Since the participation constraint binds, we have that
𝑡 = 𝑡 = ℎ(𝜓). We now check the boundary. One potential solution is 𝑡 = 0 and 𝑡 = ℎ(𝜓∕𝜋). We show that this entails higher
expected cost in the proof of Lemma 4. Another potential solution is 𝑡 = 0 and 𝑡 = ℎ[𝜓∕(1 − 𝜋)] but

𝜋(0) + (1 − 𝜋)ℎ
(

𝜓

1 − 𝜋

)
= 𝜋ℎ(0) + (1 − 𝜋)ℎ

(
𝜓

1 − 𝜋

)
> ℎ

[
𝜋(0) + (1 − 𝜋) 𝜓

1 − 𝜋

]
= ℎ(𝜓) (A10)

since ℎ is strictly convex. □

Proof of Proposition 1. Write expected profit as

Π𝐹 = 𝑛
[
𝜋(𝜌)𝑛𝐵𝑛𝛾 − ℎ(𝜓)

]
. (A11)

If 𝐿 <
ℎ(𝜓)

𝐵
then lim𝑛→∞ Π𝐹 = −∞ and there exists an 𝑁̂ such that Π𝐹 < 0 for all 𝑛 ≥ 𝑁̂ . If 𝑁̂ < 𝑁 , then 𝑛 < 𝑁̂ < 𝑁 for all

𝑛 ∈ 𝑛𝐹 (𝐵, 𝛾, 𝜓). If 𝐿 >
ℎ(𝜓)

𝐵
, then lim𝑛→∞ Π𝐹 = ∞ and a similar argument shows that the constraint 𝑛 ≤ 𝑁 binds when 𝑁 is

sufficiently large. □

Proof of Lemma 3. The principal’s problem is

min
𝑡𝑖(𝑞𝑖)

𝜋(𝜌)𝑡𝑖(𝑞ℎ) + [1 − 𝜋(𝜌)]𝑡𝑖(0) (A12)
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subject to 𝑡𝑖(𝑞𝑖) ≥ 0 for all 0 ≤ 𝑞𝑖 ≤ 𝑞ℎ, (25), (27), and (28). We first consider the problem neglecting the constraints (28). Since
𝑢(𝑡𝑖) ≥ 0 for all 𝑡𝑖 ≥ 0, (27) implies (25). We can therefore drop the latter constraint because it is redundant. Since (27) reduces
to

𝑢(𝑡𝑖(𝑞ℎ)) − 𝑢(𝑡𝑖(0)) ≥ 𝜓

𝜋(𝜌)
, (A13)

the solution is clear. The omitted constraints are then satisfied by 𝑡𝑖(𝑞𝑖) = 0 for all 0 ≤ 𝑞𝑖 < 𝑞ℎ. □

Proof of Lemma 4. Since the participation constraint (25) binds and 𝑢 is strictly concave,

𝜓 = 𝜋(𝜌)𝑢(𝑡𝑖(𝑞ℎ)) + [1 − 𝜋(𝜌)]𝑢(𝑡𝑖(0)) < 𝑢
[
𝜋(𝜌)𝑡𝑖(𝑞ℎ) + [1 − 𝜋(𝜌)]𝑡𝑖(0)

]
. (A14)

Since ℎ is increasing,

ℎ(𝜓) < 𝜋(𝜌)𝑡𝑖(𝑞ℎ) + [1 − 𝜋(𝜌)]𝑡𝑖(0) = 𝜋(𝜌)ℎ
[

𝜓

𝜋(𝜌)

]
= 𝐻𝐼 (𝜌, 𝜓). (A15)

Assumption 2 implies that ℎ is twice continuously differentiable on (0,∞) with ℎ′ > 0 and ℎ′′ > 0. Since ℎ is strictly convex,

ℎ′(𝑢1)(𝑢2 − 𝑢1) < ℎ(𝑢2) − ℎ(𝑢1) (A16)

for all 𝑢1 ≠ 𝑢2. Setting 𝑢1 = 𝜓∕𝜋 and 𝑢2 = 0,

ℎ(𝜓∕𝜋) − 𝜓

𝜋
ℎ′(𝜓∕𝜋) < 0 and 1 − 𝜓

𝜋

ℎ′(𝜓∕𝜋)
ℎ(𝜓∕𝜋)

< 0. (A17)

Differentiating 𝐻𝐼 (𝜌, 𝜓) with respect to 𝜌,

𝐻𝐼
𝜌
= 𝐻𝐼

𝜋
𝜋′ =

(
ℎ − 𝜓

𝜋
ℎ′
)

