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NUMERICAL APPROXIMATION OF A VARIATIONAL
INEQUALITY RELATED TO THE HUMID ATMOSPHERE∗

ROGER TEMAM† AND XIAOYAN WANG‡

Abstract. We investigate the numerical approximation of solutions to some variational in-
equalities modeling the humid atmosphere when the saturation of water vapor in the air is taken
into account. In order to overcome the difficulties caused by the constraints on the humidity q
(0 ≤ q ≤ 1) and the discontinuity in the variational inequalities, we construct a penalized and reg-
ularized implicit Euler method. We manage to show that the approximation functions associated
with the numerical scheme converge to the solutions of the variational inequalities through deriving
various delicate a priori estimates and by using compactness arguments.
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1. Introduction. It is known that our lack of understanding of the physics of
the clouds is a major cause of uncertainty in current weather predictions. Therefore,
the investigation of the humid atmosphere is an important step towards a better
understanding of weather predictions in a short time period and climate changes in
a long time period. The primitive equations are the classical tool used in the study
of climate and weather predictions; they describe the motion of the atmosphere when
the hydrostatic assumption is enforced (see [17, 18, 22]). The rigorous mathematical
theory of the equations of the humid atmosphere has been initiated in [21] and has
attracted the attention of a number of practitioners from different fields; see, e.g.,
[3, 8, 11, 13, 14, 23, 24] and the references therein.

The original primitive equations of the atmosphere are a system of nonlinear
partial differential equations on the temperature variable T , vapor humidity q, and
the velocity field u, which are all unknown functions of the spatial and temporal
variables. The studies of the humid atmosphere in, e.g., [21] and, more recently,
[15, 16] do not account for an important phenomenon, namely the saturation of water
vapor in the air, so that the equation for the vapor humidity q appears as a simple
transport equation. The equations for the saturated atmosphere appear, for example,
in [17, 18, 25]. They involve T , q, and u and the saturation concentration qs. In the
first studies [1, 4, 28] the saturation concentration qs is assumed to be constant. In
[1, 4, 28] the velocity is supposed to be given, and the system only involves T and
q, and in [5] the velocity u is also unknown. These articles provide a formulation of
the equations of the humid atmosphere which involve thresholds (condensation and
evaporation) and are thus nonlinear and noncontinuous (and nonmonotone). They
also provide results of existence, uniqueness, and regularity of solutions.
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218 ROGER TEMAM AND XIAOYAN WANG

In trying to extend the study to the case where qs is not constant [29], it was
found that the equations of the humid atmosphere in [17, 18, 25] are not coherent in
the extreme cases where q = 0 and q = 1 (0 ≤ q ≤ 1 by definition of q), whether qs is
constant or not; q = 0 corresponds to a totally dry atmosphere, and q = 1 corresponds
to a totally humid atmosphere. A physically satisfactory resolution of this difficulty
is proposed in [29] and studied mathematically in [31]; namely, the equation for q
is replaced by a variational inequality. The natural convex set for this problem is
H1(M) × K, T ∈ H1(M), q ∈ K = {q̃ ∈ H1(M), 0 ≤ q̃ ≤ 1 a.e.}. The utilization of
variational inequalities for the study of unilateral problems in mechanics and physics
is the object of a vast literature; see, e.g., [2, 9, 19].

Our aim in this article is to study the numerical approximation of the variational
inequalities introduced in [29, 31], for simplicity in the case where qs is constant;
the case where qs is not constant will be addressed elsewhere [30], but it does not
induce major additional mathematical difficulties. In the current paper, we shall
follow the former works (see [1, 4, 28]) and assume, for the sake of simplicity, that the
velocity u of the humid air is known. We believe that despite these simplifications,
the resulting system contains the essence of the nonlinearity that is present in the
moist advection. See section 2 for a more precise presentation of the model under
investigation. The existence of change in phases leads to the introduction of a set-
valued Heaviside function. More equations containing the Heaviside function can be
found in, e.g., [6, 7, 10, 12]. The introduction of such a set-valued function makes the
equations for the vapor humidity q and temperature T nonlinear, discontinuous, and
nonmonotone.

We address in the current paper the numerical approximation of the solutions
to the variational inequalities derived from the humidity equations or the primitive
equations. As we have pointed out in the previous paragraph, the problems we study
here contain discontinuities and involve inequalities. They are the two distinct features
of the model that we study. The discontinuities and variational inequalities which
come from the changes of phases and the extreme cases for the vapor concentration
bring significant mathematical difficulties to the understanding of the model. In the
current work, we propose an implicit Euler scheme to approach the solutions to the
system. However, we cannot simply proceed from this scheme directly as usual due
to the difficulties induced from the discontinuities and physical requirement for the
vapor concentration q. More precisely, we have to introduce a regularized version of
the scheme to overcome the difficulties caused by the discontinuities in the model.
Meanwhile, the unknown function q should satisfy the range condition 0 ≤ q ≤ 1 a.e.
in the underlying domain which is denoted byM below. As the initial discretization in
the usual Euler scheme cannot guarantee that the functions we recursively define obey
this range condition, we have used a penalization technique in the regularized Euler
scheme to achieve this range condition in the limit through delicate energy estimates.
In summary, we discretize the variational inequality using an implicit Euler scheme,
and we use penalization and regularization to show the existence of solutions to the
Euler scheme. Then to prove convergence of the Euler scheme, we classically need
some strong convergence results which follow from additional a priori estimates on
the discretized Euler scheme. Obtaining a priori estimates for the time derivatives
of solutions to evolutionary inequalities was stated as an important open problem in
[20]. Though this problem has been solved in the general setting in [2], the abstract
setting of [2] does not directly apply in our current setting, and we directly obtain
the desired estimates by a delicate analysis of the penalized terms. Our main result
is Theorem 4.4.
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The rest of the article is organized as follows. In section 2, we give a precise
formulation of the problem. In section 3, we introduce the Euler scheme and de-
rive various uniform estimates for the functions associated with the penalized and
regularized scheme. In section 4, we investigate the convergence of the Euler scheme.

2. The exact problem: Formulation and setting.

2.1. Formulation of the exact problem. LetM =M′×(p0, p1), whereM′ ⊂
R2, be a bounded domain with smooth boundary, and let p0, p1 be two positive num-
bers such that p0 < p1. A typical point inM is (x, y, p); u := (v(x, y, p, t), ω(x, y, p, t))
∈ R3 is a given datum which is the velocity of the fluid; ∇ = (∂x, ∂y) and ∆ = ∂2

x +∂2
y

are the horizontal gradient and horizontal Laplace operators, respectively. The un-
known in our problem will be q, the specific humidity, and T , the temperature. We
denote by qs the saturation specific humidity which does not depend on the time
variable t. The boundary ∂M of the domainM is decomposed as ∂M = Γi∪Γu∪Γl,
corresponding, respectively, to the bottom, top, and lateral boundaries of M.

Let t1 > 0 be a fixed constant, and let K be the nonempty closed convex set in
H1(M) defined as K = {q ∈ H1(M); 0 ≤ q ≤ 1 a.e.}. Our problem is formulated as
follows:

Find T : (0, t1)→ H1(M), q : (0, t1)→ K, and hq ∈ H(q − qs) such that for any
qb ∈ K and t ∈ (0, t1), there hold

∂tT +ATT + v · ∇T + ω∂pT −
Rω

cpp
T =

1

p
ω−hqϕ(T ),(2.1)

〈∂tq, qb − q〉+
(
Aqq + v · ∇q + ω∂pq, q

b − q
)
≥
(
− 1

p
ω−hqF (T ), qb − q

)
,(2.2)

with the boundary and initial conditions

∂pT = α(T∗ − T ), ∂pq = β(q∗ − q) on Γi; ∂pT = 0, ∂pq = 0 on Γu;

∂nT = 0, ∂nq = 0 on Γl, where n is the outward normal vector to Γl;

T (x, y, p, 0) = T0(x, y, p), q(x, y, z, 0) = q0(x, y, p).

(2.3)

In the above, H is the set-valued Heaviside function H(·) such that H(0) = [0, 1]. We
decompose a function as f = f+−f−, where f+ := max{f, 0} and f− = max{−f, 0}.

