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Abstract. The Evans function has become a standard tool in the mathematical study of nonlinear wave stability.
In particular, computation of its zero set gives a convenient numerical method for determining the
point spectrum of the associated linear operator (and thus the spectral stability of the wave in ques-
tion). We report on an unexpected complication that frustrates this computation for viscous shock
profiles in gas dynamics. Although this phenomenon—related to the choice of Eulerian or Lagrangian
coordinate system used to describe the gas—is present already in the one-dimensional setting, its
implications are especially important in the multidimensional case where no computationally viable
Lagrangian description of the gas is readily available. We introduce new “pseudo-Lagrangian” coor-
dinates that allow us to overcome this difficulty, and we illustrate the utility of these coordinates in
the setting of isentropic gas dynamics in two space dimensions.
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1. Introduction.

1.1. Overview. The modern theory for the stability of nonlinear waves employs a combi-
nation of tools from functional analysis and from dynamical systems, and the Evans function
is a key link between these two mathematical disciplines; see, e.g., [1, 28, 39, 41]. In this paper,
we describe an unexpected obstacle to Evans-function computations for viscous profiles in gas
dynamics. This obstacle arises from the Eulerian coordinate system used to describe the mo-
tion of the gas, in combination with the mixed hyperbolic-parabolic nature of the equations.
In particular, it does not occur in the parabolic or higher-order systems occurring in reaction
diffusion or solitary wave contexts; see Remark 4.3.

While the phenomenon arises even in a single space dimension, it has so far been missed
due to the use by practitioners of the somewhat simpler Lagrangian equations. However,
in multiple space dimensions, Lagrangian coordinates become impractical due to complex-
ity/introduction of spurious modes [38], and the issue becomes central [24]. Thus, the
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resolution we describe here—a set of “pseudo-Lagrangian” coordinates—appears to be a cru-
cial component of any successful multidimensional Evans-function computations for viscous
shocks in gas dynamics (and related models).

To begin, we briefly describe the abstract mathematical setting in the one-dimensional
case. To that end, consider a system of conservation laws with viscosity in a single space
dimension. This is a system of partial differential equations of the form

(1.1) Ut + F (U)x = (B(U)Ux)x .

In system (1.1), the unknown U = U(x, t) is in Rn, the flux F is a function from Rn to itself,
and the viscosity matrix B is an Rn×n-valued function on Rn. Our motivating example of
such a system is the Navier–Stokes equations of gas dynamics; observe that both the Eulerian
formulation (2.1) and the Lagrangian formulation (2.8) have the form of (1.1). A viscous
shock profile is a traveling-wave solution of (1.1) connecting constant states U±. That is, it is
a solution of the form

(1.2) U(x, t) = Ū(x− st) , lim
z→±∞

Ū(z) = U± .

By shifting to a moving coordinate frame, we may assume that the speed s is zero. Thus, the
(now) standing-wave solution Ū(x) is a steady solution of (1.1). To investigate the stability
of this wave, we first linearize about it to obtain an equation that approximately describes
the evolution of a small perturbation V :

(1.3) Vt = LV ..= (B(x)Vx)x − (A(x)V )x ,

where

B(x) ..= B(Ū(x)) and A(x)V ..= dF (Ū(x))V − dB(Ū(x))
(
V, Ū ′(x)

)
.

The goal, then, is to determine the point spectrum of the variable coefficient (but asymptot-
ically constant) operator L. To that end, we recast the eigenvalue problem λW = LW as a
first-order system

(1.4) Z ′ = A(x;λ)Z ,

where the prime denotes differentiation with respect to the spatial variable x, and Z ∈ CN
(the size of N depends on the structure of the system (1.1)). Since the point spectrum of L in
the unstable half plane is made up of those values λ∗ for which there is a nontrivial solution
Z(x;λ∗) of (1.4) which satisfies

lim
x→±∞

Z(x;λ∗) = 0 ,

these values can be detected by the vanishing of a Wronskian D(λ), known as the Evans
function. More precisely, since Ū tends to constant states as x → ±∞, there are limiting
matrices

A±(λ) ..= lim
x→±∞

A(x;λ) .
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1768 B. BARKER, J. HUMPHERYS, G. LYNG, AND K. ZUMBRUN

For this introductory discussion, we suppose that for λ ∈ {z ∈ C : Re z > 0}—the unstable
half plane, the dimension of the stable subspace S+ of A+ is k and that the dimension of the
unstable subspace U− of A− is N − k. Then, the Evans function is constructed by building
analytic (with respect to λ) bases of solutions

{z+

1 (x;λ), . . . , z+

k (x;λ)} and {z−k+1(x;λ), . . . , z−N (x;λ)}

spanning the manifolds of solutions of (1.4) that tend to zero at each spatial infinity. These
bases are built by initializing at the spatial infinities with data from S+ and U− and then
integrating (1.4) toward x = 0. Then, the Evans function is defined to be

(1.5) D(λ) ..= det(z+

1 , . . . , z
+

k , z
−
k+1, . . . , z

−
N )|x=0 .

It is evident from this construction that a zero of D corresponds to the existence of a solution
of (1.4) which decays at both spatial infinities, i.e., an eigenfunction.

