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Abstract Replication studies play a critical role in scientific accumulation of knowl-
edge, yet replication studies in mathematics education are rare. In this study, the authors
replicated Thanheiser’s (Educational Studies in Mathematics 75:241–251, 2010) study
of prospective elementary teachers’ conceptions of multidigit number and examined the
main claim that most elementary pre-service teachers think about digits incorrectly at
least some of the time. Results indicated no statistically significant difference in the
distribution of conceptions between the original and replication samples and, moreover,
no statistically significant differences in the distribution of sub-conceptions among
prospective teachers with the most common conception. These results suggest confi-
dence is warranted both in the generality of the main claim and in the utility of the
conceptions framework for describing prospective elementary teachers’ conceptions of
multidigit number. The report further contributes a framework for replication of
mathematics education research adapted from the field of psychology.

Keywords Mathematicseducation .Multidigitnumber.Prospectiveelementary teacher.

Initial teacher education

Introduction

Number and operations—arithmetic—have been the core strand in the elementary
(ages 5 to 11 years old) mathematics curricula for more than a century (Stanic and
Kilpatrick 1992), and therefore, a critical area in which teachers need to have deep
conceptual understanding. Unfortunately, decades of research reveal that many teachers
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find it challenging to explain the algorithms and procedures they use to solve arithmetic
problems (e.g., Borko et al. 1992; Leinhardt 1989; Ma 1999; da Ponte and Chapman
2015). Without explicit knowledge of why algorithms work, teachers are ill equipped to
teach number and operations in a meaningful way.

Initial elementary teacher education is a natural site to improve elementary
teachers’ understanding of mathematics in general and their conceptions of
multidigit numbers in particular. Because elementary teachers are often profi-
cient with computational algorithms, limitations in their understanding of these
algorithms can be difficult for teacher educators to identify and address.
Thanheiser (2009, 2010), building on Fuson et al. (1997), introduced a frame-
work designed to help mathematics teacher educators better understand and
support prospective teachers (PTs)’ conceptions of multidigit numbers.

Thanheiser (2009) used interviews (N = 15) of PTs enrolled in an elementary
teacher preparation program, but who had not yet taken mathematics
coursework to identify PTs’ conceptions. The resulting framework describes
four different ways PTs conceptualize multidigit whole numbers: the
concatenated-digits and concatenated-digits-plus conceptions (both incorrect)
and the reference-unit and groups-of-ones conceptions (both correct). PTs with
the least sophisticated conception—concatenated-digits—treat each digit as a
symbol or character; under this conception, the threes in 383 are in different
locations but mean the same thing—three. PTs with the concatenated-digits-plus
have partially correct conceptions but regularly conceive of at least one digit
incorrectly. Using the example above, the 8 in the tens position is viewed as 8
tens, while the 3 in the hundreds position is viewed as 3 tens. The less
sophisticated correct conception is the groups-of-ones conception, and PTs with
this conception interpret each digit accurately in terms of ones. Thus, the
number 383 is understood inflexibly as the sum of 300 ones, 80 ones, and 3
ones. The more sophisticated conception is also more flexible. PTs with the
reference-units conception understand and apply the 10-to-1 and 1-to-10 rela-
tionships between digits and are able to conceive of digits accurately in terms
of more than one set of appropriate units. For example, a PT with reference-
units conception might understand the first 3 in 383 either as 3 hundreds, 30
tens, or 300 ones, depending on what was strategic for her or his purpose. The
four major conceptions are illustrated in Fig. 1.

In a follow-up study (2010), Thanheiser replicated the initial findings by
coding open-response survey questions (N = 33). Importantly, the sample for
the 2010 study was of PTs who had already completed the mathematics
coursework required by their teacher preparation program. Interviews of the
PTs in the follow-up study revealed strong evidence that the survey questions
could accurately distinguish between correct and incorrect conceptions of
number. Moreover, Thanheiser (2010) used the survey results to refine the
2009 framework, subdividing the most prevalent PT conception—concatenated-
digits-plus—into three sub-conceptions: B(a) digits consistently explained as 10,
(b) digits explained consistently depending on context (i.e., 10 in subtraction, 1
in addition), and (c) changed interpretations of the digit depending on the
question posed^ (p. 249). For ease of reporting, we refer to these conceptions
hereafter in this paper as consistently 10, consistent in addition, and inconsistent,
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respectively. The structure and prevalence of the conceptions and sub-
conceptions reported in the original survey study (n = 33, Thanheiser 2010)
are described in Fig. 1. The primary claim of the article was that Bmost [PTs] do
see the digits incorrectly in terms of ones at least some of the time^ (2010, p.
246). If the findings from Thanheiser’s articles (2009, 2010) generalize to
elementary teachers more broadly, these results have profound implications. In
short, teacher educators face the challenge that most of their students misunder-
stand multidigit numbers and that this misunderstanding persists in spite of
mathematical coursework thought to be sufficient.

In considering the survey study of Thanheiser (2010), however, a major limitation is
the small sample size, which reduces confidence that generalization is appropriate.
Thanheiser readily acknowledges this limitation, and in the time since the original
studies were published, she has conducted two replications of the survey study at
different US institutions (E. Thanheiser, personal communication, June 5, 2017). These
replication studies had sample sizes of 25 and 23 participants. The estimated population
mean of participants with correct proportions from the study with the largest sample
(N = 33) is 9%, and the 95% confidence interval is (2.3%, 29.5%). Confidence intervals
are generally larger with smaller samples, but increasing the sample size provides more
accurate population estimates by narrowing the confidence interval.

As a set, the original survey study and the two replications suffer an additional
limitation: all three were conducted by the researcher who introduced the framework.
While the findings across these replication studies have strengthened the empirical
foundation for the framework, a researcher who replicates her or his own work has a
conflict of interest that fundamentally limits the additional confidence such studies can
provide the field. Findings from replication studies conducted by an independent
research team possess a unique element of credibility that cannot be otherwise obtained.

