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Abstract: LetM be a complete connected C2-surface inℝ3 in general position, intersecting some plane along

a clean figure-8 (a loop with total curvature zero) and such that all compact intersections with planes have

central symmetry. We prove that M is a (geometric) cylinder over some central figure-8. On the way, we es-

tablish interesting facts about centrally symmetric loops in the plane; for instance, a clean loop with even

rotation number 2k can never be central unless it passes through its center exactly twice and k = 0.
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1 Introduction
A set X ⊂ ℝn+1 has a center c ∈ ℝn+1 (or has central symmetry, or is central) if the c-fixing reflection x 󳨃→ 2c−x
maps X to itself. What can one say about a set X ⊂ ℝn+1 that meets every hyperplane along a central set?

When P is a hyperplane, we (for now) call X ∩ P a cross-cut of X. Later we define cross-cutmore narrowly.

Are cross-cuts of central sets always central? Not generally, unless they go through the center. A cube in ℝ3

is central, but a plane that severs a small corner cuts it along a triangle, which is not. Do central cross-cuts

make a set central? Not inℝ2. For instance, all cross-cuts of a plane triangle are (trivially) central, but again,
no triangle is central.

When n + 1 > 2, however, no such counterexample comes to mind. And in the presence of convexity,

central cross-cuts can forcemore than just centrality. For example, when n + 1 > 2 and K ⊂ ℝn+1 is a convex
body, central cross-cuts make K ellipsoidal. The most general known formulation of this fact was proven by

Olovjanischnikoff [7], who relaxed restrictions (e.g. on smoothness) in earlier results by Brunn and Blaschke

(see [2, §44, §84] and [1]). Burton gives a nice statement of Olovjanischnikoff’s result in [3, Lemma 3]. In [8],

we drew a similar conclusion for (not necessarily convex) hypersurfaces of revolution in ℝn+1. If their com-

pact convex cross-cuts are central, they must be quadrics: ellipsoids, hyperboloids, paraboloids, or circular

cylinders. Using that fact, we got a broader result in [9]: When a complete immersed surface inℝ3 has a con-
nected compact transverse cross-cut, and all such cross-cuts are central, uniformly convex ovals, the surface

is either a central cylinder or a tubular quadric.

None of these results, however, manages to exploit centrality of cross-cuts without also requiring their

convexity. Here for the first time, we drop the convexity requirement, replacing it with a very different, albeit

special, alternative. We consider surfaces inℝ3 whose cross-cuts are clean (meaning they never visit a point

twice and do so tangent to the same line) and have total geodesic curvature zero. The latter condition makes

them figure-8’s up to regular homotopy. Our main result, Theorem 3.6, says that a surface with this property

must be a central cylinder. Section 3 of our paper presents the main arguments in its proof.

Section 2 (which we find interesting on its own) is devoted mainly to the proof of a simple but critical

ingredient: Any clean, central figure-8must visit its center exactly twice. The key role this plays in Section 3 is
explained in the paragraphs immediately below our statement of Theorem 3.6. In proving the supporting fact,
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however, we get the general theory summarized in Proposition 2.16, which says, in part, that a clean central

loop must either have odd rotation index, and avoid its center entirely, or else be a figure-8 (index zero) that
visits its center precisely twice.

Simple examples—the unit circle traced twice, for instance, or the loop in Figure 2—show that such state-

ments fail for loops that are not cleanly immersed. The reasoning in both §2 and §3 would simplify consider-

ably ifwehadnot needed to assumeandexploit general position arguments to excludeunlikely “pathologies”

like those.

2 Reparametrization and symmetry
Definition 2.1 (Central symmetry). An immersion F : M → ℝn+1 is central if its image has central symmetry.

Definition 2.2 (Reparametrization). When α, β : 𝕊1 → ℝ2 are immersed loops, we say that β reparametrizes
α when β = α ∘φ for some diffeomorphism φ : 𝕊1 → 𝕊1. It preserves or reverses orientation when φ preserves

or reverses the orientation of the circle.

The following fact will pester us: Two immersed loops with the same image do not always reparametrize

each other, even if they visit each point equally often. Centrality does not mitigate this inconvenient truth, as

discussed with regard to Figure 2 below.

Examples 2.3. The unit circle 𝕊1 ⊂ ℂ is central about the origin. If we parametrize it as usual by t 󳨃→ eit,
reflection through the origin produces the orientation-preserving reparametrization t 󳨃→ −eit. Contrastingly,
consider the figure-8 parametrized by t 󳨃→ (cos t, sin 2t). While likewise central about the origin, reflection

through the origin induces the orientation-reversing reparametrization t 󳨃→ (cos t, − sin 2t). See Figure 1.

Figure 1: Reflection through the origin reparametrizes both the unit circle and figure-8, preserving orientation on the former,
but reversing it on the latter.

In Figure 2 however, we depict a smooth, origin-central immersion α : 𝕊1 → ℝ2 whose reflection −α
does not reparametrize α. To see this, orient the open sets UL , U0

and UR there in the standard way (so that
integrationof dx∧dy gives apositive result), andobserve that α = ∂(U

0
+UR−UL)and−α = ∂(U0

−UR+UL). The
oriented domains bounded by α and −α are neither equal nor opposite, so −α neither preserves nor reverses
the orientation of α. It evidently does not, therefore, reparametrize.

We can exclude the behavior depicted in Figure 2 by requiring our loops to be cleanly immersed:

Definition 2.4 (Double-points/clean loops). A point p in the image of an immersed curve α is a double-point
when its preimage contains two or more points. When it contains exactly two, we call it simple.

An immersion α : 𝕊1 → ℝ2 has clean double-points (or is clean) if, whenever t
1
, t

2
∈ 𝕊1 are distinct

preimages of a single point in ℝ2, they have respective neighborhoods U
1
and U

2
whose images α(U

1
) and

α(U
2
) intersect transversally.
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UL UR

U0

Figure 2: This immersed loop α winds counter-clockwise around UR and U0, but clockwise around UL. Reflection through the
center preserves its image, but −α is not a reparametrization of α.