Throughout the paper, we shall assume the boundary data T∗ and q∗ to satisfy

(2.4) T∗, q∗ ∈ L2(0, t1;L2(Γi)).

Naturally, we shall assume q0 ∈ H1(M), q0 ∈ K, and 0 ≤ q∗ ≤ 1. The operators AT

and Aq are defined as

(2.5) AT = −µ1∆− ν1∂p

(( gp
RT̄

)2

∂p

)
, Aq = −µ2∆− ν2∂p

(( gp
RT̄

)2

∂p

)
,

where µi, νi, g, R, cp are positive constants, T̄ = T̄ (p) is the average temperature over
the isobar with pressure p, and we assume that

(2.6) T̄∗ ≤ T̄ (p) ≤ T̄ ∗, |∂pT̄ (p)| ≤M for some positive constants T̄∗, T̄
∗,M.

The functions F and ϕ, both from R1 to R1, are defined as (see [17, 18, 25])

(2.7) F (ζ) = qsζ
RL(ζ)− cpRvζ

cpRvζ2 + qsL(ζ)2
, with L(ζ) = c1 − c2ζ; ϕ(ζ) =

1

cp
L(ζ)F (ζ).
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220 ROGER TEMAM AND XIAOYAN WANG

Above, c1, c2, R,Rv, Rq are all strictly positive constants; see, e.g., [4, 17, 18, 25] for
more details on these constants.

It is easy to see that the rational function F is bounded and globally Lipschitz
on R1, i.e.,

(2.8) |F (ζ)| ≤ C < +∞, |F (ζ1)− F (ζ2)| ≤ C|ζ1 − ζ2| ∀ ζ, ζ1, ζ2 ∈ R1.

The function ϕ is also globally Lipschitz:

|ϕ(ζ1)− ϕ(ζ2)| ≤ C|ζ1 − ζ2| ∀ ζ1, ζ2 ∈ R1.

In addition, ϕ(0) = 0. Therefore, the Lipschitz function ϕ has a sublinear estimate
|ϕ(ζ)| ≤ C|ζ| for any ζ ∈ R1.

2.2. Functional formulation. We denote as usual H = L2(M), V = H1(M).
We use (·, ·)L2 (regarded the same as (·, ·)H) and | · |L2 to denote the usual scalar
product and induced norm in H. In the space V , we will use ((·, ·)) and ‖ ·‖ to denote
the scalar product adapted to the problem under investigation,

((ϕ, φ)) := (∇ϕ,∇φ) + (∂pϕ, ∂pφ) +

∫
Γi

ϕφdΓi,

and the corresponding norm. The symbol 〈·, ·〉 will denote the duality pairing between
a Banach space E and its dual space E∗. Associated with the Navier–Stokes equations,
we also use the following standard notation:

H = {u ∈ H ×H ×H
∣∣div u = 0 and u · n = 0 on ∂M},

V = {u ∈ V × V × V
∣∣div u = 0 and u · n = 0 on ∂M},

which will serve as the natural function space for the vector field u.
For T, T b, q, qb ∈ V , we see through integration by parts and using the Neumann

boundary conditions that

〈ATT, T
b〉 = aT (T, T b)− ν1α

∫
Γi

(
gp1

RT̄

)2

T∗T
b dΓi,

〈Aqq, q
b〉 = aq(q, qb)− ν2β

∫
Γi

(
gp1

RT̄

)2

q∗q
b dΓi,

(2.9)

where the bilinear forms aT (T, T b), aq(q, qb) are defined by

aT (T, T b) = µ1(∇T,∇T b)H + ν1

∫
M

(
gp

RT̄

)2

∂pT∂pT
b dM+ ν1α

∫
Γi

(
gp1

RT̄

)2

TT b dΓi,

(2.10)

aq(q, qb) = µ2(∇q,∇qb)H + ν2

∫
M

(
gp

RT̄

)2

∂pq∂pq
b dM+ ν2β

∫
Γi

(
gp1

RT̄

)2

qqb dΓi.

(2.11)D
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We also set U := (T, q), U b := (T b, qb) and define

a(U,U b) := aT (T, T b) + aq(q, qb),(2.12)

b(u, U, U b) := bT (u, T, T b) + bq(u, q, qb),(2.13)

bT (u, T, T b) =

∫
M

(v · ∇T + ω∂pT )T b dM and bq(u, q, qb) =

∫
M

(v · ∇q + ω∂pq)q
b dM,

d(ω, T, T b) =

∫
M

RωTT b

cpp
dM,(2.14)

l(U b) := lT (T b) + lq(qb) = ν1α

∫
Γi

(
gp1

RT̄

)2

T∗T
b dΓi + ν2β

∫
Γi

(
gp1

RT̄

)2

q∗q
b dΓi.

(2.15)

We then introduce the operators associated with these forms, namely, AT , Aq:
AT , Aq : V → V ∗ defined by

(2.16) 〈ATu, v〉 := aT (u, v), 〈Aqu, v〉 := aq(u, v), ∀u, v ∈ V.

Similarly, we define B(u, U) = (BT (u, U), Bq(u, q)) : V × V 2 → (V ∗)2 (with
V 2 = V × V , (V ∗)2 = V ∗ × V ∗) and D(u, u) : H× V → V ′ by setting

(2.17) 〈B(u, U), U b〉 :=
(
bT (u, T, T b), bq(u, q, qb)

)
∀u ∈ V, U, U b ∈ V 2

and

(2.18) 〈D(u, u), v〉 := d(ω, u, v) ∀u ∈ H, u, v ∈ V.

These are all bounded operators in the corresponding spaces, and we have, due
to the divergence-free condition on u, that

(2.19) bT (u, T, T ) = 0, bq(u, q, q) = 0

for any T, q ∈ V .
The following estimate is easy.

Lemma 2.1 (boundedness of the functionals). Assume U,U b ∈ V 2 and u ∈ V.
There exist universal positive constants λ and Ki, 1 ≤ i ≤ 6, such that

|aT (T, T b)| ≤ K1‖T‖‖T b‖, aT (T, T ) ≥ λ‖T‖2; |aq(q, qb)| ≤ K2‖q‖‖qb‖, aq(q, q) ≥ λ‖q‖2;

(2.20)

|lT (T b)| ≤ K3‖T b‖, |lq(qb)| ≤ K4‖qb‖; |b(u, U, U b)| ≤ K5‖u‖V|U |
1
2

L2‖U‖
1
2 ‖U b‖;

(2.21)

|d(ω, T, T b)| ≤ K6|ω|L2 |T |
1
4

L2‖T‖
3
4 |T b|

1
4

L2‖T b‖ 3
4 .(2.22)

2.3. Formulation of the problem and definition of solutions. Let (T0, q0) ∈
H ×H be such that 0 ≤ q0 ≤ 1 a.e. in M, and let t1 > 0 be fixed. The weak formu-
lation of problem (2.1)–(2.8) proposed in [31] is as follows:

Find a vector U = (T, q) ∈ L2(0, t1;V × V ) ∩ C([0, t1];H ×H) with (∂tT, ∂tq) ∈
L2(0, t1;V ∗×V ∗) such that, for almost every t ∈ [0, t1] and for every (T b, qb) ∈ V ×K,
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we have

〈∂tT, T b〉+ aT (T, T b) + bT (u, T, T b)− d(ω, T, T b)− lT (T b) =

(
1

p
ω−(t)hqϕ(T ), T b

)
,

(2.23)

〈∂tq, qb − q〉+ aq(q, qb − q) + bq(u, q, qb − q)− lq(qb − q) ≥
(
− 1

p
ω−(t)hqF (T ), qb − q

)(2.24)

for some hq ∈ H(q − qs) and

(2.25) U0 = (T0, q0).

The existence of solutions to (2.23)–(2.25) was obtained in [31].

3. Time discretization—the Euler scheme.

3.1. Time discretization. We assume that the velocity field u is given, is time-
dependent, and satisfies u ∈ Lr(0, t1;V ) ∩ L∞(0, t1;H) for some given r ∈ (4,+∞].

Let N be an integer which will later go to +∞, and set ∆t := k = t1/N . We
will define recursively a family of elements of V × K, say (Tm, qm), m = 0, 1, . . . , N ,
where (Tm, qm) is intended to be an approximation of (T, q) at time m∆t.