In this article, we report on a replication study of Thanheiser’s (2010) survey study
of PTs’ conceptions of multidigit number. The main contribution of the study is

Fig. 1 The structure and prevalence of conceptions of multidigit whole numbers and sub-conceptions of the
concatenated-digits-plus conception (see Thanheiser 2009, 2010). Note: correct conceptions were not distin-
guished in the survey data
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reporting a replication of Thanheiser’s 2010 study that is independent and has a
substantially larger sample size than the original. In particular, we answer the following
research question:

To what extent is the reported proportion of prospective teachers with correct
conceptions and the distribution of sub-conceptions of the concatenated-digits-
plus conception replicated in an independent sample?

A second contribution of the study is methodological. We adapted a replication
framework from the field of psychology in order to conduct the study, and we anticipate
this adapted framework may be of use to other mathematics education researchers who
are interested in conducting a replication study.

Replication framework

We situate this study in the field as an example of a replication study that may
be useful for other mathematics education researchers. Because replication
studies are so rare in the social sciences (Schmidt 2009) and mathematics
education researchers may not have had training to conduct such studies, this
article contributes to the field of education reseach in part by describing how
we utilized and adapted a framework for replication studies from psychology
(Brandt et al. 2014) to conduct and report the present study. This is referred to
by some educational researchers as a closely aligned replication study as direct
replications in education are nearly impossible to conduct, given the unavoid-
able variation in factors such as educational context, teachers’ instructional
methods, and students’ cultural and historical backgrounds (Coyne et al. 2016).

Adapting a replication recipe from psychology

Although differences in context cannot be controlled, the replication framework (rep-
lication recipe) discussed by Brandt et al. (2014) allowed us to conduct and evaluate a
Bconvincing close replication^ as we modified the following five ingredients to align
more closely with our study within mathematics education (p. 218):

1. Carefully defining the effects and methods that the researcher intends to replicate;
2. Following as exactly as possible the methods of the original study (including

participant recruitment, instructions, stimuli, measures, procedures, and analyses);
3. Having high statistical power;
4. Making complete details about the replication available, so that interested experts

can fully evaluate the replication attempt (or attempt another replication
themselves);

5. Evaluating replication results and comparing them critically to the results of the
original study.

Each ingredient was further clarified with a set of questions researchers could
address to satisfy the replication recipe (see Table 1 for selected questions).
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Table 1 Replication recipe questions for mathematics education

Replication recipe ingredient* Selected clarifying questions** Analogous questions for mathematics
education (revisions in bold)

1. Carefully defining the effects
and methods that the researcher
intends to replicate

A. Why is it important to replicate
the effect I am trying to
replicate?

B. Where was the original study
conducted? (e.g., lab, in the
field, online)

C. What kind of sample did the
original study use?

Finding and method to be
replicated

A. Why is it important to replicate
the original findings?

B. What was the context of the
original study?

C. Who were the participants in the
original study?

2. Following as exactly as possible
the methods of the original
study (including participant
recruitment, instructions,
stimuli, measures, procedures,
and analyses)

A. Rank the replication as exact,
close, or different in terms of
similarities/differences

a. … in the measures
b. … in the procedure
c. … between participant

populations
d. … in the location
e. … of the analysis plan
B. What differences between the

original study and your study
might be expected to influence
the size and/or direction of the
effect?

C. What steps have been taken to
test whether the differences
listed will influence the
replication outcome?

Alignment of replication
A. Describe the

similarities/differences between
the original and replication

a. … in the measures?
b. … in the procedure?
c. … between participant

populations?
d. … in the location?
e. … of the analysis plan?
B. What differences between the

original study and your study
might be expected to influence
the trustworthiness and
comparability of the replication
findings?

C. What steps have been taken to
evaluate how the differences
listed will influence the
replication findings?

3. Having high statistical power A. What is the target sample size?
B. What is the rationale for the

sample size (e.g., power of the
design)?

Sample size and confidence in
results

A. How many participants will be
recruited?

B. Is the planned sample size large
enough to warrant confidence in
the results if the original findings
are not replicated?

4. Making complete details about
the replication available, so that
interested experts can fully
evaluate the replication attempt
(or attempt another replication
themselves)

A. Where can interested experts
obtain the data and analysis
syntax?

B. Where can the reported analyses
be obtained?

Transparency
A. Where can interested experts

obtain the data and analysis tools
(e.g., coding rubrics)?

B. Where can the reported analyses
be obtained (e.g., coded data,
resolution of coding
disagreements, thematic
summaries, analytic memos,
etc.)?

5. Evaluating replication results
and comparing them critically
to the results of the original
study

A. What is the effect size of the
replication?

B. What is the confidence interval
of the replication effect size?

Evaluation of the significance and
trustworthiness of replication
findings in light of original study

A. Describe the conclusions and
the practical significance of the
replication findings.
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In applying the replication recipe to this study, we reflected upon how these
ingredients and questions may not align with all current mathematics education schol-
arship. For instance, one of the questions clarifying ingredient 2 asked about
Bexperimenter knowledge of participant experimental condition^ (p. 219). The use of
experimenter and experimental condition seems to imply a laboratory setting in which
variables and conditions can be better controlled as opposed to a formal or informal
learning environment in which it is difficult to control for participant differences or
affective variables for example. Additionally, the replication recipe seems to be
grounded in the positivist or postpositivist theoretical paradigm, in which the

intent is to reduce the ideas into a small, discrete set of ideas to test, such as the
variables that comprise hypotheses and research questions. The knowledge that
develops…is based on careful observation and measurement of the objective
reality that exists ‘out there’ in the world (Creswell 2008, p. 7).

We acknowledge that such a viewpoint contrasts with other theoretical view-
points in mathematics education including social constructivism (e.g., Ernest

Table 1 (continued)

Replication recipe ingredient* Selected clarifying questions** Analogous questions for mathematics
education (revisions in bold)

C. Is the replication effect size
significantly different from the
original effect size?

D. Is the replication a success
(different from the null, and
similar to or larger than the
original and in the same
direction), an informative failure
to replicate (either not different
from null or in the opposite
direction from the original, and
significantly different from
original), a practical failure to
replicate (both significantly
different from the null and from
the original), or inconclusive
(neither significantly different
from null nor the original)?