Remark 2.5. Though more familiar, a general position assumption (like the one we use early in §3 below)

would be more restrictive than that of clean double-points for loops inℝ2. The latter lets a loop pass through
a single point three or more times as long as no two velocity vectors there are dependent. General position

would prohibit triple intersections.

The double-points in Example 2.3 are not clean, and we shall see that when two loops with the same

image do not reparametrize each other, theymust have unclean double-points. Indeed, the principal result of
this section, Proposition 2.11, and themain facts leading up to it all fail without cleanness, as reconsideration

of Figure 2 will quickly reveal.

We denote the intrinsic distance between points s
1
, s

2
in the sphere of any dimension (including the

circle) by φ(s
1
, s

2
). We write κg for the geodesic (i.e. signed) curvature along a loop α : 𝕊1 → ℝ2. It is given by

κg(t) :=
det(α󸀠, α󸀠󸀠)
|α󸀠|3

. (2.1)

Observation 2.6. Suppose that we have a C2 unit-speed loop α : 𝕊1 → ℝ2. If κ̄ := max𝕊1 |κg|, and α−1(p)
contains distinct inputs s

1
, s

2
∈ 𝕊1 for some p ∈ ℝ2, then φ(s

1
, s

2
) ≥ π/κ̄.

Proof. Let A be either arc in 𝕊1 joining α
1
to α

2
. Then some point s

0
∈ A maximizes |α(s) − p|2 on A, and

α̇(s
0
) is then perpendicular to α(s

0
) − p. Choose 0 ̸= v ∈ ℝ2 with v ⋅ (α(s

0
) − p) = 0. Then v ⋅ α(s) attains at

least one local extremum on each component of A \ {s
0
}, say at points s− and s+ respectively. Since α̇must be

parallel to α(s
0
) − p at these points, αmaps the intervals (s−, s0) and (s0, s+) both to arcs with total absolute

curvature at least π/2. As α has unit speed, we may then deduce that

φ(s−, s+)κ̄ ≥
s+

∫
s−

|κg(s)| ds ≥ π. 2

In general, a C2-immersion 𝕊1 → ℝ2 can have infinitely many double points, even without retracing any

open arc along its image. Not so for clean immersions:

Lemma 2.7. A clean C2-immersion α : 𝕊1 → ℝ2 has at most finitely many double-points, and at any double-
point p, there is an ε = ε(p) > 0 for which α−1(B(p, ε)) is a finite union of embedded arcs passing through p
with pairwise distinct tangent lines.

Proof. With no loss of generality, assume that α has unit speed. Set κ̄ := max𝕊1 |κg| as in the preceding Ob-

servation. Suppose (toward a contradiction) that α had infinitely many double points. Since 𝕊1 and α(𝕊1) are
both compact, that would imply the existence of a cluster point p ∈ α(𝕊1), along with convergent sequences
(sn), (s󸀠n) ⊂ 𝕊1 with

sn ̸= s󸀠n and α(sn) = α(s󸀠n) → p

and yet α(sn) ̸= p for all n ∈ ℕ. Observation 2.6 ensures |sn − s󸀠n| > π/κ̄, so the respective limits s and s󸀠 of
these sequences must obey that same estimate. In particular, s ̸= s󸀠. By continuity, however, α(s) = α(s󸀠),
which forces the collinearity of

α(sn) − α(s)
sn − s

and

α(s󸀠n) − α(s󸀠)
s󸀠n − s󸀠
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for each n. Letting n →∞, we see that α̇(s) and α̇(s󸀠)must also be collinear. This contradicts our assumption

of clean double-points. So α has at most finitely many double-points.

To prove the remaining claim, recall that Observation 2.6 puts a lower bound on the distance between any

two points in α−1(p), so the compactness of 𝕊1 makes α−1(p) finite. By definition of immersion, the inverse
function theorem then yields the asserted ε(p) > 0, while that of cleanmakes tangent lines pairwise distinct

at p. 2

Lemma 2.8. Suppose that α, β : 𝕊1 → ℝ2 are clean unit-speed C2 loops with the same image. Suppose that
p = β(t

0
) is a double-point of α, and that ε > 0 is small enough to make α−1(B(p, ε)) a union of embedded arcs

with distinct tangent lines at p, as provided by Lemma 2.7. Then one such arc contains β(t
0
− δ, t

0
+ δ) for all

sufficiently small δ > 0.

Proof. Take ε > 0 small enough to satisfy the hypothesis of Lemma 2.7, and let A
1
, A

2
, . . . , Ak denote the

(distinct) arcs whose union then constitutes α−1(B(p, ε)). Define In := (t
0
− 1

n , t0 +
1

n ) for n ∈ ℕ. When n is
large, β embeds In, and since β and α have the same image, β(In)must then lie in the union of the Ai’s.

If for every such n, we could find tn , t󸀠n ̸= t in In with β(tn) and β(t󸀠n) in different Ai’s, we could renumber

the Ai’s and pass to a subsequence to arrange β(tn) ∈ A1 and β(t󸀠n) ∈ A2 for all large n. But limn→∞ tn =
limn→∞ t󸀠n = t0, and β is differentiable, so computing β̇(t

0
) on the two different sequences would give the

same result, forcing the tangent lines to A
1
and A

2
at p = β(t

0
) to agree. This would contradict the last

assertion of Lemma 2.7. So β(In)must stay in one Ai, as claimed. 2

Definition 2.9. By the lift of an immersed unit-speed arc α : (a, b) → ℝ2, we mean the arc parametrized by

s 󳨃→ (α(s), α̇(s)) in the unit tangent bundleℝ2 × 𝕊1.

