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Abstract

We investigate unimodular random networks. Our motivations include their characteri-
zation via reversibility of an associated random walk and their similarities to unimodular
quasi-transitive graphs. We extend various theorems concerning random walks, percolation,
spanning forests, and amenability from the known context of unimodular quasi-transitive
graphs to the more general context of unimodular random networks. We give properties of a
trace associated to unimodular random networks with applications to stochastic comparison
of continuous-time random walk.
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1 Introduction

In the setting of infinite discrete graphs, the property of being a Cayley graph of a group is a
strong form of “spatial homogeneity”: many results not true for arbitrary graphs are true under
this strong property. As we shall soon explain, weaker regularity properties sufficient for many
results have been studied. In this paper, we turn to random graphs, investigating a notion
of “statistical homogeneity” or “spatial stationarity” that we call a unimodular random rooted
network. The root is merely a distinguished vertex of the network and the probability measure
is on a certain space of rooted networks. In a precise sense, the root is “equally likely” to be
any vertex of the network, even though we consider infinite networks. We shall show that many
results known for deterministic graphs under previously-studied regularity conditions do indeed
extend to unimodular random rooted networks.

Thus, a probabilistic motivation for our investigations is the study of stochastic processes un-
der unimodularity. A second motivation is combinatorial: One often asks for asymptotics of
enumeration or optimization problems on finite networks as the size of the networks tend to
infinity. One can sometimes answer such questions with the aid of a suitable limiting infinite
object. A survey of this approach is given by Aldous and Steele (2004). We call “random weak
limit” the type of limit one considers; it is the limiting “view” from a uniformly chosen vertex
of the finite networks. What limiting objects can arise this way? It has been observed before
that the probabilistic objects of interest, unimodular random rooted networks, contain all the
combinatorial objects of interest, random weak limits of finite networks. One open question is
whether these two classes in fact coincide. An affirmative answer would have many powerful
consequences, as we shall explain.

To motivate this by analogy, recall a simple fact about stationary sequences 〈Yi〉i∈Z of random
variables. For each n ≥ 1, let 〈Yn,i〉1≤i≤n be arbitrary. Center it at a uniform index Un ∈
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{1, 2, . . . , n} to get a bi-infinite sequence 〈Yn,Un+i〉i∈Z, interpreted arbitrarily outside its natural
range. If there is a weak limit 〈Yi〉i∈Z as n → ∞ of these randomly centered sequences, then the
limit is stationary, and conversely any stationary sequence can be obtained trivially as such a
limit.

By analogy, then, given a finite graph, take a uniform random vertex as root. Such a randomly
rooted graph automatically has a certain property (in short, if mass is redistributed in the graph,
then the expected mass that leaves the root is equal to the expected mass the arrives at the
root) and in Section 2, we abstract this property as unimodularity. It is then immediate that
any infinite random rooted graph that is a limit (in an appropriate sense that we call “random
weak limit”) of uniformly randomly rooted finite graphs will be unimodular, whereas the above
question asks conversely whether any unimodular random rooted graph arises as a random weak
limit of some sequence of randomly rooted finite graphs.

Additional motivation for the definition arises from random walk considerations. Given any
random rooted graph, simple random walk induces a Markov chain on rooted graphs. Unimodu-
larity of a probability measure µ on rooted graphs is equivalent to the property that a reversible
stationary distribution for this chain is given by the root-degree biasing of µ, just as on finite
graphs, a stationary distribution for simple random walk is proportional to the vertex degrees;
see Section 4.

Let us return now to the case of deterministic graphs. An apparently minor relaxation of the
Cayley graph property is the “transitive” property (that there is an automorphism taking any
vertex to any other vertex). By analogy with the shift-invariant interpretation of stationary
sequences, one might expect every transitive graph to fit into our set-up. But this is false.
Substantial research over the last ten years has shown that the most useful regularity condition
is that of a unimodular transitive graph (or, more generally, quasi-transitive). Intuitively, this is
an unrooted transitive graph that can be given a random root in such a way that each vertex
is equally likely to be the root. This notion is, of course, precise in itself for a finite graph.
To understand how this is extended to infinite graphs, and then to unimodular random rooted
graphs, consider a finite graph G and a function f(x, y) of ordered pairs of vertices of G. Think
of f(x, y) as an amount of mass that is sent from x to y. Then the total mass on the graph
G before transport equals the total after, since mass is merely redistributed on the graph. We
shall view this alternatively as saying that for a randomly uniformly chosen vertex, the expected
mass it receives is equal to the expected mass it sends out. This, of course, depends crucially
on choosing the vertex uniformly and, indeed, characterizes the uniform measure among all
probability measures on the vertices.

Consider now an infinite transitive graph, G. Since all vertices “look the same”, we could just
fix one, o, rather than try to choose one uniformly. However, a mass transport function f will
not conserve the mass at o without some assumption on f to make up for the fact that o is
fixed. Although it seems special at first, it turns out that a very useful assumption is that f is
invariant under the diagonal action of the automorphism group of G. (For a finite graph that
happened to have no automorphisms other than the identity, this would be no restriction at all.)
This is still not enough to guarantee “conservation of mass”, i.e., that

∑

x

f(o, x) =
∑

x

f(x, o) , (1.1)

but it turns out that (1.1) does hold when the automorphism group of G is unimodular. Here,
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“unimodular” is used in its original sense that the group admits a non-trivial Borel measure that
is invariant under both left and right multiplication by group elements. We call G itself unimod-
ular in that case; see Sections 2 and 3 for more on this concept. The statement that (1.1) holds
under these assumptions is called the Mass-Transport Principle for G. If G is quasi-transitive,
rather than transitive, we still have a version of (1.1), but we can no longer consider only one
fixed vertex o. Instead, each orbit of the automorphism group must have a representative ver-
tex. Furthermore, it must be weighted “proportionally to its frequency” among vertices; see
Theorem 3.1. This principle was introduced to the study of percolation by Häggström (1997),
then developed and exploited heavily by Benjamini, Lyons, Peres, and Schramm (1999b), here-
inafter referred to as BLPS (1999b). Another way of stating it is that (1.1) holds in expectation
when o is chosen randomly by an appropriate probability measure. If we think of o as the root,
then we arrive at the notion of random rooted graphs, and the corresponding statement that
(1.1) holds in expectation is a general form of the Mass-Transport Principle. This general form
was called the “Intrinsic Mass-Transport Principle” by Benjamini and Schramm (2001b). We
shall call a probability measure on rooted graphs unimodular precisely when this general form
of the Mass-Transport Principle holds. We develop this in Section 2.

Thus, we can extend many results known for unimodular quasi-transitive graphs to our new
setting of unimodular random rooted graphs, as noted by Benjamini and Schramm (2001b).
As a bonus, our set-up allows the treatment of quasi-transitive graphs to be precisely parallel to
that of transitive graphs, with no additional notation or thought needed, which had not always
been the case previously.