E. What are the limitations of the
replication study?

B. How trustworthy are the
findings?

C. Are the conclusions and the
practical significance of the
findings from the replication
study decidedly different than
those of the original study?

D. Is the replication a success (clear
results that strengthen the
original conclusions), an
informative failure to replicate
(clear results that raise questions
about the trustworthiness of the
original conclusions), a practical
failure to replicate (results that
are clearly weaker than the
original results and call for
modified conclusions), or
inconclusive (unclear results that
neither strengthen nor raise
questions about the original
conclusions)?

E. What are the limitations of the
replication study?

*Brandt et al. (2014)

**Paraphrased from Brandt et al. (2014)
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1998), postmodernism, (e.g., Walshaw 2004), and critical theories including
critical race theory (e.g., Ladson-Billings and Tate 1995) and LatCrit theory
(e.g., Gutiérrez 2013).

In spite of these limitations, we contend that the replication recipe, although
geared to experimental, quantitative research methods of laboratory psychology,
can be adapted for replication studies in qualitative and mixed methods research
as well, and thus be useful for many (but certainly not all) of the studies
conducted in mathematics education. Table 1 lists sample questions paraphrased
from Brandt et al. (2014) alongside modified questions that are likely to be
more broadly useful for mathematics education researchers. We next discuss
each ingredient in detail, using our replication study of Thanheiser (2010) to
illustrate how we adapted the original framework to be more useful for math-
ematics education research.

Applying the adapted replication recipe to the present study

We applied the replication recipe to design our own study and to write up the
results by considering how we had addressed each ingredient. The first ingre-
dient has to do with the finding and method to be replicated. We discuss the
significance of the finding in the introduction of this paper and discuss the
context of the original study, including a description of the participants, in the
BMethod^ section. The second ingredient concerns the alignment of the repli-
cation, that is, how closely the replication study follows the original study. In
the BMethod^ section, we also detail the ways in which we followed the
original study methods as much as possible, and describe the places where
the methods between the original and replication study differed. A main
difference is the use of new codes in the replication study that were not used
in the original study. We evaluate how these differences influence the trustwor-
thiness of the findings in the BDiscussion^ section.

The third ingredient deals with sample size and confidence in the results.
The sample size of this study (N = 79) is roughly 2.4 times more than the
original study (N = 33). This strengthens our study in that Breplications need
2.5 times as many observations as the original study to obtain about 80%
power to reject a detectable effect^ (Simonsohn 2014, p. 14). In other words,
in designing the replication study, we planned for a large enough sample size to
guard against incorrectly agreeing with the outcome of the original study
because of too little information (Brandt et al. 2014). In the BDiscussion^
section, we describe the implications that the larger sample size has for
confidence in the replication study findings.

The fourth ingredient describes transparency. To this end, we have included
our code book in the BMethod^ section and provided detailed examples of how
we coded and reconciled initial disagreements in coding. The fifth and final
ingredient deals with the comparison of the original and replication findings
and an evaluation of their significance and trustworthiness. In the BResults^
section, we provided the results of several statistical comparisons between the
descriptive findings of these two studies, and in the BDiscussion^ section, we
address the significance of the similarities and differences. The replication
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framework helped us clarify our goals for the replication study and our report
of what we have found.

Method

Participants and context

This study was conducted at a large research university in the midwestern
region of the USA. Participants for this study were 79 prospective elementary
teachers (73 females, 6 males) enrolled in an elementary mathematics methods
course during the 2017 Spring semester of their junior year. The course was
designed to address two major goals: (1) know how elementary students think
about and learn mathematics and (2) design instruction and classroom environ-
ments to help students understand key mathematical ideas of the curriculum.
Prior to this course, prospective elementary teachers were required to pass two
mathematics content courses—Teaching and Learning Elementary School Math-
ematics I and II. The first course focused on numbers and operations, while the
second focused on geometry.

Similar to the original study, participants were prospective elementary
teachers enrolled in an elementary mathematics methods course at a research
institute located in the USA, albeit in the northwestern region of the USA.
Additionally, PTs were required to pass two mathematics content courses before
enrolling in the mathematics methods courses. It should be acknowledged that
the content courses in the two studies more than likely varied in instructional
practices, content focus, assignments, and so forth. Moreover, the PT partici-
pants in the original study enrolled in the methods course their fourth year of a
5-year program, while participants in the replication study were enrolled in the
course the third year of a 4-year program.

Data source

Similar to the original study, the survey was administered to participants at the
beginning of the semester prior to instruction of place-value concepts. Partici-
pants were asked to complete two tasks (see Fig. 2), which are exact replica-
tions of the tasks posed by Thanheiser (2010). The Addition Task was devel-
oped by Thanheiser (2009) and the Ones Task was developed by Philipp et al.
(2008). In the original study, the tasks were administered via a paper and pencil
instrument during class time. In this study, the tasks were part of a longer
online survey administered outside of class time during the first week of class.
The other survey items pertained to participants’ beliefs about teaching and
learning mathematics.

The intent of the Addition Task (Fig. 2) was to examine participants’
explanation regarding the value of the regrouped digits. The intent of the Ones
Task (Fig. 2) was to gauge if participants were able to articulate how the value
of the regrouped digits in the addition algorithm and the subtraction algorithm
were similar to and/or different from one another.
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Data analysis

The first author attempted to apply the description of the conceptions framework and
analysis available in published reports to the survey data but found a large number of
cases that did not seem to clearly fit the available categories. One challenge was
inferring the conceptions of participants who, for example, wrote about the digit 3 as
Bin the hundreds spot^ while elsewhere writing about the same digit as if it was 3 ones.
The first author contacted Thanheiser who shared an original coding rubric and
discussed the coding process as well as describing the original process for reconciling
ambiguous or edge cases (May 1, 2017, personal communication). A key insight from
this conversation was the inference of a concatenated-digits conception with which
participants spoke about the location of digits rather than the value of digits, as in the
example described above. After this conversation, the first author again coded the
survey data. To capture the insights and clarifications from the conversation with
Thanheiser, the first author expanded the original coding rubric by adding more detail
to each response option by selecting recurring words and phrases from participant’s
responses. The final coding rubric for the Addition Task is presented in Table 2. In
providing example responses, we include numbers to align with the survey questions
for each task. For instance, in the example below, (1) is the response from the first
question within the Addition Task in Fig. 2 (i.e., What does the 1 above the 8
represent?), (2) is the response from the second question (i.e., What does the 1 above
the 3 represent), and (3) is the response from the third question (i.e., Compare the two
ones. Are they the same or are they different? Please be as specific as you can.)