Using Lemma 2.7, the reader will easily verify

Observation 2.10. If α : 𝕊1 → ℝ2 is a cleanly immersed loop, its lift is embedded. The lift of any reparametriza-
tion α ∘ φ either reparametrizes that of α, or never meets it, depending on whether φ preserves or reverses
orientation respectively.

We can now prove the fact that puts the main results of this section in easy reach.

Proposition 2.11. Suppose that α, β : 𝕊1 → ℝ2 are clean, unit-speed C2-immersions with the same image. Then
β reparametrizes α, and the two loops have the same orientation if and only if their lifts meet.

Proof. By Observation 2.10, α and β have embedded lifts. If they meet above β(b) for some b ∈ 𝕊1, then
Lemma 2.8 provides an a ∈ 𝕊1 and a δ > 0 such that (a − δ, a + δ) and (b − δ, b + δ) lift, via α and β
respectively, to the same arc in ℝ2 × 𝕊1. The lifts of α and β therefore meet along a set relatively open in the

image of each. The coincidence set is also closed (trivially), so the two lifts coincide entirely, manifesting (via

the Inverse Function Theorem) an invertibly C1 transition map between them.

The identity map on ℝ2 × 𝕊1 then induces a diffeomorphism between the circles parametrizing α and β,
allowing us to read β as a reparametrization of α. Orientation is preserved, for the lifts would otherwise be

completely disjoint by Observation 2.10.

If the lifts are completely disjoint, then (since clean immersions have atmost finitelymany double-points

by Lemma 2.7) we can find a point p ∈ α(𝕊1)with a single pre-image {t} = α−1(p). Then α and β share a unique
tangent line at p. If their lifts donotmeet, βmust lift to (p, −α̇(t

0
)) above p. The lift of any orientation-reversing

reparametrization β󸀠 of β thusmeets that of α above p, making β󸀠 an orientation-preserving reparametrization

of α by what we have already proven. So β itself reverses orientation, as claimed. 2

We will use the proposition just proven mainly in the form of an immediate

Corollary 2.12. Any clean central C2-loop is reparametrized by its central symmetry.

As Figure 1 shows, the reparametrization induced by a central symmetry of a clean loop may preserve or

reverse orientation. The two possibilities have starkly different geometric implications, however. To see that,

we will need Corollary 2.14 below — a further consequence of Proposition 2.11 — which requires this
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Definition 2.13. The centroid (center ofmass) μ(α) of a C1-loop α : 𝕊1 → ℝn+1 with length L is themean value

of α relative to an arc-length parameter s:

μ(α) := 1L ∫
𝕊1

α(s) ds.

Note that the centroid of a loop with central symmetry may not coincide with its center of symmetry. For

example, take the circles (x ± 1)2 + y2 = 1, and parametrize their union, starting at 0, by tracing clockwise
around the right-hand lobe, then counterclockwise around the left, and finally, clockwise around the right

again. The origin will be a center of symmetry, but the centroid lies at (1/3, 0).
Clean loops never exhibit that kind of discrepancy:

Corollary 2.14. For a clean, central C2-loop, the center of symmetry and the centroid coincide.

Proof. Suppose that α : 𝕊1 → ℝ2 is a clean C2-loop with center of symmetry at c ∈ ℝ2, and length L. View
it as a unit-speed L-periodic immersion ℝ → ℝ2. As we assume α to be clean, Proposition 2.11 provides a

diffeomorphism φ of the circle (which lifts toℝ) such that 2c − α = α ∘ φ. By the chain rule and constancy of
speed (which is preservedby the reflection),wemust also have |φ󸀠| ≡ 1. Ifwedenote theunit-speedparameter

for α by s, then u = φ(s) gives a unit-speed parameter for its reflection 2c − α, whose centroid is then clearly

2c − μ(α) = 1L

L

∫
0

2c − α(s) ds = 1L

L

∫
0

α ∘ φ(s) ds = 1L

L

∫
0

α ∘ φ(s)|φ󸀠(s)| ds = 1L

L

∫
0

α(u) du = μ(α).

Thus μ(α) = c, as claimed. 2

Definition 2.15. When an immersed C1-loop α : 𝕊1 → ℝ2 is central with respect to c ∈ ℝ2, we call the line
segment joining α(t) to its reflection 2c − α(t) a diameter of α. If we can parametrize α so that

2c − α(t) = α(t + π) for all t ∈ 𝕊1 (2.2)

(intertwining reflection through c with the antipodal map on 𝕊1), we say that α is diameter-central.
Diameter-central loops are obviously central, but the converse is false, as shown by the central figure-8

in Figure 1. Careful consideration of that picture reveals that the figure-8 is not diameter-central.

Proposition 2.16. Suppose that α : 𝕊1 → ℝ2 is a clean, central C2-loop. Then either

A) the symmetry preserves orientation, in which case α is regularly homotopic to e(2k+1)θ for some k ∈ ℤ, avoids
its center, and is diameter-central,
or

B) the symmetry reverses orientation, inwhich case α is regularly homotopic to the figure-8, has a simple double-
point at its center, and is not diameter-central.

Proof. We can assume that α is centered at the origin 0 and (after applying a homothety giving it length 2π)
has unit speed. Corollary 2.12 then says that −α = α ∘ φ for some diffeomorphism φ : 𝕊1 → 𝕊1. By the chain
rule, our unit speed assumption forces |φ󸀠| ≡ 1, making φ an isometry of 𝕊1. An isometry either rotates 𝕊1 or
reflects it across a diameter, preserving or reversing orientation respectively.

When we view 𝕊1 ≈ ℝ/2π as an additive group, rotation takes the form φ(t) = t + l for some l ∈ 𝕊1. So if
the symmetry preserves orientation, we get −α(t) = α(t + l) for all t. Since α is not constant, we may assume

that 0 < |l| ≤ π. Iterating the symmetry then gives α(t + 2l) = α(t), and hence α̇(t + 2l) = α̇(t). Having clean
double points, however, obstructs this pair of identities for 0 < |l| < π. So in the orientation-preserving case,
we must have |l| = π, which makes α diameter-central, as Conclusion A asserts.