To state results in their natural generality, as well as for technical convenience, we shall work
in the setting of networks, which are just graphs with “marks” (labels) on edges and vertices.
Mainly, this paper is organized to progress from the most general to the most specific models. An
exception is made in Section 3, where we discuss random networks on fixed underlying graphs.
This will not only help to understand and motivate the general setting, but also will be useful
in deriving consequences of our general results.

Section 4 elaborates the comment above about reversible stationary distributions for random
walk, discussing extremality and invariant σ-fields, speed of random walk, and continuous-time
random walk and their explosions. Section 5 discusses a trace associated to unimodular random
networks and comparison of return probabilities of different continuous-time random walks,
which partially answers a question of Fontes and Mathieu. We then write out the extensions to
unimodular random rooted graphs of results known for fixed graphs in the context of percolation
(Section 6), spanning forests (Section 7) and amenability (Section 8). These extensions are in
most (though not all) cases straightforward. Nevertheless, we think it is useful to list these
extensions in the order they need to be proved so that others need not check the entire (sometimes
long) proofs or chains of theorems from a variety of papers. Furthermore, we were required to
find several essentially new results along the way.

In order to appreciate the scope of our results, we list many examples of unimodular probability
measures in Section 9. In particular, there is a significant and important overlap between our
theory and the theory of graphings of measure-preserving equivalence relations. This overlap is
well known among a few specialists, but deserves to be made more explicit. We do that here in
Example 9.9.

Among several open problems, we spotlight a special case of Question 2.4: Suppose we are given
a partial order on the mark space and two unimodular probability measures, one stochastically
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dominating the other. That is, there is a monotone coupling of the two unimodular distributions
that puts the networks on the same graphs, but has higher marks for the second network than
for the first. Does this imply the existence of a unimodular monotone coupling? A positive
answer would be of great benefit in a variety of ways.

Another especially important open question is Question 10.1, whether every unimodular prob-
ability measure is a limit of uniformly rooted finite networks. For example, in the case that
the random rooted infinite network is just a Cayley graph (rooted, say, at the identity) with
the edges marked by the generators, a positive answer to this question on finite approximation
would answer a question of Weiss (2000), by showing that all finitely generated groups are
“sofic”, although this is contrary to the belief expressed by Weiss (2000). (Sofic groups were
introduced, with a different definition, by Gromov (1999); see Elek and Szabó (2004) for a
proof that the definitions are equivalent.) This would establish several conjectures, since they
are known to hold for sofic groups: the direct finiteness conjecture of Kaplansky (1969) on
group algebras (see Elek and Szabó (2004)), a conjecture of Gottschalk (1973) on “surjunctive”
groups in topological dynamics (see Gromov (1999)), the Determinant Conjecture on Fuglede-
Kadison determinants (see Elek and Szabó (2005)), and Connes’s (Connes (1976)) Embedding
Conjecture for group von Neumann algebras (see Elek and Szabó (2005)). The Determinant
Conjecture in turn implies the Approximation Conjecture of Schick (2001) and the Conjecture
of Homotopy Invariance of L2-Torsion due to Lück (1994); see Chap. 13 of Lück (2002) for these
implications and more information. Weiss (2000) gave another proof of Gottschalk’s conjecture
for sofic groups. One may easily extend that proof to show a form of Gottschalk’s conjecture
for all quasi-transitive unimodular graphs that are limits of finite graphs, but there are easy
counterexamples for general transitive graphs.

Further discussion of the question on approximation by finite networks is given in Section 10.
A positive answer would provide solid support for the intuition that the root of a unimodular
random rooted network is equally likely to be any vertex. Section 10 also contains some variations
that would result from a positive answer and some additional consequences for deterministic
graphs.

The notion of weak convergence of rooted locally finite graphs or networks (needed to make
sense of convergence of randomly rooted finite graphs to a limit infinite graph) has arisen before
in several different contexts. Of course, the special case where the limit network is a Cayley
diagram was introduced by Gromov (1999) and Weiss (2000). In the other cases, the limits
provide examples of unimodular random rooted graphs. Aldous (1991) gives many examples
of models of random finite trees which have an infinite-tree limit (and one such example, the
limit of uniform random labeled trees being what is now called the Poisson-Galton-Watson tree,
PGW∞(1), goes back to Grimmett (1980/81)). The idea that random weak limits of finite
planar graphs of uniformly bounded degree provide an interesting class of infinite planar graphs
was developed by Benjamini and Schramm (2001b), who showed that random walk on almost
any such limit graph is recurrent. (Thus, such graphs do not include regular trees or hyperbolic
graphs, other than trivial examples like Z.) A specialization to random weak limits of plane
triangulations was studied in more detail in interesting recent work of Angel and Schramm
(2003) and Angel (2003).

Example 9.7 describes an infinite-degree tree, arising as a limit of weighted finite complete
graphs. This example provides an interface between our setting and related ideas of “local weak
convergence”and“the objective method in the probabilistic analysis of algorithms”. A prototype
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is that the distribution of n random points in a square of area n converges in a natural sense as
n → ∞ to the distribution of a Poisson point process on the plane of unit intensity. One can ask
whether solutions of combinatorial optimization problems over the n random points (minimum
spanning tree, minimum matching, traveling salesman problem) converge to limits that are
the solutions of analogous optimization problems over the Poisson point process in the whole
plane. Example 9.7 can be regarded as a mean-field analogue of random points in the plane,
and n → ∞ limits of solutions of combinatorial optimization problems within this model have
been studied using the non-rigorous cavity method from statistical physics. Aldous and Percus
(2003) illustrate what can be done by non-rigorous means, while Aldous and Steele (2004)
survey introductory rigorous theory.

The reader may find it helpful to keep in mind one additional example, a unimodular version of
family trees of Galton-Watson branching processes; see also Example 10.2.

Example 1.1 (Unimodular Galton-Watson). Let 〈pk ; k ≥ 0〉 be a probability distribution on
N. Take two independent Galton-Watson trees with offspring distribution 〈pk〉, each starting
with one particle, the root, and join them by a new edge whose endpoints are their roots.
Root the new tree at the root of the first Galton-Watson tree. This is augmented Galton-
Watson measure, AGW . (If p0 6= 0, then we have the additional options to condition on
either non-extinction or extinction of the joined trees.) Now bias by the reciprocal of the
degree of the root to get unimodular Galton-Watson measure, UGW. In different language,
Lyons, Pemantle, and Peres (1995) proved that this measure, UGW, is unimodular. Note that
the mean degree of the root is

deg(UGW) =




∑

k≥0

pk

k + 1




−1

. (1.2)

2 Definitions and Basics

We denote a (multi-)graph G with vertex set V and undirected edge set E by G = (V, E). When
there is more than one graph under discussion, we write V(G) or E(G) to avoid ambiguity. We
denote the degree of a vertex x in a graph G by degG(x). Simple random walk on G is the
Markov chain whose state space is V and whose transition probability from x to y equals the
number of edges joining x to y divided by degG(x).