First, we define um, ωm for m = 1, . . . , N :

(3.1) um =
1

k

∫ mk

(m−1)k

u(t) dt, ωm =
1

k

∫ mk

(m−1)k

ω dt.

From the definition of um, we observe that it inherits the divergence-free property of
u, and also

(3.2) |um|L2 =

∣∣∣∣1k
∫ mk

(m−1)k

u(t) dt

∣∣∣∣
L2

≤ 1

k

∫ mk

(m−1)k

∣∣u(t)
∣∣
L2 dt ≤ |u|L∞(0,t1;H).

We begin with (T 0, q0) := (T0, q0), i.e., the given initial datum, and when (T 0, q0),
(T 1, q1), . . . , (Tm−1, qm−1) are known, Tm ∈ V and qm ∈ K are determined by

〈
Tm − Tm−1

k
, T b

〉
+ aT (Tm, T b) + bT (um, Tm, T b)− d(ωm, Tm−1, T b)− lT (T b)

=

(
1

p
[ωm]−hQmϕ(Tm−1), T b

)
,

(3.3)

〈
qm − qm−1

k
, qb − qm

〉
+ aq(qm, qb − qm) + bq(um, qm, qb − qm)− lq(qb − qm)

≥
(
− 1

p
[ωm]−hQmF (Tm−1), qb − qm

)
(3.4)

for some hQm ∈ H(Qm − qs), where Qm is either qm−1 or qm.
To prove the existence of a solution to (3.3)–(3.4), we proceed by approximation.

Let ε = (ε1, ε2) and εi > 0 small for i = 1, 2. For ε2 > 0, we define the regularization
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Hε2 of H(·) : R → [0, 1]: equal to 0 for r ≥ 0, equal to 1 for r ≥ ε2, and linear
continuous between 0 and ε2.

To show the existence of a solution (Tm, qm) to (3.3), (3.4), we consider the
following associated regularized and penalized problem:

Find Tm
ε , q

m
ε ∈ V such that

〈
Tm
ε − Tm−1

ε

k
, T b

〉
+ aT (Tm

ε , T
b) + bT (um, Tm

ε , T
b)− d(ωm, Tm−1

ε , T b)− lT (T b)

=

(
1

p
[ωm]−Hε2(Qm

ε − qs)ϕ(Tm−1
ε ), T b

)
,

(3.5)

〈
qmε − qm−1

ε

k
, qb
〉

+ aq(qmε , q
b) + bq(um, qmε , q

b)− lq(qb)

=

(
1

ε1
[qmε ]−, qb

)
−
(

1

ε1
[qmε − 1]+, qb

)
−
(

1

p
[ωm]−Hε2(Qm

ε − qs)F (Tm−1
ε ), qb

)
(3.6)

for all T b, qb ∈ V .

Remark 3.1. In the discretization, we have made the term −d(ωm, Tm−1
ε , T b)

explicit by using Tm−1
ε instead of Tm

ε . This will make the following steps of the proof
simpler.

Remark 3.2. We will consider two choices for Qm
ε : either Qm

ε = qm−1
ε or Qm

ε =
qmε . We call the corresponding schemes Scheme A and Scheme B.

3.2. Existence of (Tm
ε , qm

ε ). Depending on the choices of Qm
ε in our scheme

(3.5)–(3.6) as specified in Remark 3.2, we will consider the following two schemes:
Scheme A and Scheme B.

Scheme A: Qm
ε = qm−1

ε . We notice that the factor Hε2(·) is known when we
proceed to obtain Tm

ε and qmε once Tm−1
ε and qm−1

ε are achieved. We have the
following lemma concerning the existence of the iteration sequence (Tm

ε , q
m
ε ) for m =

1, 2, 3, . . ., given the initial datum.

Lemma 3.3. Let ε1, ε2 be arbitrary but fixed positive constants, N be an arbitrary
fixed integer, and k = t1

N , 1 ≤ m ≤ N . Given (Tm−1
ε , qm−1

ε ) and Qm
ε = qm−1

ε , the
variational equalities (3.5)–(3.6) on (Tm

ε , q
m
ε ) admit at least one solution.

Scheme B: Qm
ε = qmε . We note that unlike Scheme A, the factor Hε2(·) is

not known when we proceed to obtain Tm
ε and qmε even though Tm−1

ε and qm−1
ε

are known. We have the following lemma concerning the existence of the iteration
sequence (Tm

ε , q
m
ε ) for m = 1, 2, 3, . . . , given the initial datum. Its proof is essentially

the same as that of Theorem I-1.2 of [27] by the Galerkin method. See also [20, 26]. For
Lemma 3.4 (and it would be similar for Lemma 3.3) we give only the main coercivity
estimate used in the Galerkin construction.

Lemma 3.4. Let ε1, ε2 be arbitrary but fixed positive constants, N be an arbitrary
fixed integer, and k = t1

N , 1 ≤ m ≤ N . Given (Tm−1
ε , qm−1

ε ), the variational equalities
(3.5)–(3.6) on (Tm

ε , q
m
ε ) with Qm

ε = qmε admit at least one solution.

Sketch of proof of Lemma 3.4. Let U = (Tm
ε , q

m
ε ), Ũ = (Tm−1

ε , qm−1
ε ), and U b =

(T b, qb). Then the variational inequalities (3.5)–(3.6) with Qm
ε = qmε can be written
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as

〈
U

k
,U b

〉
+ a(U,U b) + b(um, U, U b)

−
(

1

ε1
q−, qb

)
+

(
1

ε1
[q − 1]+, qb

)
− d(ωm, T̃ , T b)− l(U b)

−
(

1

p
[ωm]−Hε2(q − qs)ϕ(T̃ ), T b

)
+

(
1

p
[ωm]−Hε2(q − qs)F (T̃ ), qb

)
=

〈
Ũ

k
, U b

〉
.

(3.7)

To proceed, we define 〈P (U), U b〉 as

〈P (U), U b〉 =

〈
U

k
,U b

〉
+ a(U,U b) + b(um, U, U b)−

(
1

ε1
q−, qb

)
+

(
1

ε1
[q − 1]+, qb

)
− d(ωm, T, T b)− l(U b)−

(
1

p
[ωm]−Hε2(q − qs)ϕ(T̃ ), T b

)
+

(
1

p
[ωm]−Hε2(q − qs)F (T̃ ), qb

)
−
〈
Ũ

k
, U b

〉
.

(3.8)

Therefore, we have

〈P (U), U〉 =

〈
U

k
,U

〉
+ a(U,U) + b(um, U, U)−

(
1

ε1
q−, q

)
+

(
1

ε1
[q − 1]+, q

)
− d(ωm, T̃ , T )− l(U)−

(
1

p
[ωm]−Hε2(q − qs)ϕ(T̃ ), T

)
+

(
1

p
[ωm]−Hε2(q − qs)F (T̃ ), q

)
−
〈
Ũ

k
, U

〉
.

(3.9)

First, we observe that

(3.10) −
(

1

ε1
q−, q

)
= −

(
1

ε1
q−, q+ − q−

)
=

1

ε1
|q−|2L2 ≥ 0

and (
1

ε1
[q − 1]+, q

)
=

(
1

ε1
[q − 1]+, [q − 1]+ − [q − 1]− + 1

)
=

1

ε1
|[q − 1]+|2L2 +

(
1

ε1
[q − 1]+, 1

)
≥ 0.

(3.11)

Second, we notice that the term

−d(ωm, T̃ , T )− l(U)−
(

1

p
[ωm]−Hε2(q − qs)ϕ(T̃ ), T

)
+

(
1

p
[ωm]−Hε2(q − qs)F (T̃ ), q

)
−
〈
Ũ

k
, U

〉
is linear continuous in U for U ∈ V 2. Therefore, its absolute value can be bounded
by ‖U‖ up to a constant depending on ωm and T̃ .

Finally, noticing that b(um, U, U) = 0, we have

〈P (U), U〉 ≥ 1

k
|U |2L2 + λ‖U‖2 − C‖U‖,

which yields immediately the desired coercivity estimate.
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3.3. A priori estimates for (Tm
ε , qm

ε ). We aim to obtain a priori estimates
on (Tm

ε , q
m
ε ) independent of k and ε for the regularized and penalized problem (3.5)–

(3.6), which contains two schemes, Scheme A and Scheme B, according to different
choices of Qm

ε .
For notational convenience, we will suppress in this subsection the dependence on

ε in the expressions of (Tm
ε , q

m
ε ), (Tm−1

ε , qm−1
ε ), and Qm

ε in (3.5)–(3.6).