A diameter-central loop has parallel tangent lines at α(t + π) and α(t), as seen by differentiating (2.2). We

assume clean double-points, so this forces α(t + π) ̸= α(t) for all t ∈ 𝕊1. But we just saw that α(t + π) = −α(t)
for all t ∈ 𝕊1. So in the orientation-preserving case, our loop must avoid the origin — its center — as claimed

by (A).
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In the orientation-reversing case, by contrast, α is reparametrized by an isometryφ : 𝕊1 → 𝕊1 that reflects
across a diameter, fixing two antipodal points that we can assume to be t = 0 and t = π. In this case, for all
t ∈ 𝕊1 we have φ(t) = −t, and thus

− α(t) = α(−t). (2.3)

A central symmetry fixes only its center, however, forcing α to map both t = 0 and t = π to the origin. In fact,
the origin must be a simple double-point, as (B) claims. For, any central loop has parallel tangent lines at the

ends of diameters, and when (2.3) holds, that means parallel tangent lines at α(t) and α(−t) for every t ∈ 𝕊1.
If we had α(t) = α(−t) for some t not fixed by φ, we would breach our clean double-points assumption.

It remains to verify the claims about regular homotopy. As is well-known (see e.g. [10] or [6, Proposi-

tion 2.1.6]), the regular homotopy class of an immersed plane loop α : 𝕊1 → ℝ2 is classified by its rotation
index — the degree ωα ∈ ℤ of its unit tangent map α󸀠/|α󸀠| : 𝕊1 → 𝕊1, which we may compute by integrating

the geodesic curvature (2.1) along α:

ωα =
1

2π

2π

∫
0

κg(t) dt. (2.4)

Consider first the orientation-preserving case. There, as we have seen, α is diameter-central: α(t + π) =
−α(t) for all t. It follows trivially that velocity and acceleration change sign too when we rotate the input

by π. As easily seen from formula (2.1), however, this makes κg even on the circle: κg(t + π) = κg(t). So when
orientation is preserved, the total signed curvature of α is twice that along the arc α(0, π). At the same time,

we have α̇(π) = −α̇(0), forcing the unit tangent α̇/|α̇| to traverse an odd number of semicircles as t varies from
0 to π. So

2π

∫
0

κg(t) dt = 2
π

∫
0

κg(t) dt = 2(2k + 1)π for some k ∈ ℤ.

By (2.4) we then have ωα = 2k + 1, an odd integer, as claimed.

In the orientation-reversing case, identity (2.3) replaces the diameter-central condition above. Differen-

tiate that identity twice and use (2.4) to see that κ is now an odd function on the circle: κ(−t) = −κ(t). The
integral of an odd function vanishes, so (2.4) nowyieldsωα = 0,making α regularly homotopic to the figure-8,

as stated. This completes our proof. 2

Corollary 2.17. A clean plane C2-loop with even, non-zero rotation index cannot have central symmetry.

3 Main result
SupposingMn

is a smooth manifold, we now take up our motivating question:What can we say about a com-
plete, proper immersion F : Mn → ℝn+1 when F(M) has central intersections with an open set of hyperplanes?

To address this, we introduce some notation. We write u⊥p for the hyperplane containing p ∈ ℝn+1 and
normal to u ∈ 𝕊n. When p is the origin, we simply write u⊥. These hyperplanes are, respectively, zero sets of
the affine functions u∗p and u∗ given by

u∗p(x) = u ⋅ (x − p), u∗(x) = u ⋅ x

When using this notation, we always assume u to be a unit vector. As above, φ(u, 𝑣) := arccos(u ⋅ 𝑣) denotes
the angular distance between unit vectors u and 𝑣.

When a > 0 and P = u⊥p , we write Pa for the a-neighborhood of P:

Pa := {q ∈ ℝn+1 : 󵄨󵄨󵄨󵄨u
∗
p(q)
󵄨󵄨󵄨󵄨 < a}. (3.1)

Call ν ∈ 𝕊n a unit normal to an immersion F : Mn → ℝn+1 at a point x ∈ M if ν is orthogonal to the

hyperplane dF(TxM) inℝn+1.

Brought to you by | University of Iowa Libraries
Authenticated

Download Date | 2/27/19 9:24 PM



Solomon, Central figure-8 cross-cuts make surfaces cylindrical | 429

We can then say that F has general position if, whenever y ∈ ℝn+1 and ν
1
, ν

2
, . . . , νk are unit normals to

F at distinct points in F−1(y), we have
ν
1
∧ ν

2
∧ ⋅ ⋅ ⋅ ∧ νk ̸= 0. (3.2)

If this holds when we extend F to M ∪ P for some hyperplane P ⊂ ℝn+1 via the inclusion map on P, we say
that F and P are in general position. Note that in this case the restriction of F to M must itself have general

position. When (3.2) holds for k = 2 (i.e., whenever ν
1
, ν

2
are unit normals to F at distinct points of F−1(y)),

we get weaker conditions that we respectively express by saying F has transverse self-intersections, or P meets
F transversally.

Transversality alone makes F−1(P) an embedded hypersurface inM; see [5, p.22]. General position guar-

antees more: when n = 2, for instance, it is not hard to see that it makes all double-points of P ∩ F(M) clean
as specified in Definition 2.4.

Wewant to focus on the casewhere F and P have general position and the compact components of F−1(P)
map to sets with central symmetry. Two definitions will help:

Definition 3.1 (Cross-cut). When a hyperplane P ⊂ ℝn+1 meets an immersion F : Mn → ℝn+1 transversally, a
cross-cut of F relative to P is a compact component Γ ⊂ F−1(P). We also call its image F(Γ) a cross-cut; context
will signal which meaning applies.