It follows that the computation of D (and, in particular, its zero set) is a central component
of the stability analysis. However, for even modestly complicated systems in a single space
dimension, this is a task that must be done numerically. Fortunately, this is a computational
problem that is by now well understood, and a variety of techniques and algorithms appear
in the literature. Starting with a system of form (1.4), the numerical approximation of D
essentially consists of two tasks. First, one must compute analytic bases of S+ and U−.
Second, one must solve the differential equation (1.4) on sufficiently large intervals [0,M+]
and [−M−, 0]. There is a kind of stiffness (when k 6= 1 and N − k 6= 1) associated with
this second problem due to the need to resolve modes of differing exponential decay (growth)
rates in order to track the entire subspace of decaying (growing) solutions. A now standard
solution to this problem is to work in the exterior product space so that the desired subspace
appears as the single maximally stable (unstable) mode. An early example of this kind
of numerical computation for solitary-wave solutions of a Boussinesq-type equation can be
found in the paper of Alexander and Sachs [2]. For viscous shock profiles, such as discussed
above, the program of numerically approximating D using exterior products was initiated and
developed by Brin [14, 15, 16]. Bridges and collaborators [3, 13] independently rediscovered
this method and clarified its relationship to the earlier compound-matrix method of Ng and
Reid [34, 35, 36, 37] for stiff ordinary differential equations (ODEs). Two key later discoveries
by Humpherys and Zumbrun [27] and by Humpherys, Sandstede, and Zumbrun [26] helped
open the door to large-scale Evans-function computations such as arise in complicated physical
problems. The issue is that the exterior-product method, while elegant, does not scale well as
N grows. Humpherys and Zumbrun [27] proposed an “analytic orthogonalization” technique
which allows for a much more efficient representation of the growing/decaying subspaces. In
related work dealing with the other computational task, Humpherys, Sandstede, and Zumbrun
[26] proposed an efficient numerical algorithm, based on Kato’s projection method [29], that is
suitable for computing analytic bases of S+ and U− when k and N − k are large. (In practice,
it is typical that k ∼ N/2.) More recent developments include alternative approaches to tackle
the problem of large systems [30, 31] and techniques for root-following as parameters vary [25].

As the preceding discussion indicates, there is now a robust collection of numerical meth-
ods associated with approximating the Evans function. One culmination of this development
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is the STABLAB package [9], a MATLAB-based suite of routines that implements both the
exterior-product method and the analytic-orthogonalization method (among other features).
Using STABLAB, computational Evans-function techniques have been applied to gas dy-
namics in one space dimension [5, 6, 21, 22], combustion in one space dimension [7, 19, 23],
and magnetohydrodynamics in one space dimension [10]. A recent development is the use of
rigorous numerical calculations to establish numerical proofs of spectral stability [4, 11]. This
latter development is of particular interest since spectral stability—more precisely, a condi-
tion stated in terms of an Evans function which includes spectral stability—is known to imply
nonlinear stablity for viscous shock profiles in a variety of hyperbolic-parabolic systems; see,
e.g., [32, 33, 41, 42].

In this paper, we focus on a practical issue that arises in the computation of D(λ) for
physical systems like the Navier–Stokes equations ((2.1) or (2.8)). The main message is a
cautionary tale in that a natural coordinate system may not be the “best” one. That is, while
Eulerian coordinates are often used in the computational fluid dynamics community (for direct
numerical simulations of the flow), we find that these coordinates lead to an Evans function
that is practically incomputable for intermediate frequencies and moderate shock strengths.
In particular, we find that the output of the Eulerian Evans function varies dramatically, both
in modulus and argument. Since stability calculations are usually done by winding number
counts on the image of a semiannular contour in the unstable complex half plane, rapid
changes in modulus and argument lead to computations that are prohibitively complicated
and expensive. In particular, this leaves physical models with many parameters and virtually
any multidimensional problem out of reach. Thus, despite the existence of mature packages,
i.e., STABLAB, for Evans-function computations, one cannot simply feed a coefficient matrix
A into a package and “hope for the best.”

1.2. Multidimensional formulation. The Eulerian-coordinates-based obstacle is present
in both one and several spatial dimensions. However, in a single space dimension, the issue can
easily be sidestepped by working with the Lagrangian form of the equations. In multiple space
dimensions, however, this maneuver is not available, and one must confront the issue head on.
Thus, although the main analysis of this paper takes place in a single space dimension, we now
outline the general set-up for the multidimensional case as a preliminary to the calculations in
section 5, where we illustrate the effectiveness of our pseudo-Lagrangian coordinates for two-
dimensional isentropic gas dynamics. Indeed, we expect that our findings will be critical for
Evans-based analysis of problems in multidimensional magnetohydrodynamics and detonation
theory.

Generalizing (1.1), consider now a system of n conservation laws with viscosity in d space
dimensions:

(1.6) f0(U)t +

d∑
j=1

f j(U)xj =

d∑
j,k=1

(Bjk(U)Uxk)xj .

In (1.6), x = (x1, . . . , xd) ∈ Rd, t ∈ R, and U ∈ Rn with

f j : Rn → Rn , j = 0, 1, . . . , d ; Bjk : Rn → Rn×n , j, k = 1, . . . , d .

We write Aj(U) ..= df j(U) for j = 0, 1, . . . , d.
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1770 B. BARKER, J. HUMPHERYS, G. LYNG, AND K. ZUMBRUN

As above, our interest is in the stability of planar viscous shock profiles. Thus, we consider
traveling-wave solutions of the form

(1.7) U(x, t) = Ū(x1 − st) , lim
z→±∞

Ū(z) = U± ,

and, without loss of generality, we assume s = 0. Similarly as above, we linearize about the
steady solution Ū to obtain a linear equation for a small perturbation V = V (x, t). That
equation is

(1.8) A0(x1)Vt +
d∑
j=1

(Aj(x1)V )xj =
d∑

j,k=1

(Bjk(x1)Vxk)xj ,

where

A0(x1) ..= A0(Ū(x1)) ,

Aj(x1)V ..= Aj(Ū(x1))V − dBj1(Ū(x1))
(
V, Ū ′(x1)

)
,

Bjk(x1) ..= Bjk(Ū(x1)) .