A network is a (multi-)graph G = (V, E) together with a complete separable metric space Ξ
called the mark space and maps from V and E to Ξ. Images in Ξ are called marks. Each
edge is given two marks, one associated to (“at”) each of its endpoints. The only assumption on
degrees is that they are finite. We shall usually assume that Ξ is Baire space N

N, since every
uncountable complete separable metric space is Borel isomorphic to Baire space by Kuratowski’s
theorem (Theorem 15.10 of Royden (1988)). We generally omit mention of the mark maps from
our notation for networks when we do not need them. For convenience, we consider graphs as
special cases of networks in which all marks are equal to some fixed mark.

We now define ends in graphs. In the special case of a tree, an infinite path that starts at any
vertex and does not backtrack is called a ray. Two rays are equivalent if they have infinitely
many vertices in common. An equivalence class of rays is called an end. In a general infinite
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graph, G, an end of G is an equivalence class of infinite simple paths in G, where two paths are
equivalent if for every finite K ⊂ V(G), there is a connected component of G \K that intersects
both paths.

Let G be a graph. For a subgraph H, let its (internal) vertex boundary ∂VH be the set of
vertices of H that are adjacent to some vertex not in H. We say that G is (vertex) amenable
if there exists a sequence of subsets Hn ⊂ V(G) with

lim
n→∞

|∂VHn|

|V(Hn)|
= 0 ,

where |•| denotes cardinality. Such a sequence is called a Følner sequence. A finitely generated
group is amenable if its Cayley graph is amenable. For example, every finitely generated abelian
group is amenable. For more on amenability of graphs and groups, see BLPS (1999b).

A homomorphism ϕ : G1 → G2 from one graph G1 = (V1, E1) to another G2 = (V2, E2) is
a pair of maps ϕV : V1 → V2 and ϕE : E1 → E2 such that ϕV maps the endpoints of e to the
endpoints of ϕE(e) for every edge e ∈ E1. When both maps ϕV : V1 → V2 and ϕE : E1 → E2

are bijections, then ϕ is called an isomorphism. When G1 = G2, an isomorphism is called an
automorphism. The set of all automorphisms of G forms a group under composition, denoted
by Aut(G). The action of a group Γ on a graph G by automorphisms is said to be transitive if
there is only one Γ-orbit in V(G) and to be quasi-transitive if there are only finitely many orbits
in V(G). A graph G is transitive or quasi-transitive according as whether the corresponding
action of Aut(G) is. For example, every Cayley graph is transitive. All the same terms are
applied to networks when the maps in question preserve the marks on vertices and edges.

A locally compact group is called unimodular if its left Haar measure is also right invariant.
In particular, every discrete countable group is unimodular. We call a graph G unimodular
if Aut(G) is unimodular, where Aut(G) is given the weak topology generated by its action on
G. Every Cayley graph and, as Soardi and Woess (1990) and Salvatori (1992) proved, every
quasi-transitive amenable graph is unimodular. See Section 3 and BLPS (1999b) for more details
on unimodular graphs.

A rooted network (G, o) is a network G with a distinguished vertex o of G, called the root.
A rooted isomorphism of rooted networks is an isomorphism of the underlying networks that
takes the root of one to the root of the other. We generally do not distinguish between a rooted
network and its isomorphism class. When needed, however, we use the following notation to make
these distinctions: G will denote a graph, G will denote a network with underlying graph G, and
[G, o] will denote the class of rooted networks that are rooted-isomorphic to (G, o). We shall use
the following notion introduced (in slightly different generalities) by Benjamini and Schramm
(2001b) and Aldous and Steele (2004). Let G∗ denote the set of rooted isomorphism classes of
rooted connected locally finite networks. Define a metric on G∗ by letting the distance between
(G1, o1) and (G2, o2) be 1/(1 + α), where α is the supremum of those r > 0 such that there is
some rooted isomorphism of the balls of (graph-distance) radius ⌊r⌋ around the roots of Gi such
that each pair of corresponding marks has distance less than 1/r. It is clear that G∗ is separable
and complete in this metric. For probability measures µ, µn on G∗, we write µn ⇒ µ when µn

converges weakly with respect to this metric.

For a probability measure µ on rooted networks, write deg(µ) for the expectation of the degree
of the root with respect to µ. In the theory of measured equivalence relations (Example 9.9),
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this is twice the cost of the graphing associated to µ. Also, by the degree of µ we mean the
distribution of the degree of the root under µ.

For a locally finite connected rooted network, there is a canonical choice of a rooted network
in its rooted-isomorphism class. More specifically, there is a continuous map f from G∗ to the
space of networks on N rooted at 0 such that f

(
[G, o]

)
∈ [G, o] for all [G, o] ∈ G∗. To specify this,

consider the following total ordering on rooted networks with vertex set N and root 0. First,
total order N × N by the lexicographic order: (i1, j1) ≺ (i2, j2) if either i1 < i2 or i1 = i2 and
j1 < j2. Second, the lexicographic order on Baire space Ξ is also a total order. We consider
networks on N rooted at 0. Define a total order on such networks as follows. Regard the edges
as oriented for purposes of identifying the edges with N × N; the mark at i of an edge between
i and j will be considered as the mark of the oriented edge (i, j). Suppose we are given a pair
of networks on N rooted at 0. If they do not have the same edge sets, then the network that
contains the smallest edge in their symmetric difference is deemed to be the smaller network. If
they do have the same edge sets, but not all the vertex marks are the same, then the network
that contains the vertex with the smaller mark on the least vertex where they differ is deemed
the smaller network. If the networks have the same edge sets and the same vertex marks, but
not all the edge marks are the same, then the network that contains the oriented edge with
the smaller mark on the least oriented edge where they differ is deemed the smaller network.
Otherwise, the networks are identical.

We claim that the rooted-isomorphism class of each locally finite connected network contains a
unique smallest rooted network on N in the above ordering. This is its canonical representative.
To prove our claim, consider only the networks in the class that have vertex set N and are rooted
at 0. It is fairly easy to see that there is a smallest graph that supports a network in the class:
the neighbors of 0 are [1, n1] for some n1 ≥ 1, the neighbors of 1, besides 0, are [n1 + 1, n2]
for some n2 ≥ n1, the neighbors of 2, other than possibly 0 and 1, are [n2 + 1, n3] for some
n3 ≥ n2, etc. In general, the neighbors of k ≥ 1 that are larger than k are [nk +1, nk+1] for some
nk+1 ≥ nk. Write n0 := 0. Let A−1 be the set of networks in the class that are on this smallest
graph. All have the same mark at 0. Write ψ(k) for the mark at a vertex k and ψ(j, k) for the
mark at the oriented edge (j, k). Define Ak recursively as follows. Given Ak−1, let Ak be the
subset of networks in Ak−1 such that the marks ψ(j) are increasing for j ∈ [nk + 1, nk+1]. Then
let B−1 :=

⋂
k Ak. This is non-empty. Now define Bk recursively by letting Bk be the subset of

Bk−1 such that j 7→ ψ(k, j) is increasing on [nk + 1, nk+1]. The set
⋂

k Bk is then a singleton,
the desired canonical representative.