As an example of the coding process, consider the following response for the
Addition Task:

(1) The ten from 14 when 9 and 5 were added. (2) The ten from 16 when 8 and 7
were added together. (3) No, when [sic] represents hundreds place while the other
represents the tens place.
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Fig. 2 Tasks and survey questions (Philipp et al. 2008; Thanheiser 2009)
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This response was coded as Both Ten because the one is noted as representing a
regrouped 10 in both addition problems. Although participant 11 did mention in the
latter part that one represents the hundreds place and the other the tens place, the
response implies place value is seen as a spot or location rather than referring to the
value of the numbers. As another example, the following from participant 16 was coded
as Both One:

(1) It represents the one from the fourteen, when the 9 and five were added. They
carried the one to the next place value. (2) The one over the three represents the
one from the 16 after adding 8, 7, and the 1 over the eight. They carried it to the
next place value. (3) They are the same because they represent the tens place from
a two-digit number.

Although this participant mentions the tens place as a location in the third
survey question, the emphasis is on one in the first two survey questions. Here,
we gave more weight to the first two survey questions as a dominate way of
thinking of place value.

The coding rubric for the Ones Task is presented in Table 3. As an example of the
coding process, consider the following response, which was coded as Ten, Hundred
because participant 57 emphasized the value of the numbers appropriately as tens in the
addition problem and as hundreds within the subtraction problem.

(1) No, the 1 in problem A represents 10 that should be added to the 5 and 3. The
1 in problem B is added to the 2 to make it 12. This represents 12 tens, or 120. (2)
The one is added to the 5 because it represents the 10 that is taken from adding 9
and 8 to get 17. 10 is added to 2 because you would have to borrow from the
hundreds in order to be able to subtract 3 from 2. The 1 represents 100, which
would make 120 − 30.

As another example, consider the following response from participant 2:

(1) The ones in these two problems represent different amounts because one is an
addition problem and the other is a subtraction problem. In the addition problem
the 1 represents just 1 being added to the 5 and 3. In the subtraction problem the 1
makes the 2 a 12 because it was borrowed from the 4. (2) In the addition problem
1 is added to 5 because the 1 is coming from the ones place value and therefore it
loses the zero when it goes to the tens place. In comparison, in the subtraction
problem 10 is added to 2 because the 1 is coming from the hundreds place value
and just loses one zero when it moves over to the tens place value.

This response was coded as Ones, Tens as the participant distinguished the
one in the addition problem as 1 and the one in the subtraction problem as 10.

As a means to establish initial reliability of the coding scheme, the second
author coded ten participants’ responses for both task. Agreement was
established at 90%. Both members coded the remaining responses. Cohen’s
weighted kappa (Cohen 1968) for the remaining responses was established at

76 E. Jacobson, A. Simpson



T
ab

le
2

C
od
eb
oo
k
fo
r
A
dd
iti
on

Ta
sk

C
od
es

fo
r
A
dd
iti
on

Ta
sk

1
ab
ov
e
8
re
pr
es
en
ts
/s
ho
w
s/
is
…

1
ab
ov
e
3
re
pr
es
en
ts
/s
ho
w
/is
…

T
he

2
on
es

ar
e…

Te
n,

H
un
dr
ed

•
10

ca
rr
ie
d
fr
om

th
e
on
es

pl
ac
e
O
R

•
T
he

nu
m
be
r
10

•
A

gr
ou
p
of

10
•
A
dd
s
10

•
T
he

te
ns

pl
ac
e

•
10
0
ca
rr
ie
d
fr
om

th
e
te
ns

pl
ac
e

•
T
he

nu
m
be
r
10
0

•
80

+
70

=
16
0

•
R
eg
ro
up
ed

10
0
(f
ro
m

16
0)

•
A

gr
ou
p
of

10
0

•
A
dd
s
10
0

•
T
he

hu
nd
re
ds

pl
ac
e*

•
D
if
fe
re
nt

be
ca
us
e
th
ey

re
pr
es
en
t
di
ff
er
en
t

va
lu
es

•
D
if
fe
re
nt

be
ca
us
e
th
ey

re
pr
es
en
t
di
ff
er
en
t

nu
m
be
rs
:
10

vs
.1

00
•
C
ou
ld

us
e
lo
ca
tio

n/
po
si
tio
n
la
ng
ua
ge

if
va
lu
e

un
de
rs
ta
nd
in
g
is
cl
ea
r
fr
om

ot
he
r
re
sp
on
se
s

B
ot
h
Te
n

•
10

(f
ro
m

th
e
14
)

•
Te
ns

pl
ac
e
(f
ro
m

th
e
14
)

•
T
he

te
ns

pl
ac
e*

•
10

(f
ro
m

th
e
16
)

•
Te
n
ca
rr
ie
d
ov
er

•
A

gr
ou
p
of

10
on
es

•
A

re
gr
ou
pe
d
10

•
T
he

te
ns

pl
ac
e*

•
S
am

e
•
D
if
fe
re
nt

be
ca
us
e
th
ey

ar
e
in

a
di
ff
er
en
t

po
si
tio
n/
lo
ca
tio
n/
pl
ac
e/
co
lu
m
n

B
ot
h
O
ne

•
1
(f
ro
m

th
e
14
)