We take the Laplace transform in time (dual variable λ) and Fourier transform (dual variable
ξ = (ξ2, . . . , ξd)) in the transverse spatial directions (x2, . . . , xd), and we find the generalized
eigenvalue equation (supressing the dependence of the coefficients on x1)

(1.9) λA0W + (A1W )′ +
d∑
j=2

iξjA
jW = (B11W ′)′ +

d∑
k=2

(iξkB
1kW )′

+
d∑
j=2

iξjB
j1W ′ −

d∑
j,k=2

ξjξkB
jkW .

In (1.9), W = W (x1, λ, ξ) represents the transformed perturbation. As above, we reformulate
the eigenvalue problem (1.9) as a first-order system of differential equations

(1.10) Z ′ = A(x1;λ, ξ)Z .

Here, A is an N ×N matrix where the dimension N depends on the structure of the system
(1.6),1 and since Ū decays rapidly to its limiting values U± as x1 → ±∞, then the coefficient
matrix A also has constant (with respect to x1) limiting values. We denote these by A±(λ, ξ).

Remark 1.1 (flux coordinates). A systematic way to formulate the first-order system (1.10)
is to use one of the variations of flux coordinates [8]. These coordinates confer concrete
benefits for the numerical approximation of the Evans function and are especially useful for
multidimensional problems [24].

1We have omitted any mention of structural hypotheses on the system (1.6).
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Then, as above, the Evans function is built out of the subspaces of solutions of (1.10)
which grow at −∞ and decay at +∞; the construction of these subspaces starts with an
analysis of the constant-coefficient limiting systems Z ′ = A±(λ, ξ)Z. That is, if the collection
{z+

1 , . . . , z
+

k } forms a basis for the set of solutions of (1.10) that decay at +∞ and, similarly,
{z−k+1, . . . z

−
N} spans the set of solutions that deacy at −∞, the Evans function can be written

as

(1.11) D(λ, ξ) ..= det(z+

1 , . . . , z
+

k , z
−
k+1, . . . z

−
N )|x1=0 .

Thus, D is a function of frequencies,

D : {λ ∈ C : Reλ > 0} × Rd−1 → C ,

whose zeros correspond to eigenvalues, and the principal goal is to compute D (or its zero
set).

1.3. Outline. In section 2 we recall the fundamentals of the Eulerian and Lagrangian
coordinate systems for gas-dynamical models. For simplicity and concreteness, we carry out
these calculations in one space dimension and in the setting of isentropic gas dynamics. Next,
in section 3 we describe the two Evans functions arising from the pair of coordinate systems and
illustrate their performance, again in the setting of one-dimensional isentropic gas dynamics.
In section 4 we describe the mathematical origin of the observed discrepancy in behavior
between the Eulerian and Lagrangian Evans functions. We turn to the multidimensional
case in section 5, and we introduce there a “pseudo-Lagrangian” Evans function. This Evans
function is based on Eulerian coordinates but shares the favorable properties of the one-
dimensional Lagrangian Evans function. We illustrate the performance of this new Evans
function by considering planar viscous shocks in two-dimensional isentropic gas dynamics.
Finally, in section 6, we collect our findings and discuss their implications.

2. Eulerian versus Lagrangian coordinates. We recall that in continuum physics there
are two distinct ways to describe the motion of a fluid. The Eulerian description assigns values
to points in the physical domain; thus, ρ(x, t) is the density of the fluid particle that occupies
the location x at the instant t. The Lagrangian description is based on an initial labeling
of all the fluid particles at some initial instant and tracking them as the fluid moves. Thus,
τ(y, t) ..= ρ(y, t)−1 represents the specific volume at the instant t of the fluid particle marked
with the label y. We begin by reviewing the Eulerian and Lagrangian descriptions of viscous
shocks.

2.1. Eulerian coordinates. The one-dimensional isentropic Navier–Stokes equations in
Eulerian coordinates are

(2.1a) ρt + (ρu)x = 0 ,

(2.1b) (ρu)t + (ρu2 + p(ρ))x = uxx ,

where we have, without loss of generality, set the coefficient of viscosity to be 1. For definite-
ness, we assume a polytropic, or “γ-law,” pressure law

(2.2) p(ρ) = aργ , a, γ > 0 .
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This is not important for our main conclusions, but this assumption streamlines and simplifies
the surrounding discussion.

As noted above, a viscous shock is an asymptotically constant traveling-wave solution of
(2.1). That is, it is a solution of the form

ρ(x, t) = ρ̄(x− σt) , u(x, t) = ū(x− σt)

connecting constant states (ρ±, u±). That is, the viscous shock satisfies

lim
z→±∞

(ρ̄(z), ū(z)) = (ρ±, u±) .

Due to Galilean invariance, without loss of generality, we may assume that the traveling wave
of interest is stationary. That is, the wave speed σ is zero. This reduces the traveling-wave
equation to the time-independent part of (2.1), namely (dropping bars and using prime to
denote differentiation with respect to x)

(2.3) (ρu)′ = 0 , (ρu2 + p(ρ))′ = u′′ .

Integrating (2.3) from −∞ to +∞, we obtain the Rankine-Hugoniot jump conditions

[ρu] = 0 , [ρu2 + p(ρ)] = 0 ,(2.4)

where [·] denotes the difference between limits at +∞ and −∞. It is straightforward to
verify that, for a γ-law gas, for each pair of endstates (ρ±, u±) obeying (2.4), there exists a
unique heteroclinic connection corresponding to a traveling wave. More, for each choice of
momentum flux m ..= ρ±u±, it can be seen that there is a unique solution of (2.4), hence a
unique associated stationary shock.