For a (possibly disconnected) network G and a vertex x ∈ V(G), write Gx for the connected
component of x in G. If G is a network with probability distribution µ on its vertices, then µ
induces naturally a distribution on G∗, which we also denote by µ; namely, the probability of
(Gx, x) is µ(x). More precisely, µ

(
[Gx, x]

)
:=

∑{
µ(y) ; y ∈ V(G), (Gy, y) ∈ [Gx, x]

}
. For a

finite network G, let U(G) denote the distribution on G∗ obtained this way by choosing a uniform
random vertex of G as root. Suppose that Gn are finite networks and that µ is a probability

measure on G∗. We say the random weak limit of Gn is µ if U(Gn) ⇒ µ. If µ
({

[G, o]
})

= 1

for a fixed transitive network G (and (any) o ∈ V(G)), then we say that the random weak
limit of Gn is G.

As usual, call a collection C of probability measures on G∗ tight if for each ǫ > 0, there is a
compact set K ⊂ G∗ such that µ(K) > 1 − ǫ for all µ ∈ C. Because G∗ is complete, any tight
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collection has a subsequence that possesses a weak limit.

The class of probability measures µ that arise as random weak limits of finite networks is
contained in the class of unimodular µ, which we now define. Similarly to the space G∗, we
define the space G∗∗ of isomorphism classes of locally finite connected networks with an ordered
pair of distinguished vertices and the natural topology thereon. We shall write a function f on
G∗∗ as f(G, x, y).

Definition 2.1. Let µ be a probability measure on G∗. We call µ unimodular if it obeys the
Mass-Transport Principle: For all Borel f : G∗∗ → [0,∞], we have

∫ ∑

x∈V(G)

f(G, o, x) dµ
(
[G, o]

)
=

∫ ∑

x∈V(G)

f(G, x, o) dµ
(
[G, o]

)
. (2.1)

Let U denote the set of unimodular Borel probability measures on G∗.

Note that to define the sums that occur here, we choose a specific network from its rooted-
isomorphism class, but which one we choose makes no difference when the sums are computed.
We sometimes call f(G, x, y) the amount of “mass” sent from x to y. The motivation for the
name“unimodular” is two fold: One is the extension of the concept of unimodular automorphism
groups of networks. The second is that the Mass-Transport Principle expresses the equality of
two measures on G∗∗ associated to µ, the “left” measure µL defined by

∫

G∗∗

f dµL :=

∫

G∗

∑

x∈V(G)

f(G, o, x) dµ
(
[G, o]

)

and the “right” measure µR defined by
∫

G∗∗

f dµR :=

∫

G∗

∑

x∈V(G)

f(G, x, o) dµ
(
[G, o]

)
.

Thus, µ is unimodular iff µL = µR, which can also be expressed by saying that the left measure
is absolutely continuous with respect to the right measure and has Radon-Nikodým derivative
1.

It is easy to see that any µ that is a random weak limit of finite networks is unimodular, as
observed by Benjamini and Schramm (2001b), who introduced this general form of the Mass-
Transport Principle under the name “intrinsic Mass-Transport Principle”. The converse is open.

A special form of the Mass-Transport Principle was considered, in different language, by
Aldous and Steele (2004). Namely, they defined µ to be involution invariant if (2.1) holds
for those f supported on (G, x, y) with x ∼ y. In fact, the Mass-Transport Principle holds for
general f if it holds for these special f :

Proposition 2.2. A measure is involution invariant iff it is unimodular.

Proof. Let µ be involution invariant. The idea is to send the mass from x to y by single steps,
equally spread among the shortest paths from x to y. For the proof, we may assume that
f(G, x, y) = 0 unless x and y are at a fixed distance, say k, from each other, since any f is a sum
of such f . Now write L(G, x, y) for the set of paths of length k from x to y. Let nj(G, x, y; z, w)
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be the number of paths in L(G, x, y) such that the jth edge goes from z to w. Define fj(G, z, w)
for 1 ≤ j ≤ k and z, w ∈ V(G) by

fj(G, z, w) :=
∑

x,y∈V(G)

f(G, x, y)nj(G, x, y; z, w)

|L(G, x, y)|
.

Then fj(G, z, w) = 0 unless z ∼ w. Furthermore, fj(G, z, w) := fj(G
′, z′, w′) if (G, z, w) is

isomorphic to (G′, z′, w′). Thus, fj is well defined and Borel on G∗∗, whence involution invariance
gives us ∫ ∑

x∈V(G)

fj(G, o, x) dµ(G, o) =

∫ ∑

x∈V(G)

fj(G, x, o) dµ(G, o) .

On the other hand, ∑

x∈V(G)

f(G, o, x) =
∑

x∈V(G)

f1(G, o, x) ,

∑

x∈V(G)

f(G, x, o) =
∑

x∈V(G)

fk(G, x, o) ,

and for 1 ≤ j < k, we have

∑

x∈V(G)

fj(G, x, o) =
∑

x∈V(G)

fj+1(G, o, x) .

Combining this string of equalities yields the desired equation for f .

Occasionally one uses the Mass-Transport Principle for functions f that are not nonnegative. It
is easy to see that this use is justified when

∫ ∑

x∈V(G)

|f(G, o, x)| dµ(G, o) < ∞ .

As noted by Oded Schramm (personal communication, 2004), unimodularity can be defined for
probability measures on other structures, such as hypergraphs, while involution invariance is
limited to graphs (or networks on graphs).

We shall sometimes use the following property of marks. Intuitively, it says that each vertex has
positive probability to be the root.

Lemma 2.3 (Everything Shows at the Root). Suppose that µ is a unimodular probability mea-
sure on G∗. Let ξ0 be a fixed mark and Ξ0 be a fixed Borel set of marks. If the mark of the root
is a.s. ξ0, then the mark of every vertex is a.s. ξ0. If every edge incident to the root a.s. has its
edge mark at the root in Ξ0, then all edge marks a.s. belong to Ξ0.

Proof. In the first case, each vertex sends unit mass to each vertex with a mark different from
ξ0. The expected mass received at the root is zero. Hence the expected mass sent is 0. The
second case is a consequence of the first, where we put the mark ξ0 at a vertex when all the edge
marks at that vertex lie in Ξ0.