•
10

ca
rr
ie
d
ov
er

as
1

•
1
th
e
te
ns

pl
ac
e

•
1
(f
ro
m

th
e
16
)

•
1
ca
rr
ie
d
fr
om

th
e
te
ns

pl
ac
e

•
1
ca
rr
ie
d
in
to

th
e
hu
nd
re
ds

pl
ac
e

•
10

ca
rr
ie
d
ov
er

as
1

•
1
fr
om

a
te
ns

co
lu
m
n

•
T
he

te
ns

or
hu
nd
re
ds

pl
ac
e

•
D
if
fe
re
nt

be
ca
us
e
th
ey

re
pr
es
en
t
di
ff
er
en
t

nu
m
be
rs
:
14

vs
.1

6
•
Sa
m
e/
di
ff
er
en
t
fo
r
no
n-
re
le
va
nt

re
as
on

N
o
co
de

N
o
ex
pl
ic
it
na
m
in
g
as

a
va
lu
e
(e
.g
.,
Bh
un
dr
ed
,^

Bt
en
,^

or
Bo
ne
^)

w
ith

in
an
y
re
sp
on
se

*
So

m
e
PT

s
us
ed

pl
ac
e
or

lo
ca
tio
n
la
ng
ua
ge

in
th
e
fi
rs
t
pa
rt
(s
),
th
en

us
ed

va
lu
e
la
ng
ua
ge

in
th
e
la
st
pa
rt
;
w
e
co
de
d
th
es
e
as

B
ot
h
Te
n
or

Te
n
H
un
dr
ed

ra
th
er

th
an

O
ne

Prospective elementary teachers’ conceptions of multidigit number:... 77



.82 for the Addition Task and .80 for the Ones Task; thus, inter-rater for both
tasks is satisfactory or viewed as almost perfect by Landis and Koch (1977) as
kappa was between 0.8 and 1.0.

Disagreements were discussed and agreed upon before proceeding with the analysis.
To illustrate this process, consider the following response to the Ones Task by
participant 32:

(1) They both represent the same amount but since one is addition and one is
subtraction the ones got there differently. (2) In the addition problem, the 1 is
added to the 5 because 9 plus 8 is 17 which makes you have to carry the one. In
the subtraction problem, since you are subtracting 3 from 2 you have to borrow
from the 4 to make the 2 a 12.

One member of the research team coded as Both Ones, while the other Ones,
Tens. We agreed to code as Both Ones because the participant claimed in the
first response that Bthey both represent the same amount,^ while, in the second
response, noted Byou have to carry the one.^

As another example, for the Addition Task, participant 46 stated that the
ones are different because Bthey are over different placements. For example, the
1 over the eight is adding to the tens spot and the 1 over the 3 is adding to the
hundreds place.^ One member coded as Both Ones, while the other member of
the research team coded as Ten, Hundred. Our discussion was around the
difference between place as a position and representing different values; there-
fore, we agreed to code as Both Ones as the emphasis is on 1 being added to a
particular column in the standard algorithm.

Additionally, through this process, an additional code for the Ones Task was added
to the coded scheme, One, Not Explicit (refer to Table 3). Moreover, we noticed a few
instances in which participants were not consistent in their response within a task. In the
Addition Task, for example, participant 17 stated the 1 above the 8 represents Bcarrying
the ten’s place from 9 + 5 = 14,^ while the 1 above the 3 represents Bcarrying the ten’s
place from 8 + 7 = 16.^ Yet, when comparing the two ones, this participant claimed,
BThe one above the 8 adds ten and the one above the 3 adds one hundred.^ We
discussed how, although participants are both correct and incorrect in their response,
they seem to exhibit flexibility in their thinking regarding reference units of multidigit
numbers, and as such, acknowledged this by coding the higher of the two possible
codes. In this case, this response was coded as Ten, Hundred as opposed to Both Tens.

After agreement was reached, we looked across all the responses of each participant,
one at a time. Following Thanheiser (2010), we were, in this way, able to identify
participants with correct responses (Ten, Hundred) on both tasks. These were attributed
the groups-of-ones or the reference-units conceptions, but we did not specify which of
these two conceptions because the survey questions could not be used to make this
distinction. The rest of participants were attributed the concatenated-digits-only con-
ception if they had responses coded as Both Ones for both survey tasks, and otherwise
attributed the concatenated-digits-plus conception.

Again, following Thanheiser (2010), we split participants in the concatenated-
digits-plus conception into three sub-conceptions by determining whether partic-
ipants’ conceptions of the digit 1 were consistent across the two contexts in the
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Addition Task and the two contexts in the Ones Task. We coded participants as
Consistently 10 if their responses to both tasks were Both Tens. In these cases,
participants consistently conceived of the digit 1 as having the value 10 in all four
contexts. We coded participants as Consistent in addition if they conceived of the
digit 1 as the same value (either 1 or 10) in the addition contexts (i.e., both
contexts of the Addition Task and the first context of the Ones Task), but held a
different conception of the digit 1 in the subtraction context of the Ones Task. We
coded all other participants as Inconsistent. For example, a participant who
received a code of Both Ones on the Addition Task and a code of One, Ten on
the Ones Task was coded as Inconsistent.

The last stage in our analysis was comparing the results of the replication
study with those of the original study to determine to what extent the under-
lying distribution of conceptions and sub-conceptions was plausibly the same.
We used the chi-square test of independence to compare the distribution of
correct versus incorrect responses and to compare the distribution of coded
responses for each task. We used the two-sample test of proportional equiva-
lence to test whether the proportions of each conception and sub-conception
were equivalent in the samples from the replication and original study.

Results

The results are organized to facilitate comparison with the original survey study
(Thanheiser 2010). We have included each of the three tables from the original study
with an extra column to report the analogous values we found in the replication study.
We additionally report distributions of conceptions and sub-conceptions and compare
these between the original and replication studies.