2.2. Lagrangian coordinates. To convert to Lagrangian coordinates, we set

y(x, t) =

∫ x

x∗(t)
ρ(z, t) dz

with x∗(0) = 0, dx∗

dt = u(x∗(t), t). Then, we observe that

(2.5)
∂y

∂x
(x, t) = ρ(x, t)

and

∂y

∂t
(x, t) =

∫ x

x∗(t)

∂ρ

∂t
(z, t) dz − ρ(x∗(t), t)

dx∗

dt

= −
∫ x

x∗(t)
∂z(ρu) dz − ρ(x∗(t), t)u(x∗(t), t)

= −ρ(x, t)u(x, t) + ρ(x∗(t), t)u(x∗(t), t)− ρ(x∗(t), t)u(x∗(t), t)

= −ρu(x, t) .(2.6)
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Thus, defining

(2.7) τ(y(x, t), t) =
1

ρ(x, t)
, w(y(x, t), t) = u(x, t),

and denoting by P the pressure as a function of specific volume, we find—using (2.5) and
(2.6)—that the Lagrangian formulation of system (2.1) is

(2.8a) τt − wy = 0 ,

(2.8b) wt + P (τ)y =
(wy
τ

)
y
.

Remark 2.1. Note that this change of coordinates involves both dependent and indepen-
dent variables; see, e.g., Courant and Friedrichs [17] or Serre [40] for further details.

From (2.8), the traveling-wave equation for a traveling-wave solution of form

τ(y, t) = τ̄(y − st) , w(x, t) = w̄(y − st)

with limζ→±∞(τ̄(ζ), w̄(ζ)) = (τ±, w±) is thus

(2.9) − sτ ′ = w′ , −sw′ + P (τ)′ = (w′/τ)′ .

Here, ′ denotes differentiation with respect to ζ ..= y − st. Integrating from −∞ to +∞, we
obtain the Lagrangian version of the Rankine–Hugoniot conditions (2.4):

−s[τ ]− [w] = 0 , −s[w] + [P (τ)] = 0 .(2.10)

Using ρ+u+ = ρ−u− = m, we may rewrite the jump condition as

(2.11) m[u] = −[p] = −[P ] = −s[w] ,

whence m = −s. This relation is useful in comparing Eulerian versus Lagrangian shock
parametrizations without appealing to the full coordinate transformation.

3. Evans functions and their performance. We now construct the Evans function in
Eulerian and Lagrangian coordinates following [8], and we compare their respective perfor-
mances. Using the invariances of γ-law gas dynamics [21], we take without loss of generality
m = −s = 1 and ρ− = 1 in what follows, parametrizing the strength of the shock by u+ (τ+)
in the Eulerian (Lagrangian) case, where—as above—± subscripts denote limits at ±∞ of
corresponding coordinates.

3.1. Eulerian case. Linearizing (2.1) about a steady profile (ρ̄, ū), we obtain the eigen-
value problem

(3.1a) λρ+ (ρ̄u+ ρū)′ = 0 ,

(3.1b) λ(ρ̄u+ ρū) + (ρū2 + 2u+ p′(ρ̄)ρ)′ = u′′ .
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Defining

β ..=
ū2 + p′(ρ̄)

ū
and f ..=

(
−ρū− ρ̄u

u′ − 2u− βūρ

)
we may rewrite the eigenvalue problem as the first-order system

(3.2)

(
f
u

)′
=

−λ/ū 0 −λρ̄/ū
−λ 0 0
−β 1 2− βρ̄

(f
u

)
,

or, briefly,

(3.3)
d

dx
W = A(x;λ)W , where W =

(
f, u
)T

.

Eigenvalues of (3.1) correspond to values of λ for which there exist solutions of (3.3)
decaying as x→ ±∞, that is, a nontrivial intersection of the manifolds of solutions decaying
at ±∞. By standard asymptotic results from ODEs—e.g., the “gap Lemma” of [18])—one
finds that these manifolds are spanned by bases {W1,W2} and {W3} asymptotic to eigenmodes
eµjxVj of the stable (unstable) subspaces of the limiting coefficient matrices A± ..= A(±∞;λ),
where µj , Vj depend on λ. The Evans function associated with (3.1) is then defined as

(3.4) DE(λ) ..= det(W1,W2,W3)|x=0.

Here, an important detail is the specification of the “initializing basis vectors at ±∞” Vj ;
these are defined as solutions of Kato’s ODE [29]

(3.5) dR/dλ = (dP/dλ)R,

where P(λ) is the (uniquely determined) projection onto the stable (unstable) subspace of
A±(λ), and R is a matrix whose columns are the basis vectors Vj .

This determines the Evans function uniquely up to a constant factor, which is then nor-
malized by setting DE(λ∗) = 1 at some convenient initializing frequency λ∗ (typically the
maximum real value of frequencies under consideration). It may be checked that the above
definition makes sense, i.e., the counts of stable/unstable basis elements are correct, on the
unstable region Reλ ≥ 0, λ 6= 0, where dimensions of stable/unstable subspaces of A± agree.