Lemma 3.5. We have the estimates concerning the Um = (Tm, qm):

|U j |2L2 ≤ C ∀ 1 ≤ j ≤ N ;

N∑
m=1

|Um − Um−1|2L2 ≤ C, k

N∑
m=1

‖Um‖2 ≤ C.
(3.12)

Remark 3.6. Here and below C denotes a finite constant depending on the data
but independent of ε and k; the constant C may be different at different places.

To show Lemma 3.5, we begin with the following lemma.

Lemma 3.7. For each m = 1, 2, . . . , N , Tm and qm satisfy the following relations:

|Tm|2L2 − |Tm−1|2L2 + |Tm − Tm−1|2L2 + kλ‖Tm‖2 ≤ Ck(‖ωm‖2|Tm−1|2L2 + 1),

(3.13)

|qm|2L2 − |qm−1|2L2 + |qm − qm−1|2L2 + kλ‖qm‖2 ≤ Ck(|ωm|2L2 + 1),(3.14)

where C is a constant, independent of ε and k.

Proof. Replacing T b by 2kTm in (3.5), we find

2〈Tm − Tm−1, Tm〉+ 2kaT (Tm, Tm) + 2kbT (um, Tm, Tm)

= 2kd(ωm, Tm−1, Tm) + 2klT (Tm) + 2k

(
1

p
[ωm]−Hε2(Qm − qs)ϕ(Tm−1), Tm

)
.

(3.15)

By elementary calculation using (2.19)–(2.22), and arguments similar to those used
in the proof of Lemma 3.4, we arrive at

(3.16) |Tm|2L2 − |Tm−1|2L2 + |Tm− Tm−1|2L2 + kλ‖Tm‖2 ≤ Ck(‖ωm‖2|Tm−1|2L2 + 1).

Similarly, we infer from (3.6) that

2〈qm − qm−1, qm〉+ 2kaq(qm, qm) + 2kbq(um, qm, qm)− 2klq(qm)

= 2k

(
1

ε1
[qm]−, qm

)
− 2k

(
1

ε1
[qm − 1]+, qm

)
−2k

(
1

p
[ωm]−(t)Hε2(Qm − qs)F (Tm−1), qm

)
.

(3.17)

By elementary calculation and using again (3.10), (3.11), we arrive at

|qm|2L2 − |qm−1|2L2 + |qm − qm−1|2L2 + kλ‖qm‖2 ≤ Ck(|ωm|2L2 + 1).

The proof of Lemma 3.7 is complete.

Due to the term ‖ωm‖2|Tm−1|2L2 appearing in the right-hand side of (3.13), we
will need the following version of the discrete Gronwall lemma (see, e.g., [32]).
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Lemma 3.8 (discrete Gronwall lemma). Let θ be any positive constant and N0 > 1
be an integer. Suppose the three nonnegative number sequences (Xm), (Ym), and (Zm)
for m = 0, 1, 2, . . . , N0 satisfy the following relation:

Xm ≤ Xm−1(1 + θYm) + θZm.

Then for m = 1, 2, 3, . . . , N0, the following estimates hold:

(3.18) Xm ≤ X0 exp

(
m−1∑
i=0

θYi+1

)
+

m−1∑
i=1

θZi exp

(
m−1∑
j=i

θYj+1

)
+ θZn.

Proof of Lemma 3.5. If we identify Xm = |Tm|2L2 , Ym = C‖ωm‖2, Zm = C, and
θ = k, (3.13) is written as

(3.19) Xm ≤ Xm−1(1 + θYm) + θZm

and

(3.20)

m−1∑
i=0

θYi+1 =

m−1∑
i=0

kC‖ωi+1‖2 ≤ C
N−1∑
i=0

k‖ωi+1‖2 ≤ C|ω|2L2(0,t1;V ),

where the last inequality above follows from the triangle inequality and Hölder’s
inequality. By Lemma 3.8 and recalling that Nk = t1 and k ≤ t1, we find for
m = 1, 2, . . . , N ,
(3.21)
|Tm|2L2 ≤ |T0|2L2 exp(C|ω|2L2(0,t1;V )) + CNk exp(C|ω|2L2(0,t1;V )) + Ck ≤ C(U0, ω, t1).

With the above bound, we obtain from (3.13) that

|Tm|2L2 − |Tm−1|2L2 + |Tm − Tm−1|2L2 + kλ‖Tm‖2 ≤ C(U0, ω, t1)k‖ωm‖2 + Ck.

Summing these inequalities in m from 1 to N , we obtain

|TN |2L2−|T0|2L2+

N∑
m=1

|Tm−Tm−1|2L2+kλ

N∑
m=1

‖Tm‖2 ≤ C(U0, ω, t1)

N∑
m=1

k‖ωm‖2+CNk,

which implies

|TN |2L2+

N∑
m=1

|Tm−Tm−1|2L2+kλ

N∑
m=1

‖Tm‖2 ≤ C(U0, ω, t1)

N∑
m=1

k‖ωm‖2+CNk+|T0|2L2 .

Again, the right-hand side can be bounded by C(U0, ω, t1) since
∑N

m=1 k‖ωm‖2 .
|ω|2L2(0,t1;V ) as in (3.2).

The estimates for qm are more direct. Summing the inequalities (3.14) in m from
1 to j for any j ≤ N and dropping some positive terms, we obtain

(3.22) |qj |2L2 − |q0|2L2 ≤
j∑

m=1

Ck(|ωm|2L2 + 1) ≤ C(q0, ω, t1).

Therefore,

(3.23) |qj |2L2 ≤ |q0|2L2 + C(q0, ω, t1) ≤ C(q0, ω, t1).
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Now, we sum the inequalities (3.14) in m from 1 to N , and we obtain

|qN |2L2 − |q0|2L2 +

N∑
m=1

|qm − qm−1|2L2 + k

N∑
m=1

λ‖qm‖2 ≤ C
N∑

m=1

k(|ωm|2L2 + 1),

which implies

N∑
m=1

|qm − qm−1|2L2 + k

N∑
m=1

λ‖qm‖2 ≤ C(q0, ω, t1).

The proof of Lemma 3.5 is complete.

Next, we will seek an a priori bound for the norm k
∑N

m=1 ‖
Um−Um−1

k ‖2V ∗ , which
will be used later in the compactness argument. We have the following lemma.

Lemma 3.9. For any ε1 > 0 and any ε2 > 0, the inequality

(3.24) k

N∑
m=1

∥∥∥∥Um − Um−1

k

∥∥∥∥2

V ∗
≤ C(u, U0, t1) < +∞

holds for some constant C(u, U0, t1) depending on U0,u, t1, but not on ε and k.

The main point of Lemma 3.9 is that the bound is independent of ε = (ε1, ε2)
and k. As ε2 comes into play through the regularization function Hε2 and Hε2 is
bounded by 1, it is easy to obtain the bound independent of ε2. Therefore, the main
issue here is to control the penalization terms which contain a blowup factor 1

ε1
in the

limit process ε→ (0+, 0+). This is done in Lemmas 3.10 and 3.11.

Lemma 3.10. The following bound holds:

(3.25) k

N∑
m=1

∣∣∣∣ [qm]−

ε1

∣∣∣∣2
L2

≤ C|ω|2L2(0,t1;H).

Proof. We set qb = [qm]− ∈ V in (3.6) and find〈
qm − qm−1

k
, [qm]−

〉
+ aq(qm, [qm]−) + bq(um, qm, [qm]−)− lq([qm]−)

=

(
1

ε1
[qm]−, [qm]−

)
−
(

1

ε1
[qm − 1]+, [qm]−

)
−
(

1

p
[ωm]−Hε2(Qm − qs)F (Tm−1), [qm]−

)
.