In Table 4, the number of participants with correct and incorrect conceptions of
multidigit number is reported for the interview study (Thanheiser 2009), the original
survey study (Thanheiser 2010), and this replication study. The percentages of partic-
ipants with correct and incorrect conceptions fall between the corresponding percent-
ages reported in the original interview and survey studies.

In Table 5, we report the distribution of codes for each task found in the replication
study alongside analogous information from the original study. We used the chi-square
test of independence to examine the distribution of the Addition Task and the Ones
Task codes by study (original or replication). The relation between the study and the
distribution of codes for the Addition Task was significant (χ2 (2, N = 111) = 6.645,
p = 0.036). Participants in the replication study were more likely to state appropriate
values for the Addition Task and less likely to incorrect values than were the
participants in the original study.

Next, we examined the relation between the study (original or replication) and the
distribution of codes for the Ones Task. There were two challenges we faced in this
analysis. First, our analysis of the Ones Task in the replication study produced several
new codes that were not reported in the original study. As described in greater detail in
the BMethod^ section, these codes captured variability in participant’s responses that
was not evident from the original study and more accurately reflected our uncertainty
about some of the participants’ conceptions. Second, many codes—including some of
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the new codes—had only a small number of people, making the chi-square test
methodologically inappropriate.

Our pragmatic solution to these problems was to group together all codes in which
either digit or both digits were said to have a value of one (see noted codes in Table 5).
This choice is theoretically defensible because such statements are evidence that the
participant has the lowest level of conception, concatenated-digits-only (Thanheiser
2009), thus providing a meaningful comparison even though the codes differed some-
what between the original and replication study. It also allowed us to include many
participants even though they were not explicit in their responses for all parts of the
task. Moreover, this grouping makes the chi-square test more rigorous by ignoring
some of the potential differences between code distributions by grouping codes togeth-
er. Instead, we focused on differences in distribution among two codes and a group of
related codes: appropriate values, both digits are ten, and codes in which one or both
digits are valued as one. Importantly, this grouping strategy guarantees that observed
differences in code distributions between studies cannot be attributed to the use of new
codes in the replication study.

We found that the relation between study (original or replication) and the distribution
of codes for the Ones Task was significant (χ2 (2, N = 111) = 7.805, p = 0.020).
Participants in the replication study were more likely to state that both values were ten
for the Ones Task and less likely to state that one (or both) values were one than were
participants in the original study. Thus, we found evidence that the distributions of
codes for both tasks differed between the original and replication studies.

In Table 6, we report the distribution of code combinations across the two tasks. We
have labeled each combination with a conception and sub-conception (if applicable).
Because the sample in the replication was about 2.4 times the size of the original
sample, table values for the replication study column are expected to be about 2.5 times
as large as corresponding values for the original study.

We conclude this section by comparing the population estimate supporting the main
claim from Thanheiser (2010) that most prospective teachers think of digits incorrectly
at least some of the time. Recall that the results of the original study produce an
estimate that only 9% of prospective teachers hold correct conceptions (95% CI (0.007,
0.189)). The estimate from the replication study is greater than that from the original
and has a somewhat narrower confidence interval; we estimate that 18% of prospective
teachers hold correct conceptions (95% CI (0.093, 0.261)).

Table 4 Number and percentage of participants by category in the original and replication studies

Category Interview
studya

(N = 15), n (%)

Original survey
studyb

(N = 33), n (%)

Replication
of survey study
(N = 79), n (%)

Correct conceptions (reference units or groups of
ones)

5 (33) 3 (9) 14 (18)

Incorrect conceptions (concatenated-digits-plus or
concatenated-digits-only)

10 (64) 30 (91) 65 (82)

a Thanheiser (2009)
b Thanheiser (2010)
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The counts in Table 6 are too sparse to use the chi-square test of homogeneity, so we
created a new table of the distribution of conceptions and sub-conceptions in each study
(Table 7). This table does not have an analogue in Thanheiser (2010). The last column
reports a two-sample test of proportion equivalence that compares the proportion of the
conception or sub-conception in the replication and original samples. Importantly, none
of these tests are statistically significant, which means the observed differences in
proportions are not large enough to rule out the possibility that the underlying propor-
tions are equal in the population. In particular, the difference between the estimates of
prospective teachers with correct conceptions from the original and replication studies
is not statistically significant (χ2 = 0.760, p = 0.383; see the first row of Table 7). This
finding was particularly striking to us, because it seemed to contradict the earlier
finding that the distribution of codes for each task was not the same across studies.

Discussion

We pursue two goals in the discussion of this study. First, we return to the research
question and evaluate the results of replication study and their comparison with the
original study. Second, we discuss limitations of the replication study and implications
for other researchers interested in conducting replication work in mathematics
education.

The replication results revealed that the proportion of correct conceptions and the
distribution of sub-conceptions of the most prevalent incorrect conception (concatenat-
ed-digits-plus) did not have differences when compared with the original study results

Table 5 Number and percentage of participants by task code in the original and replication studies

Original studya

(N = 33), n (%)
Replication study
(N = 79), n (%)

Addition Task Ones Task Addition Task Ones Task

Original codes

Appropriate values for both digits 8 (24) 4 (12) 39 (49) 15 (18)

Both digits are 10 13 (39) 12 (36 23 (29) 44 (56)

Both digits are 1b 12 (26) 8 (24) 16 (20) 3 (4)

Digit is 1 in addition; 10 in subtractionb 8 (24) 11 (14)

Digit is 10 in addition; 1 in subtractionb 1 1

New codes

Digit is 1 in addition; 100 in subtractionb 1

Digit is 1 in addition; not explicit in subtractionb 3 (4)

Digit not explicit in addition; 10 in subtractionc 1

Digit value is not explicit in either contextc 1

a Thanheiser (2010)
b Codes with either digit or both digits valued as 1, grouped for chi-square analysis of Ones Task
c Excluded from chi-square analysis
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to a greater extent than could be attributed to chance. On its face, this finding suggests a
successful replication, that is, clear results that strengthen the original conclusions (see
Table 1). However, the distribution of codes for each task was different between the two
studies, suggesting that there may be underlying differences between the two popula-
tions. For example, almost half of the replication sample was coded as providing an
appropriate response on Addition Task whereas only a quarter of the original sample
was coded in this way. Because the concatenated-digits conceptions are defined to
involve PTs who Bsee the digits incorrectly in terms of ones at least some of the time^
(Thanheiser 2010, p. 246), these differences at the task level may be irrelevant for
inferences about underlying conceptions of digits.