3.2. Lagrangian case. The eigenvalue equation in Lagrangian coordinates is

λτ + τ ′ − u′ = 0,

λu+ u′ − (P ′(τ̄)τ)′ =

(
u′

τ̄
− ū′τ

τ̄2

)′
,

(3.6)

where P′(τ̄) = aγτ̄−γ−1. This may evidently be written as the first-order system

(3.7)

 τ
u
u′

′ =
−λ 0 1

0 0 1
λατ̄ λτ̄ τ̄(1− α)

 τ
u
u′
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or

(3.8)
d

dy
Z = B(y;λ)Z , where Z =

(
τ u u′

)T
,

where α ..= P ′(τ̄)− ū′

τ̄2
; equivalently one may follow the more complicated, but in this case un-

necessary, prescription of [8]. The Lagrangian Evans function DL(λ) is then defined, similarly
as in the Eulerian case, as

(3.9) DL(λ) ..= det(Z1, Z2, Z3)|y=0,

where the stable (unstable) manifolds of the flow of (3.8) at +∞ (−∞) are spanned by bases
{Z1, Z2} and {Z3} asymptotic to eigenmodes eνjyUj of the stable (unstable) subspaces of the
limiting coefficient matrices B± ..= B(±∞;λ), with Uj prescribed via Kato’s ODE

(3.10) dS/dλ = (dQ/dλ)S,

where Q(λ) is the (uniquely determined) projection onto the stable (unstable) subspace of
B±(λ), and S is a matrix whose columns form the bases Uj . Again, the above prescription is
well-defined on the unstable region Reλ ≥ 0, λ 6= 0.

3.3. Numerical performance. Despite the apparent similarity of Evans functions DE and
DL, their performance is quite different for practical computations. These computations
typically consist of winding number computations on the image under the Evans function of a
semiannular contour determined (by energy estimates or auxiliary asymptotic ODE estimates)
to contain all possible unstable eigenvalues of the linearized operator about the wave. A
winding number of zero thus corresponds to spectral stability, while a nonzero winding number
signals the presence of unstable eigenvalues and therefore instability.

In Figure 1, we plot a traveling-wave solution of (2.1) and the Evans function, evaluated
on a semiannulus (see Figure 2(b)) with inner radius r = 10−3 and outer radius R = (1/2 +√
γ)2, as computed with the Eulerian coordinates formulation given in (3.2), (3.3). The

Evans function maps contours of the form shown in Figure 2(b) to contours of the form
shown in Figure 2(c). To compute the Evans function, we use the method of continuous
orthogonalization described in [27]. All computations are carried out in STABLAB [9]. We
note that in Eulerian coordinates, the Evans function contour wraps around the origin 10
times before unwrapping to yield winding number zero. Further, the Evans function varies
over 12 orders of magnitude (from 1 to approximately 2.8e12). This is in stark contrast to
the Evans function in Lagrangian coordinates, which is bounded away from the origin and
remains order one in modulus (varying from 1 to about 0.2). In Figures 2(a)–(d), we plot the
profile solution to (2.8) and the Evans function, evaluated on a semiannulus with inner radius
r = 10−3 and outer radius R = (1/2 +

√
γ)2, as computed with the Lagrangian coordinates

formulation given in (3.7). One can see by mere observation that the contour featured in
Figures 2(c) and (d) has a winding number of zero.

To summarize, in comparison with the Lagrangian Evans function, the Eulerian Evans
function exhibits excessive winding. This makes spectral computations prohibitively compli-
cated and expensive in the Eulerian formulation (as noted earlier, a serious problem in the
multidimensional case).
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Figure 1. Plot of the profile and Evans function for one-dimensional isentropic gas in Eulerian coordinates
when γ = 5/3 and u+ = 0.001. (a) Traveling wave profile. (b) Evans function evaluated on a semiannulus
contour with inner radius r = 10−3 and outer radius R = (1/2 +

√
γ)2. (c) Zoom-in of (b). (d) Zoom-in of (c).

Throughout, a + marks the origin.

4. Explanation of observed results. We now investigate the origins of the discrepancy
between the Eulerian and Lagrangian Evans functions. Evidently, the flows of the Evans
systems (3.2) and (3.7) are conjugate; hence, noticing that we have normalized so that y(0) =
0, up to the initialization at ±∞, we observe that the two Evans functions should agree up to a
nonzero constant factor equal to the determinant at x = y = 0 of the λ-independent coordinate
transformation between

(
f, u
)

and
(
τ, u, u′

)
. Thus, the discrepancy can only originate from

two sources:
(i) the prescription of Vj(λ) via Kato’s ODE, or
(ii) the asymptotic prescription Wj ∼ eµj(λ)Vj(λ) as x→ ±∞.

4.1. The conjugating transformations. The relationship between dependent coordinates
is given, linearizing the relation ρ = τ−1, by the pair of transformations ρ

u
u′

 =

− 1
τ̄2

0 0
0 1 0
0 0 1

 τ
w
w′


and (

f
u

)
..=

 −ūρ− ρ̄u
u′ − 2u− βūρ

u

 =

 −ū −ρ̄ 0
−βū −2 1

0 1 0

 ρ
u
u′

 ,
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Figure 2. Plot of the profile and Evans function for one-dimensional isentropic gas in Lagrangian and
pseudo-Lagrangian coordinates when γ = 5/3 and u+ = 0.001. (a) Profile in Lagrangian coordinates. (b)
Example of the type of semiannulus contour on which we compute the Evans function. (c) Evans function in
Lagrangian coordinates. (d) Evans function in pseudo-Lagrangian coordinates. Throughout, a + marks the
origin.

the composition of which gives a λ-independent conjuagator T (x) such that

(4.1)

(
f
u

)
= T (x)

 τ
w
w′

 .

The relation between independent variables is likewise λ-independent, given (see (2.5)) by

(4.2) dy/dx = ρ̄(x).

Combining these two observations, the relation between (3.3) and (3.8) is thus

(4.3) B(y(x);λ) = ρ̄(x)−1T (x)−1A(x;λ)T (x).

4.2. Invariance of Kato’s equation. Having observed the λ-independence of the conju-
gating transformations, we may eliminate the possibility (i) as a source of discrepancy between
the two Evans function formulations based on the following general result.

Lemma 4.1. Kato’s ODE is invariant under λ-independent coordinate changes.