When we discuss percolation in Section 6, we shall find it crucial that we have a unimodular
coupling of the various measures (given by the standard coupling of Bernoulli percolation in this
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case). It would also be very useful to have unimodular couplings in more general settings. We
now discuss what we mean.

Suppose that R ⊆ Ξ × Ξ is a closed set, which we think of as a binary relation such as the
lexicographic order on Baire space. Given two measures µ1, µ2 ∈ U , say that µ1 is R-related to
µ2 if there is a probability measure ν, called an R-coupling of µ1 to µ2, on rooted networks
with mark space Ξ×Ξ such that ν is concentrated on networks all of whose marks lie in R and
whose marginal given by taking the ith coordinate of each mark is µi for i = 1, 2. In particular,
µ1 and µ2 can be coupled to have the same underlying rooted graphs.

It would be very useful to have a positive answer to the following question. Some uses are
apparent in Section 5 and in Section 10, while others appear in Lyons (2005) and are hinted at
elsewhere.

Question 2.4 (Unimodular Coupling). Let R ⊆ Ξ × Ξ be a closed set. If µ1, µ2 ∈ U and µ1 is
R-related to µ2, is there then a unimodular R-coupling of µ1 to µ2?

The case where µi are amenable is established affirmatively in Proposition 8.6. However, the
case where µi are supported by a fixed underlying non-amenable Cayley graph is open even
when the marks take only two values. Here is a family of examples to illustrate what we do not
know:

Question 2.5. Let T be the Cayley graph of Z2 ∗ Z2 ∗ Z2 with respect to the generators
a, b, c, which are all involutions. We label the edges with the generators. Fix three Borel
symmetric functions fa, fb, fc from [0, 1]2 to [0, 1]. Also, fix an end ξ of T . Let U(e) be i.i.d.
Uniform[0, 1] random variables indexed by the edges e of T . For each edge e, let Ie be the
two edges adjacent to e that lead farther from ξ and let Je be the two other edges that are
adjacent to e. Let L(e) denote the Cayley label of e, i.e., a, b, or c. For an edge e and a
pair of edges {e1, e2}, write f

(
e, {e1, e2}

)
:= fL(e)

(
U(e1), U(e2)

)
. Define X(e) := f(e, Ie) and

Y (e) := max
{
f(e, Ie), f(e, Je)

}
. Let ν be the law of (X, Y ). Let µ1 be the law of X and µ2 be

the law of Y . We use the same notation for the measures in U given by rooting T at the vertex
corresponding to the identity of the group. Let R be ≤ on [0, 1] × [0, 1]. Since X(e) ≤ Y (e) for
all e, ν is an R-coupling of µ1 to µ2. In addition, µ2 is clearly Aut(T )-invariant (recall that the
edges are labeled), while the same holds for µ1 since it is an i.i.d. measure. Thus, µi are both
unimodular for i = 1, 2. On the other hand, ν is not Aut(T )-invariant. Is there an invariant
R-coupling of µ1 to µ2? In other words, is there a unimodular R-coupling of µ1 to µ2?

Another example concerns monotone coupling of the wired and free uniform spanning
forests (whose definitions are given below in Section 7). This question was raised in
Benjamini, Lyons, Peres, and Schramm (2001), hereinafter referred to as BLPS (2001); a par-
tial answer was given by Bowen (2004). This is not the only interesting situation involving
graph inclusion. To be more precise about this relation, for a map ψ : Ξ → Ξ and a network
G, let ψ(G) denote the network obtained from G by replacing each mark with its image under
ψ. Given a Borel subset Ξ0 ⊆ Ξ and a network G, call the subnetwork consisting of those
edges both of whose edge marks lie in Ξ0 the Ξ0-open subnetwork of G. If µ and µ′ are two
probability measures on rooted networks, let us say that µ is edge dominated by µ′ if there
exists a measure ν on G∗, a Borel subset Ξ0 ⊆ Ξ, and Borel functions ψ, ψ′ : Ξ → Ξ such that if
(G′, o) denotes a network with law ν and (G, o) the component of o in the Ξ0-open subnetwork,
then

(
ψ(G), o

)
has law µ and

(
ψ′(G′), o

)
has law µ′. If the measure ν can be chosen to be
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unimodular, then we say that µ is unimodularly edge dominated by µ′. As a special case of
Question 2.4, we do not know whether the existence of such a measure ν that is not unimodular
implies the existence of ν that is unimodular when µ and µ′ are both unimodular themselves.

3 Fixed Underlying Graphs

Before we study general unimodular probability measures, it is useful to examine the relation-
ship between unimodularity in the classical sense for graphs and unimodularity in the sense
investigated here for random rooted network classes.

Given a graph G and a vertex x ∈ V(G), write Stab(x) := {γ ∈ Aut(G) ; γx = x} for the
stabilizer subgroup of x. Also, write [x] := Aut(G)x for the orbit of x. Recall the following
principle from BLPS (1999b):

Mass-Transport Principle. If G = (V, E) is any graph, f : V × V → [0,∞] is invariant
under the diagonal action of Aut(G), and o, o′ ∈ V, then

∑

z∈[o′]

f(o, z)|Stab(o′)| =
∑

y∈[o]

f(y, o′)|Stab(y)| .

Here, |•| denotes Haar measure on Aut(G), although we continue to use this notation for cardi-
nality as well. Since Stab(x) is compact and open, 0 < |Stab(x)| < ∞. As shown in Schlichting
(1979) and Trofimov (1985),

|Stab(x)y|/|Stab(y)x| = |Stab(x)|/|Stab(y)| ; . (3.1)

It follows easily that G is unimodular iff

|Stab(x)y| = |Stab(y)x| (3.2)

whenever x and y are in the same orbit.

Theorem 3.1 (Unimodular Fixed Graphs). Let G be a fixed connected graph. Then G has a
random root that gives a unimodular measure iff G is a unimodular graph with

c :=
∑

i

|Stab(oi)|
−1 < ∞ , (3.3)

where {oi} is a complete orbit section. In this case, there is only one such measure µ on random
rooted graphs from G and it satisfies

µ([G, x]) = c−1|Stab(x)|−1 (3.4)

for every x ∈ V(G).

Of course, a similar statement holds for fixed networks. An example of a graph satisfying (3.3),
but that is not quasi-transitive, is obtained from the random weak limit of balls in a 3-regular
tree. That is, let V := N × N. Join (m, n) by edges to each of (2m, n − 1) and (2m + 1, n − 1)
for n ≥ 1. The result is a tree with only one end and

∣∣Stab
(
(m, n)

)∣∣ = 2n.

1465



Proof. Suppose first that G is unimodular and that c < ∞. Define µ by

∀i µ([G, oi]) := c−1|Stab(oi)|
−1 .