𝜋′ > 0, (A18)

which completes the proof. □

Proof of Proposition 2. Write expected profit as Π𝐼 = 𝑛[𝜋(𝜌)𝑛𝐵𝑛𝛾 − 𝐻𝐼 (𝑛, 𝜓)]. Since 𝐻𝐼 (𝑛, 𝜓) → ℎ(𝜓) as 𝑛 → ∞ for all
𝜓 > 0, the proof is identical to that for Proposition 1. □

Proof of Lemma 5. Differentiating 𝐶𝐼 with respect to 𝑛,

𝐶𝐼
𝑛
= 𝑛𝐻𝐼

𝜌

(
− 1

𝑛2

)
+ 𝐻𝐼 = 𝐻𝐼 − 1

𝑛
𝐻𝐼

𝜌
= 𝜋ℎ − 1

𝑛

(
ℎ − 𝜓

𝜋
ℎ′
)

𝜋′ (A19)

= 𝜋ℎ

[
1 − 1

𝑛

𝜋′

𝜋

(
1 − 𝜓

𝜋

ℎ′

ℎ

)]
= 𝐻𝐼Δ𝐼 . (A20)

In the proof of Lemma 4, we showed that 1 − 𝜖ℎ < 0 so Δ𝐼 < 1. □

Proof of Proposition 3. Let 𝑛
𝐼

+ = max𝑛 ℕ𝐼
+ and 𝑛

𝐹 = max𝑛 𝑛𝐹 , where we omit the arguments 𝐵, 𝛾 , and 𝜓 . If 𝑛
𝐼

+ ≤ 𝑛
𝐹 , the

conclusion follows. Assume 0 ≤ 𝑛
𝐹

< 𝑛
𝐼

+ and suppose the second best firm chooses 0 ≤ 𝑛
𝐹

< 𝑛 ≤ 𝑛
𝐼

+, where 𝑛 = 𝑛
𝐹 + 𝑘 for

some positive integer 𝑘. This increase in employment increases 𝐶𝐹 by 𝑘ℎ(𝜓) and reduces Π𝐹 . Since the effect on expected
revenue is the same for both institutions and

𝐶𝐼 (𝑛, 𝜓) − 𝐶𝐼 (𝑛𝐹
, 𝜓) = ∫

𝑛

𝑛
𝐹

𝐶𝐼
𝑛
(𝑛, 𝜓) 𝑑𝑛 ≥ ∫

𝑛

𝑛
𝐹

ℎ(𝜓) 𝑑𝑛 = 𝑘ℎ(𝜓), (A21)

the increase in employment also reduces Π𝐼 . □
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Proof of Lemma 7. Let 𝑝(𝑛) = 𝜋(𝜌)𝑛. Statement (i) follows from the derivative

𝑑𝐻𝑇 (𝑛, 𝜓)
𝑑𝑛

= 𝑝′
(

ℎ − 𝜓

𝑝
ℎ′
)

> 0. (A22)

We now prove (ii). Since 𝑝(𝑛) → 0 and ℎ is increasing and strictly convex, ℎ → ∞ as 𝑛 → ∞ and

lim
𝑛→∞

𝑝ℎ(𝜓∕𝑝) = lim
𝑛→∞

ℎ(𝜓∕𝑝)
1
𝑝

= lim
𝑛→∞

𝜓ℎ′(𝜓∕𝑝) = ∞ (A23)

by L’Hôpital’s rule and Assumptions 3. □

Proof of Lemma 8. Differentiating 𝐶𝑇 with respect to 𝑛,

𝐶𝑇
𝑛
= 𝑛𝐻𝑇

𝑛
+ 𝐻𝑇 = 𝑛𝑝′

(
ℎ − 𝜓

𝑝
ℎ′
)
+ 𝑝ℎ (A24)

= 𝑝ℎ

[
1 + 𝑛𝑝′

𝑝

(
1 − 𝜓

𝑝

ℎ′

ℎ

)]
= 𝐻𝑇 [1 + 𝜖𝑝(1 − 𝜖ℎ)], (A25)

which proves (48). Since 1 − 𝜖ℎ < 0 and 𝑝′ < 0 and 𝜖𝑝 < 0 for all 𝑛 ≥ 1, we have Δ𝑇 > 1 for all 𝑛 ≥ 1 which proves (ii). Since
𝐻𝑇 → ∞ as 𝑛 → ∞, this proves (iii). □

Proof of Proposition 4. The proof is similar to that for Proposition 3. □