Proof. Focusing on either x = +∞ or x = −∞, it is sufficient by (4.3) to consider
constant coefficient matrices A, B, related by B = ρ−1TAT−1, Q = TPT−1, where P and Q
are projections onto the stable (unstable) subspaces of A and B, with ρ ∈ R and T ∈ R3×3

constant. Then, the Kato ODEs for the two systems are
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(4.4) dR/dλ = (dP/dλ)R

and

(4.5) dS/dλ = (dQ/dλ)S,

and the claim is that S ..= TR is a solution of (4.5) if and only if R is a solution of (4.4).
Computing S′ = TR′ = TP ′R = TP ′T−1S = Q′S, we are done.

4.3. Asymptotic prescription of basis elements. Having eliminated possibility (i), we
now explicitly relate the Eulerian and Lagrangian Evans functions by examination of (ii).
On the unstable region Reλ ≥ 0, λ 6= 0, where our prescriptions of the Evans functions are
well-defined, let ν+ denote the sum of the stable (negative real part) eigenvalues of A+ and
ν− the sum of the unstable (positive real part) eigenvalues of A−. Define constants

(4.6) ∆+
..=

∫ +∞

0
(ρ̄(x)− ρ+) dx and ∆− ..=

∫ 0

−∞
(ρ̄(x)− ρ−) dx .

Lemma 4.2. For T as in (4.1), the Eulerian and Lagrangian Evans functions are related
by

(4.7) DE(λ) = detT (0)eν+∆+−ν−∆−DL(λ),

where, for m = −s = 1,

ν+∆+ − ν−∆− = −λ∆+ +O(λ1/2) as |λ| → ∞ .

Proof. For T as in (4.1), we have evidently

DE(λ) = det(W1,W2,W3)|x=0

= det(TẐ1, T Ẑ2, T Ẑ3)|y=0

= detT (0) det(Ẑ1, Ẑ2, Ẑ3)|y=0

= C(λ) detT (0)DL(λ) ,

where C(λ) is the product of the ratios between bases Ẑj = T−1Wj of stable and unstable
manifolds and the basis elements Zj ∼ eνjyUj prescribed in the definition of the Lagrangian
Evans function, or, equivalently, of basis elements Wj ∼ eµjxVj and TZj .

By Lemma 4.1, TZj ∼ eνjy(x)Vj , whereas, by (4.3), µj = (dy/dx)|±∞νj . Thus, the ratio
|TZj |/|Wj | is given by

exp

(
νj lim

x→±∞
(y(x)− x(dy/dx))

)
.

Using y(0) = 0, we obtain y(x) =
∫ x

0 (dy/dx)(z) dz, hence

y(x)− x(dy/dx) =

∫ x

0

(
(dy/dx)(z)− (dy/dx)(x)

)
dz.

Substituting dy/dx = ρ̄(x), and taking the limit as x → ±∞, we obtain the result. The
asymptotics for ν± are readily obtained by spectral perturbation analysis, or by asymptotic
analysis of the characteristic polynomials of B±, in the limit as |λ| → ∞.
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For the chosen pressure law and parameters, ρ̄ is increasing, hence ∆± < 0. Moreover,
∆+ < 0 and ∆− > 0, hence DE(λ)/DL(λ) ∼ eλ|∆+|, explaining the large difference in winding
between images of semicircular contours of large radius under DE versus DL.

4.4. High-frequency asymptotics. Lemma 4.2 and the conclusion above explain the large
difference between Eulerian and Lagrangian Evans functions, by a factor of order eCλ as
|λ| → ∞. However, they do not explain the “goodness” of the Lagrangian version. For this,
we appeal to large-λ asymptotics for the individual Evans function, as carried out for the
more difficult nonisentropic case in [22, Prop. 4.2], which shows that

(4.8) DL(λ) ∼ eC
√
λ as |λ| → ∞ .

A similar analysis carried out for the Eulerian Evans function gives

(4.9) DE(λ) ∼ eC2λ as |λ| → ∞ ,

in agreement with Lemma 4.2. This verifies rigorously the observed phenomenon that the
Lagrangian Evans function indeed has much better behavior than the Eulerian version.

More important for our purposes is the asymptotic argument behind the result, which
shows that, to leading order as |λ| → ∞, the basis elements Zj “track” the eigendirections of
the frozen-coefficient matrix B(y, λ) as y is varied. Thus, their magnitudes rj obey the simple
scalar equations drj/dy = νj(y)rj , where νj(y) are the eigenvalues of the frozen-coefficient
matrix A(y, λ), which, taking into account the prescribed asymptotics rj ∼ eνjy as y → ±∞,

results in a magnitude at y = 0 of order e
∫ 0
±∞(νj(y)−νj(±∞)dy for each mode.

Among the νj , there are two harmless “parabolic” modes µj ∼
√
λ/τ̄ , giving combined

contribution ∼ eC
√
λ. The third, potentially harmful, mode is the “hyperbolic” mode asso-

ciated with the density equation λτ + τ ′ = u′, whose principal part λτ = −τ ′, leads to the
eigenvalue

ν∗(y) = −λ+O(λ1/2).

The crucial feature of this eigenvalue is that it is to leading order constant in y. Thus, the

associated mode Z∗ contributes to the Evans function magnitude e
∫ 0
±∞(ν∗(y)−ν∗(±∞)dy ∼ eC

√
λ

as |λ| → ∞ of the same asymptotic order as the parabolic modes.
For the Eulerian Evans function, on the other hand, the corresponding hyperbolic mode

W∗ satisfies to leading order the scalar ODE λρ+ ūρ′ = 0, with an associated eigenvalue

µ∗(x) = −λ/ū(x) +O(
√
λ) = −(ρ̄(x)/m)λ+O(

√
λ)

that is variable coefficient to leading order in x. This leads to a factor ∼ eC1λ in the Eulerian
Evans function, and the resulting eC1λ asymptotics cited above.