To show that µ is unimodular, let f : G∗∗ → [0,∞] be Borel. Since we are concerned only with
the graph G, we shall write f instead as a function f : V×V → [0,∞] that is Aut(G)-invariant.
Then

∫ ∑

x

f(o, x) dµ(G, o) = c−1
∑

i

∑

x

f(oi, x)|Stab(oi)|
−1

= c−1
∑

i

|Stab(oi)|
−1

∑

j

|Stab(oj)|
−1

∑

x∈[oj ]

f(oi, x)|Stab(oj)|

= c−1
∑

i

|Stab(oi)|
−1

∑

j

|Stab(oj)|
−1

∑

y∈[oi]

f(y, oj)|Stab(y)|

[by the Mass-Transport Principle for G]

= c−1
∑

i

|Stab(oi)|
−1

∑

j

|Stab(oj)|
−1

∑

y∈[oi]

f(y, oj)|Stab(oi)|

[by unimodularity of G]

= c−1
∑

j

∑

y

f(y, oj)|Stab(oj)|
−1

=

∫ ∑

y

f(y, o) dµ(G, o) .

Since µ satisfies the Mass-Transport Principle, it is unimodular.

Conversely, suppose that µ is a unimodular probability measure on rooted versions of G. To see
that G is unimodular, consider any u, v in the same orbit. Define

µ
(
[x]

)
:= µ

(
[G, x]

)
.

We first show that µ
(
[u]

)
> 0. Every graph isomorphic to G has a well-defined notion of vertices

of type [u]. Let each vertex x send mass 1 to each vertex of type [u] that is nearest to x. This
is a Borel function on G∗∗ if we transport no mass on graphs that are not isomorphic to G. The
expected mass sent is positive, whence so is the expected mass received. Since only vertices of
type [u] receive mass, it follows that µ

(
[u]

)
> 0, as desired.

Let f(x, y) := 1Γu,xv(y), where Γu,x := {γ ∈ Aut(G) ; γu = x}. Note that y ∈ Γu,xv iff x ∈ Γv,yu.
It is straightforward to check that f is diagonally invariant under Aut(G). Note that

|Stab(x)y|1[x](o) = |Γx,oy|
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for all x, y, o ∈ V(G). Therefore, we have

|Stab(u)v|µ([u]) =

∫
|Γu,ov| dµ(G, o) =

∫ ∑

x

1Γu,ov(x) dµ(G, o)

=

∫ ∑

x

f(o, x) dµ(G, o) =

∫ ∑

x

f(x, o) dµ(G, o)

[by the Mass-Transport Principle for µ]

=

∫ ∑

x

1Γu,xv(o) dµ(G, o) =

∫ ∑

x

1Γv,ou(x) dµ(G, o)

=

∫
|Γv,ou| dµ(G, o) = |Stab(v)u|µ([v]) .

That is,
|Stab(u)v|µ([u]) = |Stab(v)u|µ([v]) . (3.5)

Since u and v are in the same orbit, we have [u] = [v], so µ([u]) = µ([v]). Since µ([u]) > 0, we
obtain (3.2). That is, G is unimodular. Comparison of (3.5) with (3.1) shows (3.4).

Automorphism invariance for random unrooted networks on fixed underlying graphs is also
closely tied to unimodularity of random rooted networks. Here, we shall need to distinguish
between graphs, networks, and isomorphism classes of rooted networks. Recall that G denotes
a network whose underlying graph is G and [G, o] denotes an equivalence class of networks G
on G with root o.

Let G be a fixed connected unimodular graph satisfying (3.3). Fix a complete orbit section {oi}
of V(G). For a graph G′ and x ∈ V(G′), z ∈ V(G), let Φ(x, z) be the set of rooted isomorphisms,
if any, from (G′, x) to (G, z). When non-empty, this set carries a natural probability measure,
λ′

(G′,x;z) arising from the Haar probability measure on Stab(z). When Φ(x, z) = ∅, let λ′
(G′,x,z) :=

0. Define
λ(G′,x) :=

∑

z∈V(G)

λ′
(G′,x;z) .

This is the analogue for isomorphisms from G′ to G of Haar measure on Aut(G). In particular,
any γ ∈ Aut(G) pushes forward λ′

(G′,x,z) to λ′
(G′,x,γz).

For a graph G′ isomorphic to G and x ∈ V(G′), let τ(G′, x) := oi for the unique oi for which
Φ(x, oi) 6= ∅. Note that λ(G′,x) = λ(G′,y) when τ(G′, x) = τ(G′, y).

Every probability measure µ on G∗ that is concentrated on network classes whose underlying
graph is G induces a probability measure λµ on unrooted networks on G:

λµ(A) :=

∫ ∫

Φ
(
o, τ(G′, o)

) 1A(φG
′
) dλ(G′,o)(φ) dµ([G

′
, o])

for Borel sets A of networks on G. It is easy to see that this is well defined (the choice of (G
′
, o)

in its equivalence class not mattering).

Theorem 3.2 (Invariance and Unimodularity). Let G be a fixed connected unimodular graph
satisfying (3.3). Let ν be an Aut(G)-invariant probability measure on unrooted networks whose
underlying graph is G. Then randomly rooting the network as in (3.4) gives a measure µ ∈ U .
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Conversely, let µ ∈ U be supported on networks whose underlying graph is G. Then λµ is
Aut(G)-invariant.

Proof. The first part of the theorem is proved just as is the first part of Theorem 3.1, so we
turn to the second part. Let γ0 ∈ Aut(G) and F be a bounded Borel-measurable function of
networks on G. Invariance of λµ means that

∫
F (G) dλµ(G) =

∫
F (γ0G) dλµ(G). To prove that

this holds, let

f(G
′
, x, y) :=

∫

Φ
(
x, τ(G′, y)

)

∩Φ
(
y, γ0τ(G, y)

)
F (φG

′
) dλ(G′,y)(φ) .

It is straightforward to check that f is well defined and Borel on G∗∗. Therefore, unimodularity
of µ gives

∫
F (γ0G) dλµ(G) =

∫ ∫

Φ
(
o, τ(G′, o)

) F (γ0φG
′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫ ∫

Φ
(
o, γ0τ(G′, o)

) F (φG
′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫ ∑

x∈V(G′)

∫

Φ
(
x, τ(G′, o)

)

∩Φ
(
o, γ0τ(G′, o)

)
F (φG

′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫ ∑

x∈V(G′)

f(G
′
, x, o) dµ([G

′
, o])

=

∫ ∑

x∈V(G′)

f(G
′
, o, x) dµ([G

′
, o])

=

∫ ∑

x∈V(G′)

∫

Φ
(
o, τ(G′, x)

)

∩Φ
(
x, γ0τ(G′, x)

)
F (φG

′
) dλ(G′,x)(φ) dµ([G

′
, o])

=

∫ ∑

x ; τ(G′,x)=τ(G′,o)

∫

Φ
(
o, τ(G′, x)

)

∩Φ
(
x, γ0τ(G′, x)