(3.26)

When qm ≥ 0, notice that −( 1
ε1

[qm − 1]+, [qm]−) = 0.
By linearity and (2.19), we have

bq(um, qm, [qm]−) = bq(um, [qm]+ − [qm]−, [qm]−)

= bq(um, [qm]+, [qm]−)− bq(um, [qm]−, [qm]−) = 0.
(3.27)

By linearity and coercivity, we have

(3.28) aq(qm, [qm]−) = aq([qm]+, [qm]−)− aq([qm]−, [qm]−) ≤ 0.
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In (3.27) and (3.28), we have used the fact that

bq(um, [qm]+, [qm]−) = 0, aq([qm]+, [qm]−) = 0,

because [qm]+ vanishes on the support of [qm]−.
By the specific form of the functional lq, we have lq([qm]−) ≥ 0, and by Hölder’s

inequality, we have

(3.29)

∣∣∣∣− (1

p
[ωm]−Hε2(Qm − qs)F (Tm−1), [qm]−

)∣∣∣∣ ≤ C|ωm|L2 |[qm]−|L2 .

In view of the above relations, we infer from (3.26) that

(3.30)
1

ε1
|[qm]−|2L2 ≤

〈
qm − qm−1

k
, [qm]−

〉
+ C|ωm|L2 |[qm]−|L2 .

By direct calculation, writing qm = [qm]+− [qm]− and the same for qm−1, we see that

(3.31)

N∑
m=1

〈qm − qm−1, [qm]−〉 = −1

2
|[qN ]−|2L2 ≤ 0.

Then we write

(3.32) C|ωm|L2 |[qm]−|L2 ≤ 1

2ε1
|[qm]−|2L2 + Cε1|ωm|2L2 .

From (3.30) and (3.32), we have

(3.33)
1

2ε1
|[qm]−|2L2 ≤

〈
qm − qm−1

k
, [qm]−

〉
+ Cε1|ωm|2L2 .

Summing in m from 1 to N and in view of (3.31), we infer from (3.33) that

(3.34)

N∑
m=1

1

2ε2
1

|[qm]−|2L2 ≤ C
N∑

m=1

|ωm|2L2 .

Multiplying (3.34) by 2k, we obtain

k

N∑
m=1

1

ε2
1

|[qm]−|2L2 ≤ Ck
N∑

m=1

|ωm|2L2 ≤ C|ω|2L2(0,t1;H).

The proof of Lemma 3.10 is complete.

Lemma 3.11. The following bound holds:

(3.35) k

N∑
m=1

∣∣∣∣ [qm − 1]+

ε1

∣∣∣∣2
L2

≤ C|ω|2L2(0,t1;H).

The proof of Lemma 3.11 is very similar to that of Lemma 3.10. We skip the
details.

We can now turn to the proof of Lemma 3.9.
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Proof of Lemma 3.9. We estimate the duality pair 〈U
m−Um−1

k , U b〉, where U b =
(T b, qb) ∈ V 2. By adding (3.5) and (3.6), we can write

∣∣∣∣〈Um − Um−1

k
, U b

〉∣∣∣∣ =

∣∣∣∣− a(Um, U b)− b(um, Um, U b)

+

(
1

ε1
[qm]−, qb

)
−
(

1

ε1
[qm − 1]+, qb

)
+ d(ωm, Tm−1, T b) + l(U b)

+

(
1

p
[ωm]−Hε2(Qm − qs)ϕ(Tm−1), T b

)
−
(

1

p
[ωm]−Hε2(Qm − qs)F (Tm−1), qb

)∣∣∣∣.

(3.36)

The right-hand side of (3.36) is bounded using (2.20)–(2.22) and the similar ar-
guments used in Lemma 3.10; then we obtain∥∥∥∥Um − Um−1

k

∥∥∥∥
V ∗
≤ C(‖Um‖+ ‖Tm−1‖) + C‖um‖‖Um‖1/2

+
1

ε1
|[qm]−|L2 +

1

ε1
|[qm − 1]+|L2 + C,

(3.37)

where the absolute constants C may depend on u, U0, t1, but not on ε and k.
Writing ‖um‖2‖Um‖ ≤ ‖um‖4 + ‖Um‖2, we infer from (3.37) that

k

N∑
m=1

∥∥∥∥Um − Um−1

k

∥∥∥∥2

V ∗

≤ C
N∑

m=1

k(‖Um‖2 + ‖um‖4 + 1) + k

N∑
m=1

∣∣∣∣ [qm]−

ε1

∣∣∣∣2
L2

+ k

N∑
m=1

∣∣∣∣ [qm − 1]+

ε1

∣∣∣∣2
L2

.

(3.38)

For the term
∑N

m=1 k‖um‖4 in the right-hand side of (3.38), we could control it
by the triangle inequality and Hölder’s inequality as follows:

N∑
m=1

k‖um‖4 =

N∑
m=1

k

∥∥∥∥1

k

∫ mk

(m−1)k

u(t) dt

∥∥∥∥4

≤
N∑

m=1

k

(
1

k

∫ mk

(m−1)k

‖u(t)‖ dt
)4

≤
N∑

m=1

k

(
1

k

∫ mk

(m−1)k

‖u(t)‖4 dt
)

=

N∑
m=1

∫ mk

(m−1)k

‖u(t)‖4 dt = |u|4L4(0,t1;V ).

(3.39)

All terms in the right-hand side of (3.38) are bounded by a constant C indepen-
dent of ε and k, thanks to the previous estimates and, in particular, the estimates in
Lemmas 3.10 and 3.11. This shows that

k

N∑
m=1

∥∥∥∥Um − Um−1

k

∥∥∥∥2

V ∗
≤ C(u, U0, t1) < +∞.

The proof of Lemma 3.9 is complete.

3.4. Passage to the limit ε → (0+, 0+). In this subsection, we will make
explicit the dependence of Um

ε on ε. Let k > 0 be fixed. Our goal is to pass to the
limit ε→ (0+, 0+) in the scheme (3.5)–(3.6) with the aim of obtaining the existence
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230 ROGER TEMAM AND XIAOYAN WANG

of solutions to the time discretized scheme (3.3)–(3.4). Though the convergences in
our arguments below may be up to subsequences, we will not always specify this fact
and we also will not elaborate on the indices.

After extracting a finite number of subsequences, ε→ 0, we infer from Lemma 3.5
that for m = 1, 2, . . . , N , there exist functions Um ∈ V such that as ε→ 0+,

(3.40) Um
ε ⇀ Um weakly in V and strongly in H,

since the inclusion V ⊂ H is compact. We still use ε as the index for the subsequence.
By an additional extraction of subsequences,

(3.41) Um
ε (x)→ Um(x) a.e., m = 1, 2, . . . , N.

Meanwhile, we have

Hε2(Qm
ε − qs) ⇀ hQm weak-* in L∞(M) for m = 1, 2, . . . , N.

Concerning the limit function qm, the second component of Um form = 1, 2, . . . , N ,
we know from Lemmas 3.10 and 3.11 that

(3.42) k

N∑
m=1

(
|[qmε ]−|2L2 + |[qmε − 1]+|2L2

)
≤ Cε2

1|ω|2L2(0,t1;H).

As the real functions g±(θ) = θ± are both Lipschitz functions with Lipschitz constant
1 on R, we have

|[qmε ]− − [qm]−|L2 ≤ |qmε − qm|L2 , |[qmε − 1]+ − [qm − 1]+|L2 ≤ |qmε − qm|L2 .

Consequently, with (3.40) we have [qmε ]− → [qm]− and [qmε − 1]+ → [qm − 1]+ in H.
As k > 0 is a fixed number, we can pass to the limit on ε in (3.42) to obtain that

N∑
m=1

(
|[qm]−|2L2 + |[qm − 1]+|2L2

)
= 0,

which implies

(3.43) 0 ≤ qm ≤ 1 a.e. in M, i.e., qm ∈ K.

We now want to pass to the limit in (3.5) and (3.6). We first aim to derive the
variational inequality (3.4) by passing to the limit in (3.6).

We replace qb in (3.6) by qb−qmε with qb ∈ K and arrive at the following equation:

〈
qmε − qm−1

ε

k
, qb − qmε

〉
+ aq(qmε , q

b − qmε ) + bq(um, qmε , q
b − qmε )− lq(qb − qmε )

=

(
1

ε1
[qmε ]−, qb − qmε

)
−
(

1

ε1
[qmε − 1]+, qb − qmε

)
−
(

1

p
[ωm]−Hε2(Qm

ε − qs)F (Tm−1
ε ), qb − qmε

)
.