On the other hand, there is a plausible reason for these differences that has
implications for teacher education. One factor that might explain the incongruity is
the possibility that there was a clearer focus on the value of digits in addition contexts
in mathematics content classes taken by the replication sample than that taken by the
original sample. Although both programs required two college-level math courses,

Table 6 Distribution of participants by code pattern

Addition Task Ones Task Inferred conception
and sub-conception

Originala

(N = 33)
Replication
(N = 79)

Appropriate
values

Appropriate values RUb or GO 3 14

Both digits are 10 CDP, consistent
in addition

3 23

Both digits are 1 CDP, inconsistent 2 0

Digit 1 in addition,
100 in subtraction*

CDP, inconsistent 0 1

Digit not explicit in
addition, 10 in subtraction*

CDP, inconsistent 0 1

Both as 10 Appropriate values CDP, consistent in
addition

1 1

Both digits are 10 CDP, consistently 10 7 16

Both digits are 1 CDP, inconsistent 1 1

Digit 1 in addition, 10 in
subtraction

CDP, inconsistent 3 4

Digit 10 in addition,
1 in subtraction

CDP, consistent
in addition

1 1

Both as 1 Both digits are 10 CDP, inconsistent 2 4

Both digits are 1 CDO 5 2

Digit 1 in addition,
10 in subtraction

CDP, consistent
in addition

5 7

Digit 1 in addition, not
explicit in subtraction*

CDP, consistent
in addition

0 3

Not explicit Both as 10* CDP, inconsistent 0 1

*New codes introduced in the replication study
a Thanheiser (2010)
b The four conceptions are reference unit (RU), groups of ones (GO), concatenated-digits-plus (CDP), and
concatenated-digits-only (CDO)
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participants in the original study took Bcourses of their choice (not necessarily designed
for elementary school teachers)^ (Thanheiser 2010, p. 244), whereas participants in the
replication study took two mathematics courses designed for elementary teachers.

The implication for teacher education is that mathematical preparation focused on
the meaning of digits in addition contexts may not generalize to subtraction contexts,
because the replication study participants performed much better on the Addition Task
but did not perform substantially better on the Ones Task. Stated more precisely, the
replication study estimates with high confidence that less than 30% of PTs who have
taken the required number of mathematics courses in their teacher preparation program
correctly conceive of the value of digits consistently across addition and subtraction
contexts. Such a conclusion is similar to research of young children (Fuson et al. 1997;
Selter 2001). As noted by Fuson et al. (1997), Bmultidigit subtraction seems to be more
difficult for children than multidigit addition^ (p. 151), and in the case of this study,
multidigit subtraction seemed more difficult for PTs than multidigit addition. We
contend that both addition and subtraction contexts be intermixed in mathematical
courses for prospective elementary teachers (Fuson et al. 1997).

The apparent difference at the level of tasks codes, but agreement at the level of
conception codes, led us to consider two issues related to the conceptions framework.
The first has to do with how differences in a PT’s responses are sometimes taken as
evidence of flexibility and sometimes as evidence of a misconception in the multidigit
conceptions framework. The hallmark of the most sophisticated conception in the
framework—referent units—is the ability to think about digits in terms of different
units (ones, tens, hundreds). Many PTs with the most prevalent conception—
concatenated-digits-plus—also interpret digits in different ways depending on the
context. We agree that to state that the value of 3 in the hundreds place is 3 tens is
inaccurate. However, from the perspective of the standard algorithm, we also believe
that it is perfectly reasonable to conceive of the digit 3 in the hundreds place as 3 tens in
the course of using a subtraction algorithm to regroup. For the limited purpose of
accurately regrouping within the algorithm, it is not necessary to recall the actual value
of a digit. In fact, this is precisely the power of the standard algorithms: all digits can be
thought of as tens and ones so that single-digit arithmetic can be leveraged to solve all
multidigit problems. It seems possible that some PTs may simply not understand

Table 7 Distribution of participants by conception and sub-conception

Original studya

(N = 33), n (%)
Replication study
(N = 79), n (%)

Test of equivalent
proportions

RU* or GO 3 (9) 14 (18) χ2 = 0.760; p = 0.383

CDP, consistently 10 7 (21) 16 (20) χ2 = 0.021; p = 0.885

CDP, consistent in addition 10 (30) 32 (41) χ2 = 0.644; p = 0.422

CDP, inconsistent 8 (24) 10 (13) χ2 = 1.537; p = 0.215

CDO 5 (15) 2 (3) Insufficient data for test

*The four conceptions are reference unit (RU), groups of ones (GO), concatenated-digits-plus (CDP), and
concatenated-digits-only (CDO)
a Thanheiser (2010)
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questions that ask about the value of a digit, and they interpret the question in terms of
the standard algorithm. Such PTs may be capable of thinking flexibly but not realize
that such flexibility is what the task requires. Under this possibility, what seems like a
limitation of PTs’ conceptions may ultimately concern communication. Interview data
is likely required to clarify these issues.

The second issue related to the conceptions framework has to do with the
importance of differentiating the ideas of position versus value. In many of our
coding decisions, we gave credit for a conception if PTs explicitly stated the
value of a digit, but did not give credit for a sophisticated conception if PTs
only referred to the position of the digit without writing directly in terms of its
value. We believe based on the scholarship conducted by Thanheiser (e.g.,
2009) and McClain (2003) that PTs with less sophisticated conceptions tend
to rely on a calculational or algorithmic approach to multidigit addition and
subtraction problems and often speak in terms of position rather than value.
However, we wondered if PTs who neglected to speak in terms of value were
incapable of such language or if they were simply using imprecise language.
The question behind this pondering is about the nature of the conceptions
described by the framework: are the links between conceptions and language
stable and resistant to change or do some PTs speak and write in an ad hoc
manner that does not always indicate clearly how they are thinking? More
research, and in particular interview studies, would be useful to address both of
the issues we have raised related to the conceptions framework.