)
F (φG

′
) dλ(G′,x)(φ) dµ([G

′
, o])

=

∫ ∑

x ; τ(G′,x)=τ(G′,o)

∫

Φ
(
o, τ(G′, o)

)

∩Φ
(
x, γ0τ(G′, o)

)
F (φG

′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫ ∑

x∈V(G′)

∫

Φ
(
o, τ(G′, o)

)

∩Φ
(
x, γ0τ(G′, o)

)
F (φG

′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫ ∫

Φ
(
o, τ(G′, o)

) F (φG
′
) dλ(G′,o)(φ) dµ([G

′
, o])

=

∫
F (G) dλµ(G) .
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Remark 3.3. As this section shows, unimodular quasi-transitive graphs are special cases of
unimodular rooted networks. However, sometimes one is interested in random networks on a
graph G that are not necessarily invariant under the full group Aut(G), but only under some
subgroup, Γ ⊂ Aut(G). This is common when G is a Cayley graph of Γ. In this case, we could
mark the edges by the generators they represent; that is, if x, y ∈ Γ and y = xa with a one of
the generators used to form G, then we can mark the edge [x, y] at x by a. This makes the full
automorphism group of the network G equal to Γ, rather than to Aut(G). The theory here then
goes through with only a complication of notation. However, given any graph G and any closed
subgroup Γ ⊂ Aut(G) that acts quasi-transitively on G, we do not know whether it is possible
to mark the edges and vertices of G to get a network whose automorphism group is equal to Γ.
Yet, the theory for quasi-transitive subgroups is the same; see BLPS (1999b).

4 Random Walks and Extremality

Random walks on networks, besides being of intrinsic interest, form an important tool for study-
ing networks. A random walk is most useful when it has a stationary measure, in other words,
when the distribution of (G, w0) is the same as the distribution of (G, w1), where w0 is the initial
location of the random walk and w1 is the next location of the random walk.

Consider simple random walk on a random graph chosen by a unimodular probability measure
µ on rooted graphs, where we start the random walk at the root. Just as for finite graphs, we
do not expect µ to be stationary for the random walk; rather, we get a stationary measure by
biasing µ by the degree of the root. The fact that this measure is stationary follows from the
definition of involution invariance; in fact, the definition is precisely that simple random walk
is reversible, i.e., that the distribution of

(
(G, w0), (G, w1)

)
is the same as the distribution of(

(G, w1), (G, w0)
)
, where (G, w0) has distribution µ biased by the degree of the root and w1

is a uniform random neighbor of the root.1 If deg(µ) < ∞, then we can normalize the biased
measure to obtain a probability measure.

In particular, recall from Example 1.1 the definition of the augmented Galton-Watson measure
AGW . In Lyons, Pemantle, and Peres (1995), it was remarked in reference to the stationarity
of AGW for simple random walk that “unlike the situation for finite graphs, there is no biasing
in favor of vertices of large degree”. However, we now see that contrary to this remark, the
situations of finite graphs and AGW are, in fact, parallel. That is because the biasing by the
degree has already been made part of the probability measure AGW. The correct comparison of
the uniform measure on vertices of finite graphs is to the unimodular Galton-Watson probability
measure on trees, UGW, because it is for this measure that “all vertices are equally likely to be
the root”.

More generally, we can consider stationarity of random walk in a random environment with
random scenery. Here, if the graph underlies a network, the marks are not restricted to play
a passive role, but may, in fact, determine the transition probabilities (as in Section 5) and
provide a scenery for the random walk. That is, a Borel function p : G∗∗ → [0, 1], written as
p : (G, x, y) 7→ pG(x, y), such that

∑
y∈V

pG(x, y) = 1 for all vertices x is called an environment.
A Borel map ν : G∗ → (0,∞), written ν : (G, x) 7→ νG(x), is called an initial bias. It is called

1Note that the degree times counting measure is reversible on every graph, regardless of unimodularity of the

measure on rooted graphs.
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p-stationary if for all G, the measure νG is stationary for the random walk on G given by the
environment pG. Write P∗ for the set of (equivalence classes of) pairs

(
(G, w0), 〈wn ; n ≥ 0〉

)

with (G, w0) ∈ G∗ and wn ∈ V(G). Let µ̂ denote the distribution on P∗ of the trajectory of the
Markov chain determined by the environment starting at o with initial distribution equal to µ
biased by νG(o). That is, if θ(G,o) denotes the probability measure on P∗ determined by the
environment on G with initial vertex w0 = o, then for all events B, we have

µ̂(B) :=

∫

G∗

θ(G,o)(B)νG(o) dµ(G, o) .

Let I denote the σ-field of events (in the Borel σ-field of G∗) that are invariant under non-rooted
isomorphisms. To avoid possible later confusion, note that this does not depend on the measure
µ, so that even if there are no non-trivial non-rooted isomorphisms µ-a.s., the σ-field I is still
not equal (mod 0) to the σ-field of µ-measurable sets. It is easy to see that for any µ ∈ U and
A ∈ I with µ(A) > 0, the probability measure µ( • | A) is also unimodular. Define the shift
S : P∗ → P∗ by

S
(
(G, w0), 〈wn〉

)
:=

(
(G, w1), 〈wn+1〉

)
.

The following extends Theorem 3.1 of Lyons and Schramm (1999b); the proof is essentially the
same.

Theorem 4.1 (Random Walk in a Random Environment and Random Scenery). Let µ be a
unimodular probability measure on G∗. Let p•(•) be an environment and ν•(•) be an initial bias
that is p-stationary. Let µ̂ be the corresponding measure on trajectories. Then µ̂ is stationary
for the shift. If p is also reversible with respect to ν•(•), then µ̂ is reversible, in other words, for
all events A, B, we have

µ̂[(G, w0) ∈ A, (G, w1) ∈ B] = µ̂[(G, w1) ∈ A, (G, w0) ∈ B] .

If ∫
νG(o) dµ(G, o) = 1 , (4.1)

then µ̂ is a probability measure.

Proof. The reversibility was not mentioned in prior work, so we give that proof here. Assuming
that p is ν-reversible, we have

µ̂[(G, w0) ∈ A, (G, w1) ∈ B] = E
[ ∑

x∈V(G)

1A(G, o)νG(o)pG(o, x)1B(G, x)
]

= E
[ ∑

x∈V(G)

1A(G, o)νG(x)pG(x, o)1B(G, x)
]
.

The Mass-Transport Principle now gives that this

= E
[ ∑

x∈V(G)

1A(G, x)νG(o)pG(o, x)1B(G, o)
]

= µ̂[(G, w1) ∈ A, (G, w0) ∈ B] .
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Remark 4.2. This theorem is made more useful by noticing that for any µ ∈ U , there is a choice
of p•(•) and ν•(•) that satisfies all the hypotheses, including (4.1). For example, if FG(x) denotes∑

y∼x 1/ degG(y), then let pG(x, y) := 1/[FG(x) degG(y)] and νG(x) := Z−1FG(x)/ degG(x),
where

Z :=

∫
FG(o)/ degG(o) dµ(G, o) .