We call Γ a clean cross-cut when P and F are in general position.

The transversality assumption in Definition 3.1 ensures that the tangential projection on M of the unit

normal u to P, i.e. u − (u ⋅ ν)ν, is a non-vanishing transverse vectorfield along Γ. (The choice of unit normal ν
to F is obviously irrelevant here.) Cross-cuts are thus orientable inM. A routine differential topology exercise

then yields the existence of what we shall call a good tubular coordinate neighborhood U of a cross-cut Γ — a

neighborhood that F maps to a tube foliated by cross-cuts diffeomorphic to Γ, each a level set of the height

function u∗p:

Definition 3.2 (Good tubular patch). Suppose that Γ ⊂ M is a cross-cut of F relative to a hyperplane P = u⊥p .
By a good tubular coordinate neighborhood (or good tubular patch) for Γ, wemean a pair (U, ψ), where U ⊂ M
is the image of an embedding ψ : Γ × [−a, a] → M for some a > 0, and ψ has these three properties for all

(θ, h) ∈ Γ × [−a, a]:

a) ψ(x, 0) = x for all x ∈ Γ,
b) (u∗p ∘ F ∘ ψ)(θ, h) = h and
c) d(u∗p ∘ F ∘ ψ) ̸= 0.

Property (b) means that for each h ∈ [−a, a], the composition F ∘ ψ maps Γ × {h} into the plane u∗p ≡ h.
Property (c)makes F transverse to these same planes, so thatψ(Γ×{h}) is a cross-cut of F for each h ∈ [−a, a].

As mentioned above, the existence of a good tubular neighborhood of a cross-cut is routine. When a

cross-cut is clean, we can guarantee that nearby cross-cuts are likewise clean:

Lemma 3.3. Suppose that Γ ⊂ M is a clean cross-cut relative to P = u⊥p , and that (U, ψ) is a good tubular patch
for Γ. Then there is an ε > 0 for which |q − p| < ε and φ(𝑣, u) < ε together ensure that F−1(𝑣⊥q ) ∩ U is again a
clean cross-cut, and is regularly homotopic to Γ.

Proof. Define the map

F : U × ℝn+1 × 𝕊n → ℝ × ℝn+1 × 𝕊n via F(x, q, 𝑣) = ((F(x) − q) ⋅ 𝑣, q, 𝑣).

Property (c) in Definition 3.2 makes dF surjective at each point of F−1(0, p, u) = Γ × {p} × {u}, and lower-

semicontinuity of rank thenmakes dF surjective on some neighborhood of Γ ×p×u. If we denote ε-neighbor-
hoods of p and u inℝn+1 and 𝕊n respectively by Bε(p) and Bε(u), the Implicit Function Theoremand compact-

ness of Γ thenmake it straightforward to deduce that for some ε > 0, theF-preimage of (−ε, ε)×Bε(p)×Bε(u)
is foliated by preimages F−1(h, q, 𝑣), all regularly homotopic to F−1(0, p, u) = Γ × {p} × {u}. It follows that
F−1({0} × Bε(p) × Bε(u)) is likewise foliated. Since F−1(0, q, 𝑣) = (F−1(𝑣⊥q ) ∩ U) × {q} × {𝑣}, this shows that
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|q − p| < ε and φ(𝑣, u) < ε together ensure, for every such q and 𝑣, that F−1(𝑣⊥q ) ∩ U is a cross-cut regularly

homotopic to Γ.
Finally, by making ε > 0 smaller still if necessary, we can guarantee that these cross-cuts are all clean

too. Otherwise, we could find convergent sequences (qk) → p and (𝑣k) → u for which each corresponding

cross-cut (F(x) − 𝑣k) ⋅ qk ≡ 0 in U was not clean. Condition (3.2) would then have to fail at some point yk in
each of these cross-cuts. Condition (3.2) is continuous in all variables, however, F is C1, and U is compact.

Passing to a subsequence, we could then take a limit as k →∞ and force a contradiction to our assumption

that Γ itself was clean. 2

With these differential-topological facts in hand, we now turn to the case of interest: where (the images

of) all cross-cuts have central symmetry.

Definition 3.4 (cx). An immersion F : M → ℝn+1 has the central cross-cut property (abbreviated cx) when

a) at least one clean cross-cut exists, and

b) the image of every clean cross-cut has central symmetry.

Note that cx is an affine-invariant property — not just a geometric one: if F has cx, and A is an affine

isomorphism ofℝn+1, then A ∘ F has cx too.

Inℝ3, circular cylinders and spheres have cx; they represent the only two kinds of examples we know:

∙ Central cylinders: If an immersion with a cross-cut is preserved by a line of translations and by a central
reflection,we call it a central cylinder. Central cylinders clearlyhavecx, since every cross-cut is a translate
of one through the center.

∙ Tubular quadrics:When a non-degenerate quadric hypersurface inℝn+1 is affinely equivalent to a locus

of the form x2
1

+ x2
2

+ . . . x2n ± x2n+1 = c ∈ ℝ, it will always have compact and transverse, hence ellipsoidal

(and thus central) cross-cuts. We call these hypersurfaces tubular quadrics. Note that in ℝ3, all non-
degenerate quadrics are tubular.

We suspect that these two classes exhaust all possibilities:

Conjecture 3.5. A complete immersion F : Mn → ℝn+1 with cx must either be a central cylinder, or a tubular
quadric.

In previous papers, we confirmed weakened versions of this conjecture, proving it

∙ for C1 hypersurfaces of revolution (SO(n) symmetry) inℝn+1 [8], and then, using that result,

∙ for C2 surfaces inℝ3 whose cross-cuts are convex as well as central [9]¹.