Remark 4.3. A similar analysis in the strictly parabolic case arising, for example, in stan-
dard reaction diffusion models, or “artificial viscosity” models of compressible gas dymamics,

yield favorable high-frequency asymptotics D(λ) ∼ eC
√
λ independent of the choice of coor-

dinate system, and so this issue does not arise. Nor does it arise for third- and higher-order
models such as KdV or Boussinesq equations. Indeed, for semilinear problems typically studied
in these settings, the asymptotics are a still more favorable D(λ) ∼ 1.
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5. Pseudo-Lagrangian coordinates: Multiple space dimensions. We turn now to the
multidimensional case. We consider the isentropic Navier–Stokes equations in space dimension
d = 2. In Eulerian coordinates, the system takes the form

(5.1a) ∂tρ+ div(ρv) = 0 ,

(5.1b) ∂t(ρv) + div(ρv ⊗ v) + grad p = µ∆v + (µ+ η) grad divv ,

where ρ is density, v = (v1, v2) velocity, p is pressure, related to density by (2.2), and constants
µ and η are coefficients of first and second viscosity [12, 24]. Linearizing about a steady planar
profile (ρ,v) = (ρ̄,v)(x1) varying in the x1 direction only, without loss of generality v̄2 ≡ 0,
we obtain the eigenvalue equations

(5.2a) λρ+ div(ρ̄v + ρv) = 0 ,

(5.2b) λ(ρ̄v + ρv) + div(ρv̄ ⊗ v̄ + ρ̄v ⊗ v̄ + ρ̄v̄ ⊗ v) + grad p(ρ̄)

= µ∆v + (µ+ η) grad divv .

Taking the Fourier transform in x2, we obtain a family of ODEs in x1 parametrized by
the Fourier frequency ξ. Expressing this as a first-order system, we may define an Evans
function

(5.3) DE(λ, ξ)

similarly as in the one-dimensional case, with zeros corresponding to generalized eigenmodes
eiξx2w(x1), w decaying at infinity, associated with eigenvalue λ. See [8, 24] for further details.

This Evans function has equally poor behavior as the one-dimensional version; indeed,
for ξ = 0, the multidimensional Eulerian Evans function reduces to (a nonvanishing multiple
of) the one-dimensional one. However, in contrast to the one-dimensional case, a useful
Lagrangian version of the Evans function does not seem to be available; Pogan, Yao, and
Zumbrun [38] discuss this issue in some depth.

5.1. Pseudo-Lagrangian coordinates. To resolve this problem, making possible practical
multidimensional Evans function computations, we introduce instead a new pseudo-Lagrangian
formulation of the Evans function, based on the Eulerian version, but sharing the good prop-
erties of the one-dimensional Lagrangian Evans function. Namely, dropping the subscript on
x1, and writing the first-order Evans system as

dW/dx = A(x;λ, ξ)W,

we introduce dY/dy = B(y;λ, ξ)Y, where B is defined by B(y(x);λ, ξ) = (dx/dy)A(x;λ, ξ),
and denote the resulting Evans function by DpL(λ, ξ).

Partial justification for this choice is given by the following straightforward result. Abusing
notation somewhat, let DpL(λ) denote the one-dimensional version of the pseudo-Lagrangian
Evans function, obtained from the Eulerian Evans system by the change of dependent variable
dy/dx = ρ̄(x) as was done in the multidimensional case.
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Proposition 5.1. The one-dimensional pseudo-Lagrangian Evans function DpL(λ) agrees
with (i.e., is a constant multiple) of the one-dimensional Lagrangian Evans function DL(λ).

Proof. This follows by the argument in the proof of Lemma 4.2, but now observing that
the Lagrangian and pseudo-Lagrangian flows are conjugate by a change of dependent variables
alone, with no change of independent variable.

Further motivation is given by the hyperbolic ρ equation of the Fourier transformed eigen-
value equation,

λρ+ (d/dx)(ρv̄1 + ρ̄v1) + iξρ̄v2 = 0 ,

which has principal part λρ+ v̄1(d/dx)(ρ) = 0, or dρ/dx = −λ/v̄1 as in the one-dimensional
case. Thus, dρ/dy = (dρ/dx)(dx/dy) = −(λ/m)ρ, with m ≡ ρ̄v̄1 constant, similarly as in the
one-dimensional case. Thus, the corresponding asymptotic eigenvalue ν∗(λ, ξ) of the frozen-
coefficient matrix B(y;λ, ξ) is, to leading order, independent of y, and we obtain favorable
large-|λ| asymptotics also for the multidimensional version of the pseudo-Lagrangian Evans
function.

5.2. Numerical performance. As in one dimension, we find that the image of a contour
under evaluation of the multidimensional Evans function in Eulerian coordinates wraps exces-
sively around the origin before unwinding again and varies in modulus significantly more than
when using pseudo-Lagrangian coordinates. For example, when γ = 5/3, u+ = 0.06, ξ = 1,
and we compute the Evans function on a contour like that shown in Figure 2(b), but with
inner radius set to r = 1e−3 and outer radius to R = 30, we find that in Eulerian coordinates
it takes 1344 points on the preimage contour in order for the image contour to vary in relative
distance no more than 0.2, whereas for pseudo-Lagrangian coordinates, 212 preimage points
suffice. As seen in Figure 3, the Evans function computed in Eulerian coordinates varies in
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Figure 3. Evans function output for two-dimensional isentropic gas in Eulerian coordinates (top row) and
pseudo-Lagrangian coordinates (bottom row) when γ = 5/3 and u+ = 0.06. In all figures, the Evans function
is evaluated on a semiannulus contour with inner radius r = 10−3 and outer radius R = 30. The Fourier
parameter is ξ = 0 in (a) and (d), ξ = 0.5 in (b) and (e), and ξ = 1 in (c) and (f).
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Figure 4. Pseudo-Lagrangian coordinates and the variation of D with respect to ξ. The figures show three
views of the the images of the Evans function for different values of ξ (red, ξ = 0; blue, ξ = 0.25; green,
ξ = 0.5; magenta, ξ = 0.75; black, ξ = 1.) A three-dimensional view is given in (a), a vertical view in (b), and
a zoomed-in view near the origin in (c). A black + marks the origin. The parameters are v1+ = 0.06, γ = 5/3.