We end this section by considering a limitation of our work that others who conduct
replication studies in mathematics education are likely to face. To conduct the study, we
had to operationalize the conceptions framework in order to code PT responses. We
initially believed that this would be possible based on the published record alone.
However, after we had collected the survey data we encountered edge cases that we
could not decide based on the available description of the conceptions framework. In
our discussion with the original author, we learned the importance of the distinction
between position and value in the original work. Although we incorporated this
distinction in our operationalization of the framework (see BMethod^), we are not
confident we did so in a way that is completely aligned with the original researchers. It
is also possible that in spite of our best efforts, other factors of which we are unaware
may have influenced how codes were determined. For example, the original team
coded the survey responses after extensive experience in conducting interviews with
the same questions, experience that we lacked, and this may have shaped their
interpretation of participants’ statements in ways that were not made explicit in our
conversations with the original author. Thus, it is possible that the replication study was
different than the original study simply because the researchers conducting the study
brought different perspectives to the coding process.

A possible way for addressing this limitation would be to compare the inter-rater
reliability between the two teams and to engage in discussion to reconcile differences.
In general, however, the sustained contact that such an endeavor would require presents
the potential to undermine the goal of conducting an independent replication study. If
the new team of researchers is in effect trained by the original team, in what sense can
the resulting research said to be independent? In the case of the present study, we
mitigated this limitation by contacting the author of the original study to discuss a small
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number of edge cases and by subsequently adapting and expanding an analysis
document that was made available to us. However, we recognize arguments in favor
of both for sustained training until a certain level of agreement has been reached
between teams and for limiting contact between teams. Researchers who replicate
mathematics education research that involves the coding of qualitative data are likely
to face this dilemma.

The study opens several avenues for future research. The most interesting open
questions, in our view, address the role of conceptions and sub-conceptions in teacher
knowledge and learning. Thanheiser (2018) has recently argued that interviews based
on the conceptions framework are one tool that could help PTs develop such meanings.
We agree and further argue that the conceptions framework could be even more useful
for teacher education if it was adapted or expanded to address the two issues we have
raised above: clarifying how evidence warrants inferences of flexibility versus miscon-
ception and clarifying how the choice of language (e.g., position language versus value
language) is construed as a conception (i.e., possible ways of thinking). Moreover,
interview research is needed to understand whether conceptions of multidigit numbers
are possible for PTs to learn within the context of teacher preparation or whether the
conceptions framework describes fundamental differences in cognition that require
extensive experience, as is likely the case with multiplicative and geometric concepts
(e.g., Livy and Herbert 2013; Luneta 2014).

Further research on PTs’ conceptions of multidigit numbers could also address
theoretical questions about how the conceptions framework fits into the larger theoret-
ical landscape including teacher learning and teacher knowledge. When considering
teacher learning, we would like to know how the sub-conceptions in the framework are
ordered either in terms of sophistication or in terms of a learning trajectory. For
example, does the inconsistent sub-conception mark a conducive state for learning
because it means PTs are likely to transition to a more sophisticated level, or does it
suggest learning will be difficult and that special efforts are required on the part of the
teacher educator? Another question we have is whether the consistent in addition sub-
conception is homogenous when considering learning trajectories. This sub-conception
includes both those who conceived of the digit 1 in the Addition Task as 10 and those
that conceived of it as 1. Perhaps both groups within this sub-conception are not at the
same place along a learning trajectory from less to more sophisticated conceptions of
multidigit numbers.

Taking a broader view, we argue that more replication studies are needed in
mathematics education, and more needs to be done to increase recognition of the value
of this kind of work. Replication studies play a critical role in the scientific accumu-
lation of knowledge. However, replication studies of education studies are rare; only
about 1 in 1000 studies published in major education journals is a replication study
(Makel and Plucker 2014).

Similarly, replication and replication-like studies of mathematics education
studies published between 1990 and 2017 are rare. In a search of prominent
mathematics education journals (Nivens and Otten 2017) including Journal of
Research in Mathematics Education, Journal of Mathematics Teacher Educa-
tion, Educational Studies in Mathematics, Research in Mathematics Education,
Mathematics Education Research Journal, Journal of Mathematical Behavior,
and International Journal of Science and Mathematics Education, we found a
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total of 18 replication studies, 10 of which were replications of their own
studies (e.g., Mejía-Ramos and Inglis 2011; Thornton 1990). Therefore, the
field of mathematics education has published only eight independent replication
studies in these journals over the last two and a half decades, or about one
every 3 years, on average.

The rarity of replication extends even further in the past as documented by
Eastman in an article published in the Journal for Mathematics Education
Research in 1975. He listed three reasons he believed replications were not
common then; we believe two are pertinent today: B(a) Researchers are not
conducting replication studies. (b) Researchers are conducting replication stud-
ies but are not submitting them because they believe the studies are not
‘worthy’ of publication^ (p. 67). Increasing capacity in the field to conduct
replication studies, recognition of their value and outlets for publication are all
critical to increasing the replication studies in mathematics education.

Conclusion

Replication is not a straightforward or simple endeavor in mathematics educa-
tion. As the present study illustrates, even replication of quantitative studies can
require researchers to apply coding schemes which inherently require interpre-
tation. There is great need for improved methodology for replication that is
tailored to the specific needs of the field of mathematics education and educa-
tional studies more broadly. In addition, standards of the field should be in
place that guarantee published work supports the possibility of future replica-
tion, for example by establishing norms for reporting reproducible processes for
reconciling disagreements when qualitative data is coded. Journals could require
that analysis documents are archived on a public platform such as the Open
Science Framework (OSF, osf.io) to increase transparency. We hope this study
contributes to the field by improving motivation and capacity to conduct
replication studies in mathematics education.
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