Here we add another case to this list: roughly, that of a complete surface in ℝ3 with cx and for which some

clean cross-cut is a figure-8. To make this precise, we first note that on any complete immersed C2-surface
with cx in ℝ3, every clean cross-cut is a (clean) central plane C2-loop. By Proposition 2.16, each of these

loops is either regularly homotopic to a figure-8, or has odd rotation index.

The rotation index of a figure-8 is zero, and here (as sketched in our introduction) we verify Conjecture 3.5

for immersions with figure-8 cross-cuts. Since cross-cuts of quadrics cannot be figure-8’s, such immersions

must be cylindrical:

Theorem 3.6 (Main Result). If F : M → ℝ3 is a complete C2-immersion with cx, and some plane in general
position with F cuts it along a clean figure-8, then F(M) is a central cylinder.

The figure-8 assumption is decisive for a simple reason: When a plane P cuts a surface with cx transver-
sally along a figure-8 centered at c ∈ ℝ3, and we tilt P slightly about c to get nearby cross-cuts, the latter
remain centered at c.

1 This has recently been extended to hypersurfaces in ℝn by M. Alper Gur in his Ph.D. thesis Hypersurfaces with central convex
cross-sections (arXiv:1605.02862 [math.DG]).
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Without the figure-8 assumption, this fails. Indeed, consider the unit sphere 𝕊2 ⊂ ℝ3. It clearly has cx.
Take u ∈ 𝕊2, 0 < λ < 1, and set c := λu. The plane u⊥c will cut 𝕊2 along a circle centered at c. For any 𝑣 ∈ 𝕊2
near u, however, the cross-cut 𝑣⊥c ∩ 𝕊2 is clearly centered on the line spanned by λ𝑣 (see Figure 3). So for 𝑣 ̸= u,
the center moves.

u v

c

Figure 3: Cross-cuts on a sphere, via u⊥c and 𝑣⊥c . Both hyperplanes contain c, but only one of the cross-cuts (red) is centered
at c.

The center cannot move in this way when cross-cuts are figure-8’s, as we make precise in Lemma 3.8

shortly below, using the notion of central curve of a good tubular patch:

Definition 3.7 (Central curve). Suppose that Γ is a cross-cut for an immersion F : M → ℝn+1 relative to a

hyperplane P = u⊥p . Let (U, ψ) denote a good tubular patch for Γ as in Definition 3.2, so that F maps ψ(Γ, h)
into the hyperplane u∗c ≡ h for each h ∈ [−a, a]. The central curve of the patch is the map μ : [−a, a] → ℝn+1
sending any h ∈ [−a, a] to the centroid μ(h) of F(ψ(Γ, h)).

When F is Ck, the central curve of a good tubular patch is clearly Ck too. It is also immersed, since Con-
dition (b) from Definition 3.2 yields u∗p(μ(h)) = h, and hence μ̇(h) ⋅ u ≥ 1.

We are about to formulate the advantage offered by figure-8 cross-cuts. Notation is as above: F : M2 → ℝ3

is a proper C2-immersion, u ∈ 𝕊2 and c ∈ ℝ3 are fixed.Wehave a clean cross-cut Γ ⊂ F−1(u⊥c ), forwhichU ⊂ M
is a good tubular neighborhood (Definition 3.2), and μ : [−a, a] → ℝ3 is its central curve.

Lemma 3.8. Suppose that F has cx, F(Γ) is a figure-8, and ε > 0. If Γh,𝑣 := U ∩ F−1(𝑣⊥μ(h)) is a clean cross-cut,
regularly homotopic to Γ whenever |h| < ε and 𝑣 ∈ 𝕊2 with φ(𝑣, u) < ε, then F(Γh,𝑣) is a figure-8 with central
symmetry about μ(h) for any such h and 𝑣.

Proof. Lemma 3.3 says that for all sufficiently small |h|, the cross-cut Γh,u (cut by the plane at signed height h
above u⊥c ) is, like Γ0,u = Γ itself, clean and regularly homotopic to Γ. For simplicity, we can assume this holds

for all |h| ≤ a. (If not, re-define our good tubular patch using a smaller a > 0.)
In this case, F(Γh,u) is a clean figure-8 for every |h| ≤ a, and its center, by Proposition 2.16(b), is a simple

double-point. The central curve μ of the patch thus consists entirely of simple double-points of F.
In particular, if we fix any h ∈ (−ε, ε), then F−1(μ(h)) ∩ U is a pair {x

1
, x

2
}, and as an immersion, F

embeds disjoint neighborhoods U
1
⊃ x

1
and U

2
⊃ x

2
in such a way that, in the ball Bh,r centered at μ(h)with

sufficiently small radius r > 0, we have

F(U) ∩ Br,h ⊂ F(U1
) ∪ F(U

2
).

Further, since F has general position, we canmake r > 0 small enough to ensure that in Br,h, the sheets F(U1
)

and F(U
2
)meet along a segment of the central curve and nowhere else.

Now, as long as φ(𝑣, u) < ε, the nearby cross-cut Γh,𝑣 is, by assumption, another clean cross-cut in U,
regularly homotopic to Γ = Γ

0,u. Immersion preserves regular homotopy, so for all such 𝑣 the nearby images
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F(Γh,𝑣), like F(Γ), are clean figure-8’s — and they are central, since F has cx. We just need to show that they

stay centered, like F(Γh,u), at μ(h).
To see that they are, note that the planes 𝑣⊥μ(h) all cut the central curve μ transversally at μ(h) since the

cross-cuts they form are all clean. So by shrinking r > 0 further if needed, we can ensure that in Br,h, each of
these planes cuts the central curve only at μ(h).