Table 1
The computational cost of the Eulerian method and pseudo-Lagrangian method. The first two columns

indicate the parameter τ+ and the Fourier variable ξ. The last four columns indicate the number of points
and computation time it took to compute the Evans function on a contour of radius R = 90 with an adaptive
Evans-function evaluator which requires that the relative error between points in the image contour be no greater
than 0.2. In the last four columns a p represents the number of points on which the contour is computed and
a t represent the computation time. The subscripts E and pL stand respectively for the Euler method and the
pseudo-Lagrange method.

τ+ ξ pE tE ppL tpL

0.2733 0 238 579.9 112 396

0.2733 0.3 256 466.9 138 368.2

0.2733 0.6 240 458.1 124 357.7

0.22 0 348 983.7 120 386.8

0.22 0.3 376 785.7 150 353.1

0.22 0.6 356 775.1 136 358

0.1667 0 396 1163 184 530.1

0.1667 0.3 440 837.2 218 504.1

0.1667 0.6 422 862.8 200 498.4

0.1133 0 676 1829 206 555.3

0.1133 0.3 702 1612 248 479.1

0.1133 0.6 676 1641 226 486.1

0.06 0 948 2916 340 814.6

0.06 0.3 1012 2566 392 758.7

0.06 0.6 984 2577 378 782.1

0.001 0 12708 3.51e5 740 1224

modulus over three times more orders of magnitude then in pseudo-Lagrangian coordinates.
An even starker contrast occurs when the Evans function is computed on a contour with outer
radius R = 90 and inner radius r = 1e − 3, but with γ = 5/3, ξ = 0, and u+ = 0.001. The
Evans function in Eulerian coordinates takes 4.06 days to compute, varies over 225 orders of
magnitude, and requires 12,708 points in order for the image contour to vary in relative dis-
tance no more than 0.2, whereas the Evans function in pseudo-Lagrangian coordinates takes
20.4 minutes to compute, varies over 12 orders of magnitude, and requires 740 points. Further-
more, in pseudo-Lagrangian coordinates, the Evans function for multidimensional isentropic
gas has small variation as ξ varies. This is shown in Figure 4. Finally, differences in cost (in
terms of the number of evaluations required and the computing time) are compiled in Table 1.D
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The same significant improved performance of pseudo-Lagrangian coordinates manifests itself
in the full gas system as well [24]. One other advantage of pseudo-Lagrangian coordinates for
isentropic gas is that it requires the traveling wave profile in Lagrangian coordinates and not
Eulerian coordinates. For the examples featured in Figure 3, we had to use continuation to
solve the profile in Eulerian coordinates as u+ decreased and eventually solve it as a scalar
system using a stiff ODE solver. On the other hand, in Lagrangian coordinates continuation
was not needed to solve the profile.

6. Conclusions. Our results illustrate that coordinate choices, at the level of physical
models, can have substantial impacts on the viability of a given Evans-function computation.
Coupling this with our companion results [8] on the practical role of coordinate choices in
the construction of the first-order eigenvalue equation, we see a simple takeaway message:
coordinate choices matter. While viscous shock profiles in one space dimension can equally
well be described in Eulerian and Lagrangian coordinates, the two Evans functions arising
from the two models behave substantially differently, and these differences affect the viability
of computations for spectral stability.

The import of coordinate choices goes far beyond minimizing winding for attractive pic-
tures of Evans-function output. For physical systems with many parameters and/or for mul-
tidimensional problems, it is essential to minimize the number of function evaluations to have
a chance to properly explore parameter and frequency space. Indeed, as noted above, we
expect pseudo-Lagrangian coordinates to be necessary for any kind of computational Evans-
function analysis of multidimensional problems in magnetohydrodynamics and in detona-
tion theory. More generally, this phenomenon will be present in general composite type
hyperbolic-parabolic systems and perhaps in other settings as well.

While the phenomenon is not present in the strictly second and higher-order cases (Remark
4.3), explaining why issues such as the above have not appeared in the extensive Evans-
function literature associated with traveling-wave solutions of reaction-diffusion and dispersive
equations, it does suggest an interesting and important open problem relevant for general
systems. Namely, given a physical system, which representative of the Evans function is
the “best” for computational purposes? Since the stability calculations generally involve
winding numbers, one measure of “best” might be in terms of minimizing total variation in
the argument and perhaps also the modulus of D(λ) as λ traverses a typical contour, or
some weighted versions thereof. A very interesting direction would be to expand the possible
range of dependent and independent coordinate transformations to include also λ-dependent
coordinates not considered here, analagous to time-dependent mesh choices considered in the
thematically related problem of optimal coordinatization in adaptive mesh control [20].

Certainly the example of gas dynamics presented here suggests that some kind of answer to
the above question is required if numerical Evans-function calculations are going to be part of
a general purpose, push-button stability calculator. Thus, in addition to recent developments
of Evans-function approximations in numerical proofs of stability [4, 11], we see optimizing
the computed Evans functions as a central issue in the future development of computational
Evans-function techniques.

Acknowledgment. We thank the anonymous referees for their careful reading and several
helpful comments improving the exposition.
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