(3.44)
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Concerning the penalization terms, we have, as before, the following two inequal-
ities: (

1

ε1
[qmε ]−, qb − qmε

)
=

(
1

ε1
[qmε ]−, qb − [qmε ]+ + [qmε ]−

)
=

(
1

ε1
[qmε ]−, qb

)
+

1

ε1
|[qmε ]−|2L2 ≥ 0,

(3.45)

−
(

1

ε1
[qmε − 1]+, qb − qmε

)
= −

(
1

ε1
[qmε − 1]+,−(1− qb)− [qmε − 1]+ + [qmε − 1]−

)
=

(
1

ε1
[qmε − 1]+, (1− qb)

)
+

1

ε1
|[qmε − 1]+|2L2 ≥ 0,

(3.46)

where we have used the fact that 0 ≤ qb ≤ 1 since qb ∈ K.
As qb − qmε ⇀ qb − qm weakly in V , we also have lq(qb − qmε )→ lq(qb − qm).
To pass to the limit in aq(qmε , q

b − qmε ), we use the weak convergence of qm in V
and the weak lower semicontinuity property of the norm. Hence,

lim sup aq(qmε , q
b − qmε ) = lim aq(qmε , q

b)− lim inf aq(qmε , q
m
ε )

≤ aq(qm, qb)− aq(qm, qm) = aq(qm, qb − qm).
(3.47)

For the term bq(um, qmε , q
b − qmε ), since div um = 0, equation (2.19) implies that

bq(um, qmε , q
m
ε ) = 0 and bq(um, qm, qm) = 0. Then by applying (2.21), we write∣∣bq(um, qmε , q
b − qmε )− bq(um, qm, qb − qm)

∣∣ =
∣∣bq(um, qmε − qm, qb)

∣∣
≤ C‖um‖V|qmε − qm|

1
2

L2‖qmε − qm‖
1
2 ‖qb‖.

Note that um and qb do not depend on ε. Due to the strong convergence of qmε to qm

in H and the boundedness of ‖qmε − qm‖, we conclude that

(3.48) bq(um, qmε , q
b − qmε )→ bq(um, qm, qb − qm).

Now, we consider the term −( 1
p [ωm]−Hε2(Qm

ε −qs)F (Tm−1
ε ), qb−qmε ). In view of

the convergences Hε2(Qm
ε − qs) ⇀ hQm weak-* in L∞(M), Um

ε → Um strongly in H,
and noticing the fact that the function F is a globally Lipschitz function, we see, by an
additional extraction of subsequences, with (3.41) that F (Um

ε (x)) → F (Um(x)) a.e.
Then, by the Lebesgue dominated convergence theorem, F (Um

ε ) → F (Um) strongly
in H, and therefore Hε2(Qm

ε − qs)F (Tm−1
ε ) ⇀ hQmF (Tm−1) weakly in H. Together

with the strong convergence of qb − qmε to qb − qm in H, we obtain
(3.49)

−
(

1

p
[ωm]−Hε2(Qm

ε − qs)F (Tm−1
ε ), qb − qmε

)
→ −

(
1

p
[ωm]−hQmF (Tm−1), qb − qm

)
.

Due to the strong convergence Um
ε → Um in H and the continuity of the L2 inner

product, we have
(3.50)〈
qmε − qm−1

ε

k
, qb − qmε

〉
=

∫
M

qmε − qm−1
ε

k
(qb − qmε ) dM→

〈
qm − qm−1

k
, qb − qm

〉
.

In view of (3.45)–(3.50), together with (3.43), we conclude, after passing to the
limit on ε in (3.44), that (3.4) is satisfied.
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232 ROGER TEMAM AND XIAOYAN WANG

Second, we derive the variational equality (3.3) from (3.5) by passing to the limit
on ε. The proof is similar to and easier than the one for qmε , and we skip the details.

Summarizing the above arguments, we obtain from (3.5) through passing to the
limit on ε that (3.3) holds true.

It remains to show that hQm ∈ H(Qm − qs). For that purpose, we consider the
following antiderivative Kε2 of the function Hε2 :

Kε2(r) = 0 if r ≤ 0; =
r2

2ε2
if r ∈ (0, ε2]; = r − ε2

2
if r > ε2.

We easily see that both Hε2 and Kε2 are Lipschitz functions and that the following
inequalities hold for any r1, r2 ∈ R:

(3.51) |Hε2(r1)−Hε2(r2)| ≤ 1

ε2
|r1 − r2|, |Kε2(r1)−Kε2(r2)| ≤ |r1 − r2|.

By the expression of Kε2 , we observe that

(3.52) |Kε2(r)− r| ≤ ε2

2
for r ≥ 0.

Consider now the functional q → (Kε2(q), 1) from V to R. As the function Kε2 is
a convex function on R, we know that the functional q → (Kε2(q), 1) is convex on
V . As the function Kε2 is continuously differentiable, the functional q → (Kε2(q), 1)
is actually Fréchet differentiable with Fréchet derivative at q equal to Hε2(q) ∈ V ∗.
In particular, by considering its Gâteaux derivative at the point Qm

ε − qs along the
direction qb −Qm

ε , we have the following inequality:

(
Kε2(qb − qs), 1

)
−
(
Kε2(Qm

ε − qs), 1
)

=
(
Kε2(Qm

ε − qs + qb −Qm
ε ), 1

)
−
(
Kε2(Qm

ε − qs), 1
)
≥ 〈Hε2(Qm

ε − qs), qb −Qm
ε 〉.

(3.53)

As the duality pair 〈Hε2(Qm
ε − qs), qb −Qm

ε 〉 can be realized by an L2 inner product,
and in view of the two convergences Hε2(Qm − qs) ⇀ hQm weakly-∗ in L∞(M) and
Qm

ε → Qm strongly in H and the simple inclusion H ⊂ L1(M), we have by passing
to the limit on ε that

(3.54) 〈Hε2(Qm
ε − qs), qb −Qm

ε 〉 → 〈hQm , qb −Qm〉 for qb ∈ V.

Noticing that Kε2(r) = 0 for r < 0 and (3.52), we have∣∣(Kε2(qb − qs), 1
)
−
(
[qb − qs]+, 1

)∣∣ =
∣∣(Kε2([qb − qs]+)− [qb − qs]+, 1

)∣∣ ≤ ε2

2
|M|,

which implies

(3.55)
(
Kε2(qb − qs), 1

)
→
(
[qb − qs]+, 1

)
as ε2 → 0 + .

To show the convergence of (Kε2(Qm
ε − qs), 1) to ([Qm − qs]+, 1), we split the

difference (Kε2(Qm
ε − qs), 1)− ([Qm − qs]+, 1) as the following sum:((

Kε2(Qm
ε − qs), 1

)
−
(
Kε2(Qm − qs), 1

))
+
((
Kε2(Qm − qs), 1

)
− ([Qm − qs]+, 1)

)
.
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The second term in the above sum can be dealt with exactly as for (3.55). For
the first term, we have by (3.51) and the Cauchy–Schwarz inequality that∣∣(Kε2(Qm

ε −qs), 1
)
−
(
Kε2(Qm−qs), 1

)∣∣ ≤ (|(Qm
ε −qs)−(Qm−qs)|, 1

)
≤
√
|M||Qm

ε −Qm|L2 ,

which implies, in view of the strong convergence of Qm
ε to Qm in H,

(3.56)
(
Kε2(Qm

ε − qs), 1
)
→ ([Qm − qs]+, 1) as ε→ (0+, 0+).

From (3.53)–(3.56), we conclude that

(3.57)
(
[qb − qs]+, 1

)
− ([Qm − qs]+, 1) ≥ 〈hQm , qb −Qm〉,

which amounts to saying that hQm ∈ H(Qm − qs).
Summarizing the above arguments, we have the following lemma.

Lemma 3.12. For each m = 1, . . . , N , there exists (Tm, qm) ∈ V × K which is a
solution of (3.3)–(3.4).

4. Convergence of the Euler scheme. In this section, we want to prove the
convergence of the solutions of the Euler scheme (3.3)–(3.4) to the solutions of the
system (2.23)–(2.25). We shall use the same conventions on subsequences and indices
as in the last section, that is, the limit process in this part is N → +∞ or, equivalently,
k → 0+ and up to subsequences.