It follows that μ(h) is the unique double-point that F(Γh,𝑣) has in Br,h. Since Γh,𝑣 varies smoothly with 𝑣,
its centroid — and center of symmetry by Corollary 2.14 — varies smoothly too. So for 𝑣 sufficiently near u, the
center of the figure-8 F(Γh,𝑣)must stay in Br,h. As seen above, however, that center is a simple double-point,

and we have just noted that for every 𝑣 in question, the only double-point of F(Γh,𝑣) in Br,h is μ(h). When

φ(𝑣, u) < ε, the center of F(Γh,𝑣) is therefore trapped at μ(h). As this holds whenever |h| < ε, we have proven
the lemma. 2

Wewill prove our main result (Theorem 3.6) by combining this lemmawith the Local Axis Lemma below,

which shows that when F has cx, and centers of tilted cross-cuts stay (locally) on the central curve as in the
lemma above, the central curve is locally straight. Note that it makes no figure-8 assumption. This lemmawill

quickly yield a local version of the main result in Corollary 3.10.

The construction behind the Local Axis Lemma is easier to describe than to execute, as it requires several

estimates to ensure the argument goes through in the small piece of the tube where its hypotheses prevail. To

help the reader see past the technical details, here is a sketch:

We have a short tube T whose every (not-too-steep) cross-cut is symmetric about some point on its central

curve μ = μ(h), andwewant to prove thismakes μ straight. Any point p ∈ T that lies on a symmetric cross-cut

reflects through the center μ(ζ) of that cross-cut to another point q ∈ T. By varying the ζ a bit (and varying
the cross-cut through p with it) q = q(ζ) varies too, tracing out a short arc on T. Done carefully, this forces
q̇(ζ) = 2μ̇(ζ), so that the tangent plane to T at q (and symmetrically at p too) contains μ̇(ζ). Running the same

argument for nearby values of ζ and p, we deduce that every tangent plane of T near p contains every tangent
line of the central curve near μ(ζ). If μ̇ were to span more than one line, those lines would therefore all lie in

a single plane, and every tangent plane of T near p would then be parallel to that one plane. This forces T
itself to lie, locally, in a plane. But we can take p to be maximally distant from μ(ζ) in the original cross-cut.
Since the distance to μ(z) cannot attain an interior max on an open subset of a plane, we get a contradiction

unless the central curve to has just one tangent line (locally), making it locally straight, as needed.

To make all this precise, we now write (as earlier) a > 0 and P = u⊥c for a fixed (but arbitrary) scalar and
plane respectively, with Pa denoting the a-neighborhood of P. We have a clean cross-cut Γ ⊂ F−1(P), and a
good tubular patch ψ : Γ × [−a, a] → U ⊂ M around Γ, so that F(∂U) ⊂ ∂Pa. Without loss of generality, we

assume that c = μ(0), the initial value of the central curve μ of F(U).

Lemma 3.9 (Local axis lemma). Suppose that ε > 0, 0 < b < a and F−1(𝑣⊥μ(t)) ∩ U is a boundaryless clean
cross-cut whose image is central about μ(t) whenever φ(u, 𝑣) < ε and |t| < b. Then μ maps [−b, b] to a line
segment.

Proof. We may identify Γ ≈ 𝕊1, and simplify notation accordingly by using coordinates from the domain of

our good tubular patch so that, for instance, F(θ, h) really means F(ψ(θ, h)).
Fix an arbitrary ζ ∈ (−b, b), and choose θ

0
∈ 𝕊1 so that p

0
:= F(θ

0
, ζ)maximizes |F(θ, ζ)|2 on F(Γ, ζ):

|p
0
|2 = |F(θ

0
, ζ)|2 ≥ |F(θ, ζ)|2 for all θ ∈ 𝕊1.

To prove the lemma, wewill first need to show that (θ
0
, ζ) ⊂ U has a neighborhoodwith certain favorable

attributes. For that, note that |F(θ, s) − μ(h)| is continuous on the set of triples (θ, s, h) ∈ Γ × [−a, a]2, and
that |p

0
− μ(ζ)| = 2r for some r > 0. So by making η > 0 small enough, we can ensure two properties:

i) |ζ ± η| < b,
ii) |θ − θ

0
|, |s − ζ|, |h − ζ| < η ⇒ |F(θ, s) − μ(h)| > r

Now for any (θ, s, h) in the η-neighborhood of (θ
0
, ζ, ζ) defined by (ii) above, consider the unit vector

w = w(θ, s, h) := F(θ, s) − μ(h)
|F(θ, s) − μ(h)| .
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Combining (b) from Definition 3.2 with (ii), we then have

|u ⋅ w| = |s − h|
|F(θ, s) − μ(h)| ≤

|s − h|
r . (3.3)

Subtract the w-component from u and normalize to construct a unit vector normal to w:

𝑣 :=
u − (u ⋅ w)w
|u − (u ⋅ w)w| . (3.4)

By design, the plane 𝑣⊥μ(h) now contains F(θ, s). We shall want it to cut F(U) along a central loop, and our
hypotheses certify that, provided we can show that φ := φ(u, 𝑣) < ε. To do so, combine (ii) with the triangle

inequality to deduce |s − h| < 2η, and hence

sin

2 φ = 1 − cos2 φ = 1 − (u ⋅ 𝑣)2 = (u ⋅ w)2 ≤
󵄨󵄨󵄨󵄨󵄨󵄨
s − h
r
󵄨󵄨󵄨󵄨󵄨󵄨
2

≤
4η2
r2

.

Since φ < ε when sinφ < sin ε, this yields the bound we seek if we require, along with (i) and (ii) above, that

iii) 0 < η < 1

2

r sin ε.

Together, restrictions (i), (ii), and (iii) on η > 0 now leverage our hypotheses to ensure that for 𝑣 given by
(3.4), the plane 𝑣⊥μ(h) contains both F(θ, s) and μ(h), and cuts F(U) along a loop with central symmetry about

μ(h).
We can nowmake themain geometric argument for our lemma. Consider themapping that sends (θ, s, h)

to the reflection of F(θ, s) ∈ F(U) through μ(h):

(θ, s, h) 󳨃󳨀→ 2μ(h) − F(θ, s) (3.5)

Our hypotheses guarantee that for all small enough |τ| > 0, the arc parametrized by β(τ) := 2μ(h + τ) −
F(θ, s) stays in F(U). Trivially, its initial velocity is 2μ̇(h), which cannot vanish because u∗(μ̇(h)) = 1, by
Condition (b) fromDefinition 3.2. This proves: If η > 0 satisfies (i), (ii), and (iii) above, then for all (θ, s, h)with
|θ − θ

0
|, |s − ζ|, |h − ζ| < η, the plane tangent to F(U) at 2μ(h) − F(θ, s) contains μ̇(h) ̸= 0.

It follows immediately that whenever |t| < η, each tangent plane to F(U) in a neighborhood of p
0
=

F(θ
0
, ζ) contains both μ̇(ζ) and μ̇(ζ + t). From this, we can deduce constancy of μ̇ near ζ :
Indeed, we would otherwise have μ̇(ζ + t) ̸= μ̇(ζ) for some t ∈ (−η, η), and since they have the same u-

component, by (b) fromDefinition 3.2, inequality means independence. Since p
0
has a neighborhood in F(U)

where every tangent plane contains—hence is spanned by— these same twonon-zero vectors, independence

forces constancy of the unit normal to F(U) near p
0
. A neighborhood of p

0
in F(U) then lies in a plane — a

plane cutting u⊥p
0

along a line. The cross-cut parametrized by F( ⋅ , ζ) must contain a segment of that line,

with p
0
= F(θ

0
, ζ) in its interior. But we maximized |F(θ, ζ)|2 at θ

0
, and x 󳨃→ |x|2 is strictly convex; it cannot

reach a local max on the interior of a segment. We have thus contradicted the possibility that μ̇(ζ + t) ̸= μ̇(ζ)
for any |t| < η. It follows that μ̇ ≡ μ̇(ζ) on a neighborhood of ζ .

Because ζ ∈ (−b, b) was arbitrary, however, this (and continuity of μ̇) yields local constancy of μ̇ on

subset of [−b, b] that is simultaneously non-empty, open, and closed. The conclusion of our lemma follows

at once. 2

Corollary 3.10 (Local cylinder). Under the assumptions of Lemma 3.9, F(U) is a central cylinder.

Proof. By Lemma 3.9, the central curve of F(U) — what we shall henceforth call its axis — is a line segment

parallel to 𝑣 := μ̇(0). The corollary follows easily from one additional

Claim. Every tangent plane to F(U) contains 𝑣.
As F(U) is closed, it suffices to prove this for an arbitrary point p ∈ F(U) not lying on its axis. Let h := u∗c (p)

denote the signed height of p above u⊥c (c = μ(0)). The cross-cut of F(U) parallel to u⊥c at height h is central
about μ(h), so both p and its reflection q := 2μ(h) − p lie in F(U) ∩ u⊥μ(h). Like p, of course, q avoids the
axis of F(U). Our assumptions say that slightly tilted cross-cuts of F(U) are also central about the axis, and
provided |t| > 0 is sufficiently small, some such cross-cut contains both q and μ(h + t). It follows that the arc
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t 󳨃→ 2μ(h + t) − q lies in F(U) for all sufficiently small |t|. The resulting differentiable arc passes through p
when t = 0, with initial velocity 2μ̇(h) = 2𝑣, so 𝑣 is tangent to F(U) at p, as our Claim proposes.

The corollary quickly follows: F(U) is everywhere tangent to the constant vectorfield 𝑣, so it is foliated by
line segments parallel to 𝑣. This makes it a (generalized) cylinder, and it has a compact central cross-cut, so

it is central too. 2

By chaining together intermediate results fromabove,we can quickly prove ourmain theorem.We restate

it here for the reader’s convenience.

Theorem 3.6. If F : M → ℝ3 is a complete C2-immersion with cx, and some plane in general position with F
cuts it along a clean figure-8, then F(M) is a central cylinder.

Proof of the Main Result. Weare assuming that for someplane P = u⊥c in general position relative to F, a clean
cross-cut Γ ⊂ F−1(P)maps to a clean figure-8 γ := F(Γ) ⊂ P. As discussed in connection with Definition 3.2,

that puts Γ in the image of a good tubular patch (U, ψ).
Lemma 3.3 now provides some 0 < ε < a for which every cross-cut F−1(𝑣⊥μ(h)) ∩ U is a clean figure-8 when

|h| < ε and φ(𝑣, u) < ε. As above, μ : [−a, a] → ℝ3 here denotes the central curve of F(U). Lemma 3.8 now

certifies that each of these cross-cuts has central symmetry about μ(h), and Corollary 3.10 (with b = ε) then
shows that, within the ε-neighborhood Pε of P, the image F(U) is a central cylinder.

A simple open/closed argument now shows that F(M) is the complete extension of that cylinder. Indeed,

call a scalar a > 0 reachable if there exists a good tubular patch ψ : Γ × [−a, a] → M whose image is mapped

by F to a central cylinder. Given what we have just proven, we know that

a∗ := sup{a > 0: a is reachable} ≥ ε > 0.

Our theorem amounts to the assertion a∗ = ∞, which we can now establish by contradiction. For if a∗ <
∞, the completeness and smoothness of F would let us construct a maximal good tubular patch ψ : Γ ×
[−a∗, a∗] → M, with F ∘ ψmapping Γ × [−a∗, a∗] to a central cylinder with boundary in ∂Pa∗ . The two loops
bounding this cylinder would clearly be clean figure-8’s. By applying the argument above, however, we could

deduce that their preimages inM each have good tubular neighborhoods mapping to central cylinders via F.
Our supposedly maximal good tubular patch could then be extended slightly at each boundary component,

violating the maximality of a∗. Thus, a∗ cannot be finite; we have a∗ = ∞ which gives our theorem. 2
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