Due to the weak lower semicontinuity property of the norms, we know that for
the limit functions Um which now have no dependence on ε, the bounds in Lemmas
3.5 and 3.9 are now valid with Um

ε replaced by the limit functions Um.
For each fixed k (or N), we associate to the elements U0 = U0, U

1, U2, . . . , UN the
following approximate functions: Uk = (Tk, qk), Ũk = (T̃k, q̃k), and Wk = (Tk,Qk),
which are defined piecewise on [0, t1] and take values in the space V 2:

(4.1) Uk(t) = Um, Ũk(t) = Um−1 for t ∈ [(m− 1)k,mk), m = 1, 2, . . . , N,

and Wk is the continuous function equal to Um at mk and linear between (m − 1)k
and mk.

4.1. A priori estimates. We start with a lemma which is essentially a rephras-
ing of the estimates in Lemmas 3.5 and 3.9 with Um

ε replaced by Um.

Lemma 4.1. The functions Uk, Ũk, Wk remain in a bounded set of L2(0, t1;V )∩
L∞(0, t1;H) as k → 0+. The functions ∂tWk form a bounded set in L2(0, t1;V ∗),
and Uk −Wk → 0 in L2(0, t1;H) strongly as k → 0+.

We continue with the following estimates.

Lemma 4.2. For the functions Uk, Ũk,Wk defined above, there holds

|Uk −Wk|L2(0,t1;H) ≤ C(u, U0, t1)
√
k,(4.2)

|Uk − Ũk|L2(0,t1;H) ≤ C(u, U0t1)
√
k.(4.3)

Proof. The estimate (4.2) is well known and proved in, e.g., Temam [27]; the
estimate (4.3) is straightforward.

Now we define uk : [0, t1]→ V as follows:

(4.4) uk(t) = um for t ∈ [(m− 1)k,mk), m = 1, 2, . . . , N.

We have the following lemma.
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234 ROGER TEMAM AND XIAOYAN WANG

Lemma 4.3 (convergence of uk). For the functions uk defined above, there holds

(4.5) uk → u in Lr(0, t1,V) as k → 0 + .

Proof. The map u → uk is a linear averaging transformation. By (3.2) and
reasoning similar to that in (3.39) (replacing 4 by r), we know that the map is bounded:

|uk|Lr(0,t1;V) ≤ |u|Lr(0,t1;V).

Due to the above bound, we could show the conclusion of the lemma by a density
argument. As the space C1([0, t1]; V) is dense in Lr(0, t1; V), the conclusion of Lemma
4.3 follows by considering u ∈ C1([0, t1]; V).

For later use, we also define the linear averaging map for the test functions U b =
(T b, qb) ∈ L2(0, t1;V ) that we will use below; that is, we define U b

k : [0, t1] → V 2

piecewise by

U b
k(t) =

1

k

∫ mk

(m−1)k

U b(t) dt on [(m− 1)k,mk).

Similarly as in Lemma 4.3, we conclude that U b
k → U b strongly in L2(0, t1;V 2) as

k → 0. Moreover, if qb ∈ K for a.e. t ∈ [0, t1], we have qbk ∈ K for all t ∈ [0, t1].

4.2. Passage to the limit k → 0+. To proceed, we reinterpret as follows
the scheme (3.3)–(3.4) in terms of the functions Uk = (Tk, qk), Ũk = (T̃k, q̃k), Wk =
(Tk,Qk), and U b

k = (T b
k , q

b
k):

〈∂tTk, T b
k〉+ aT (Tk, T

b
k) + bT (uk, Tk, T

b
k)− d(ωk, T̃k, T

b
k)− lT (T b

k)

=

(
1

p
[ωk]−hQk

ϕ(T̃k), T b
k

)
,

(4.6)

〈∂tQk, q
b
k − qk〉+ aq(qk, q

b
k − qk) + bq(uk, qk, q

b
k − qk)− lq(qbk − qk)

≥
(
− 1

p
[ωk]−hQk

F (T̃k), qbk − qk
)
,

(4.7)

where Qk is either q̃k or qk corresponding to Scheme A or Scheme B, respectively.
Furthermore, hQk

is defined by hQk
(t) = hQm when t ∈ [(m−1)k,mk). Here we have

considered an arbitrary qb ∈ L2(0, t1;K), and qbk defined as uk belongs to L2(0, t1;K),
and the analogue of Lemma 4.3 holds (with qbk → qb in L2(0, t1;V )).

Due to Lemma 4.1, we have, up to subsequences, in the limit k → 0+, that

Uk, Ũk ⇀ U = (T, q) weakly in L2(0, t1;V ) and weak-∗ in L∞(0, t1;H),(4.8)

Wk ⇀W = (T ,Q) weakly in L2(0, t1;V ) and weak-∗ in L∞(0, t1;H),(4.9)

and

(4.10) ∂tWk ⇀ ∂tW = (∂tT , ∂tQ) weakly in L2(0, t1;V ∗).

In view of Lemma 4.2, we know that

(4.11) U = W.

Now, we consider the inclusions V ⊂ H ⊂ V ∗ and recall that the first inclusion
is compact and the second inclusion is continuous. In view of (4.9) and (4.10), we
conclude, by applying the Aubin–Lions compactness theorem, that

(4.12) Wk →W strongly in L2(0, t1;H).
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By Lemma 4.2 again, we conclude that

(4.13) Uk, Ũk,Wk → U strongly in L2(0, t1;H).

We are now in a position to pass to the limit in (4.7). To proceed, let us illustrate
in advance that the limit function q lies in L2(0, t1;K). Indeed, regarded as a convex
subset of L2(0, t1;V ), L2(0, t1;K) is closed with respect to the strong topology induced
by the L2(0, t1;V )-norm. Therefore, it is also closed with respect to the weak topology.
First, as qk ⇀ q weakly in L2(0, t1;V ) and qbk → qb strongly in L2(0, t1;V ), we know
that γ0(qk) → γ0(q) and γ0(qbk) → γ0(qb) weakly in L2(0, t1;L2(∂M)), where γ0 is
the trace operator on ∂M. Hence,

(4.14)

∫ t1

0

(
lq(qbk − qk)− lq(qb − q)

)
dt→ 0 as k → 0 + .

Second, we pass to the upper limit in aq(qk, q
b
k − qk) exactly as in (3.47), and we

find

(4.15) lim sup

∫ t1

0

aq(qk, q
b
k − qk) dt ≤

∫ t1

0

aq(q, qb − q) dt.

Third, we consider the convergence of the term
∫ t1

0
〈∂tQk, q

b
k − qk〉 dt which is the

sum of
∫ t1

0
〈∂tQk, q

b
k −Qk〉 dt and

∫ t1
0
〈∂tQk,Qk − qk〉 dt. Using integration by parts,

(4.10), and the lower semicontinuity of the norm, we write

lim sup

∫ t1

0

〈∂tQk, q
b
k −Qk〉 dt = − lim inf

∫ t1

0

〈∂tQk,Qk〉 dt+ lim

∫ t1

0

〈∂tQk, q
b
k〉 dt

= − lim inf
1

2
|Qk(t1)|2L2 +

1

2
|q0|2L2 +

∫ t1

0

〈∂tq, qb〉 dt

≤ −1

2
|q(t1)|2L2 +

1

2
|q0|2L2 +

∫ t1

0

〈∂tq, qb〉 dt

= −
∫ t1

0

〈∂tq, q〉 dt+

∫ t1

0

〈∂tq, qb〉 dt

=

∫ t1

0

〈∂tq, qb − q〉 dt,

(4.16)

where we have used, in the second equality of (4.16), the observation

(4.17) lim

∫ t1

0

〈∂tQk, q
b
k〉 dt→

∫ t1

0

〈∂tq, qb〉 dt,

which follows from (4.10) and qbk → qb in L2(0, t1;V ).

A subtle point is the treatment of
∫ t1

0
〈∂tQk,Qk − qk〉 dt. Though we have (4.10)

(which implies in particular that ∂tQk is bounded in L2(0, t1;V ∗)) and Qk − qk ⇀ 0

weakly in L2(0, t1;V ), we cannot conclude that the limit of
∫ t1

0
〈∂tQk,Qk − qk〉 dt is

0. Rather, we show, by the specific forms of Qk and qk, that

(4.18) lim sup

∫ t1

0

〈∂tQk,Qk − qk〉 dt ≤ 0.
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Indeed, noticing that ∂tQk = qm−qm−1

k and Qk − qk = qm−qm−1

k (t − mk) on the
subinterval [(m− 1)k,mk) of [0, t1], we have∫ t1

0

〈∂tQk,Qk − qk〉 dt =

N∑
m=1

∫ mt

(m−1)t

〈∂tQk,Qk − qk〉 dt

=

N∑
m=1

∫ mk

(m−1)t

〈
qm − qm−1

k
,
qm − qm−1

k
(t−mk)

〉
dt

=

N∑
m=1

∫ mk

(m−1)t

|qm − qm−1|2L2

k2
(t−mk) dt ≤ 0,

which implies (4.18). From (4.16) and (4.18), we can conclude that

(4.19) lim sup

∫ t1

0

〈∂tQk, q
b
k − qk〉 dt ≤

∫ t1

0

〈∂tq, qb − q〉 dt.

Fourth, we consider the convergence of the integral
∫ t1

0
bq(uk, qk, q

b
k − qk) dt.

We observe that Uk, Ũk, and Wk all lie in a bounded set of L∞(0, t1;H) and
converge to U a.e. in H for t ∈ [0, t1]. By extraction of a subsequence this, together
with (4.13) and the Lebesgue dominated convergence theorem, yields

(4.20) Uk, Ũk,Wk → U strongly in Lp(0, t1;H) for any p ∈ [1,+∞).

As the functions u and um are divergence free, we have, using (2.19),

∫ t1

0

bq(uk, qk, q
b
k − qk)− bq(u, q, qb − q) dt =

∫ t1

0

bq(uk, qk, q
b
k)− bq(u, q, qb) dt

=

∫ t1

0

bq(uk − u, qk, q
b
k) dt+

∫ t1

0

bq(u, qk − q, qbk) dt+

∫ t1

0

bq(u, q, qbk − qb) dt

:= I1 + I2 + I3.

(4.21)

The terms I1 and I2 can be controlled by applying Lemma 2.1 and Hölder’s
inequality as follows, where r∗ > 4 satisfies 1

r + 1
r∗ = 1

4 :

|I1|+ |I2| ≤ C
∫ t1

0

|uk − u|V|qk|
1
2

L2‖qk‖
1
2 ‖qbk‖ dt+ C

∫ t1

0

|u|V|qk − q|
1
2

L2‖qk − q‖
1
2 ‖qbk‖ dt

≤ C|uk − u|Lr(0,t1;V)|qk|
1
2

L
r∗
2 (0,t1;H)

|qk|
1
2

L2(0,t1;V )|q
b
k|L2(0,t1;V )

+ C|u|Lr(0,t1;V)|qk − q|
1
2

L
r∗
2 (0,t1;H)

|qk − q|
1
2

L2(0,t1;V )|q
b
k|L2(0,t1;V ).

(4.22)

By applying Lemma 2.1 and noticing the strong convergence of qbk to qb in
L2(0, t1;V ), we easily see that

(4.23) |I3| → 0 as k → 0 + .

Using (4.8), (4.20), and Lemma 4.3, we conclude from (4.21)–(4.23) that

(4.24)

∫ t1

0

[bq(uk, qk, q
b
k − qk)− bq(u, q, qb − q)] dt→ 0.
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Fifth, we consider the variational inequality involving hQk
. By (3.57) and the

definitions of hQk
and qbk, we have for every qb ∈ L2(0, t1;V )

(4.25)
(
[qbk − qs]+, 1

)
− ([Qk − qs]+, 1) ≥ 〈hQk

, qbk −Qk〉 for a.e. t ∈ [0, t1],

and integrating in t from 0 to t1, we find

(4.26)

∫ t1

0

(
[qbk − qs]+, 1

)
dt−

∫ t1

0

([Qk − qs]+, 1) dt ≥
∫ t1

0

〈hQk
, qbk −Qk〉 dt.

Up to a subsequence, we know that hQk
converges to some limit hq weak-∗ in

L∞([0, t1]×M) and 0 ≤ hq ≤ 1 a.e. In view of the strong convergence of qbk −Qk to
qb − q in L2(0, t1;H), we conclude that

(4.27)

∫ t1

0

〈hQk
, qbk −Qk〉 dt→

∫ t1

0

〈hq, qb − q〉 dt.

Moreover, we have∣∣∣∣ ∫ t1

0

([Qk − qs]+ − [q − qs]+, 1) dt

∣∣∣∣ ≤ ∫ t1

0

|Qk − q|L2 |1|L2 dt

≤ |Qk − q|L2(0,t1;H)

√
|M|t1 → 0

(4.28)

in view of the strong convergence of Qk to q in L2(0, t1;H).
Similarly as in (4.28), we could conclude the following convergence by noticing

the strong convergence of qbk to qb in L2(0, t1;V ):

(4.29)

∫ t1

0

(
[qbk − qs]+, 1

)
dt→

∫ t1

0

(
[qb − qs]+, 1

)
dt.

In view of (4.27)–(4.29), we conclude that the following inequality holds after
passing to the limit in (4.26):

(4.30)

∫ t1

0

(
[qb − qs]+, 1

)
dt−

∫ t1

0

([q − qs]+, 1) dt ≥
∫ t1

0

〈hq, qb − q〉 dt

for every qb ∈ L2(0, t1;V ). This inequality implies that

(4.31)
(
[qb − qs]+, 1

)
− ([q − qs]+, 1) ≥ 〈hq, qb − q〉 for a.e. t ∈ [0, t1],

for every qb ∈ L2(0, t1;V ), and thus hq ∈ H(q − qs).
Sixth, we take care of the convergence of

∫ t1
0

(− 1
p [ωk]−hQk

F (T̃k), qbk − qk) dt. To
proceed, we write the difference∫ t1

0

(
− 1

p
[ωk]−hQk

F (T̃k), qbk − qk
)
dt−

∫ t1

0

(
− 1

p
[ω]−hqF (T ), qb − q

)
dt

as the sum of the following two terms:∫ t1

0

(
− 1

p
([ωk]− − [ω]−)hQk

F (T̃k), qbk − qk
)
dt,∫ t1

0

(
− 1

p
[ω]−hQk

F (T̃k), qbk − qk
)
−
(
− 1

p
[ω]−hqF (T ), qb − q

)
dt.
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The first term above tends to 0 due to the following inequality:∫ t1

0

(
− 1

p
([ωk]−− [ω]−)hQk

F (T̃k), qbk− qk
)
dt ≤ C|ωk−ω|L2(0,t1;V )|qbk− qk|L2(0,t1;H).

Noticing that hQk
⇀ hq weak-∗ in L∞([0, t1]×M) and F is Lipschitz continuous,

we know that hQk
F (T̃k) ⇀ hqF (T ) weakly in L2(0, t1;H). Further, noticing that

qbk− qk → qb− q strongly in L2(0, t1;H), we conclude that the second term above also
tends to zero.

By now, we have shown that

(4.32)

∫ t1

0

(
− 1

p
[ωk]−hQk

F (T̃k), qbk − qk
)
dt→

∫ t1

0

(
− 1

p
[ω]−hqF (T ), qb − q

)
dt.

Finally, we observe that Wk(0) = U0, which follows from the definition of Wk.
In view of (4.14), (4.15), (4.19), (4.24), (4.31), and (4.32), we have shown that

the inequalities (2.24) and (2.25) hold for (T, q). The task of showing that (2.23)
holds for (T, q) is similar to or significantly easier than that for (2.24). We omit the
details here.

To sum up, we have proved the following theorem.

Theorem 4.4. Given T0, q0 ∈ H with 0 ≤ q0 ≤ 1 a.e. in M, the functions
Uk, Ũk, and Wk associated with the Euler scheme (3.3)–(3.4) contain a subsequence
k → 0 which converges to a solution U of the system (2.23)–(2.25) in the sense of
(4.8)–(4.13).

Remark 4.5. Theorem 4.4 implies the existence of a solution for the system (2.23)–
(2.25) which was proved in [31] by a different method.
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