It is clear that p is an environment. Since FG(o) ≤
∑

y∼x 1 = degG(o), we also have that Z < ∞,
so that ν is a p-stationary initial bias and p is ν-reversible.

Given a network with positive edge weights and a time t > 0, form the transition operator
Pt for continuous-time random walk whose rates are the edge weights; in the case of unbounded
weights (or degrees), we take the minimal process, which dies after an explosion. That is, if the
entries of a matrix A indexed by the vertices are equal off the diagonal to the negative of the
edge weights and the diagonal entries are chosen to make the row sums zero, then Pt := e−At;
in the case of unbounded weights, we take the self-adjoint extension of A corresponding to the
minimal process. The matrix A is called the infinitesimal generator or the Laplacian of the
network.

Corollary 4.3. Suppose that µ ∈ U is carried by networks with non-negative edge weights such
that the corresponding continuous-time Markov chain has no explosions a.s. Then µ is stationary
and reversible.

Proof. Fix t > 0 and let pG(x, y) := Pt(x, y). It is well known that p is reversible with respect
to the uniform measure νG ≡ 1. Thus, Theorem 4.1 applies.

We can also obtain a sufficient condition for lack of explosions:

Corollary 4.4. Suppose that µ ∈ U is carried by networks with non-negative edge weights cG(e)
such that Z := E[

∑
x∼o cG(o, x)] < ∞. Then the corresponding continuous-time Markov chain

has no explosions.

Proof. In this case, consider the discrete-time Markov chain corresponding to these weights. It
has a stationary probability measure arising from the choice νG(x) :=

∑
y∼o cG(x, y)/Z. It is

well known that explosions occur iff

∑

n≥0

νG(wn)−1 < ∞

with positive probability. However, stationarity guarantees that this sum is infinite a.s. (by the
Poincaré recurrence theorem).

Remark 4.5. It is possible for explosions to occur: For example, consider the uniform spanning
tree T in Z

2 (see BLPS (2001)). The only fact we use about T is that it has one end a.s. and
has an invariant distribution. Let cG(e) := 0 for e /∈ T and cG(e) := 2f(e) when e ∈ T and f(e)
is the number of vertices in the finite component of T \ e. Then it is easy to verify that the
corresponding continuous-time Markov chain explodes a.s.

Furthermore, explosions may occur on a fixed transitive graph that is not unimodular, even if
the condition in Corollary 4.4 is satisfied. To see this, let ξ be a fixed end of a regular tree
T of degree 3. Thus, for every vertex x in T , there is a unique ray xξ := 〈x0 = x, x1, x2, . . .〉
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starting at x such that xξ and yξ differ by only finitely many vertices for any pair x, y. Call x1

the ξ-parent of x, call x a ξ-child of x1, and call x2 the ξ-grandparent of x. Let G be the
graph obtained from T by adding the edges (x, x2) between each x and its ξ-grandparent. Then
G is a transitive graph, first mentioned by Trofimov (1985). In fact, every automorphism of G
fixes ξ. Now consider the following random weights on G. Put weight 0 on every edge in G that
is not in T . For each vertex of G, declare open the edge to precisely one of its two ξ-children,
chosen uniformly and independently for different vertices. The open components are rays. Let
the weight of every edge that is not open also be 0. If an edge (x, y) between a vertex x and its
ξ-parent y is open and y is at distance n from the beginning of the open ray containing (x, y),
then let the weight of the edge be (3/2)n. Since this event has probability 1/2n+1, the condition
of Corollary 4.4 is clearly satisfied. It is also clear that the Markov chain explodes a.s.

The class U of unimodular probability measures on G∗ is clearly convex. An element of U is
called extremal if it cannot be written as a convex combination of other elements of U . We
shall show that the extremal measures are those for which I contains only sets of measure 0 or 1.
Intuitively, they are the extremal measures for unrooted networks since the distribution of the
root is forced given the distribution of the unrooted network. For example, one may show that
UGW is extremal when conditioned on non-extinction. First, we show the following ergodicity
property, analogous to Theorem 5.1 of Lyons and Schramm (1999a). Recall that a σ-field is
called µ-trivial if all its elements have measure 0 or 1 with respect to µ.

Theorem 4.6 (Ergodicity). Let µ be a unimodular probability measure on G∗. Let p•(•) be an
environment that satisfies

∀G ∀x, y ∈ V(G) x ∼ y =⇒ pG(x, y) > 0 (4.2)

and ν•(•) be an initial bias that is p-stationary and satisfies (4.1). Let µ̂ be the corresponding
probability measure on trajectories. If I is µ-trivial, then every event that is shift invariant is
µ̂-trivial. More generally, the events B in the µ̂-completion of the shift-invariant σ-field are those
of the form

B =
{(

(G, o), w
)
∈ P∗ ; (G, o) ∈ A

}
△ C (4.3)

for some A ∈ I and some event C with µ̂(C) = 0.

Proof. Let B be a shift-invariant event. As in the proof of Theorem 5.1 of Lyons and Schramm
(1999a), we have θ(G,o)(B) ∈ {0, 1} µ-a.s. The set A of (G, o) where this probability equals 1
is in I by (4.2), and a little thought reveals that (4.3) holds for some C with µ̂(C) = 0. If I is
µ-trivial, then µ(A) ∈ {0, 1}, whence µ̂(B) ∈ {0, 1} as desired. Conversely, every event B of the
form (4.3) is clearly in the µ̂-completion of the shift-invariant σ-field.

We may regard the space P∗ as the space of sequences of rooted networks, where all roots
belong to the same network. Thus, P∗ is the natural trajectory space for the Markov chain
with the transition probability from (G, x) to (G, y) given by pG(x, y). With this interpretation,
Theorem 4.6 says that this Markov chain is ergodic when I is µ-trivial. The next theorem says
that this latter condition is, in turn, equivalent to extremality of µ.

Theorem 4.7 (Extremality). A unimodular probability measure µ on G∗ is extremal iff I is
µ-trivial.
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Proof. Let A ∈ I. If A is not µ-trivial, then we may write µ as a convex combination of µ
conditioned on A and µ conditioned on the complement of A. Each of these two new probability
measures is unimodular, yet distinct, so µ is not extremal.

Conversely, suppose that I is µ-trivial. Choose an environment and stationary initial bias that
satisfy (4.1) and (4.2), as in Remark 4.2. Let A be an event of G∗. Let α be the function on P∗

that gives the frequency of visits to A:

α
(
(G, w0), 〈wn〉)

)
:= lim inf

N→∞

1

N
|{n ≤ N ; (G, wn) ∈ A}| .

Theorem 4.1 allows us to apply the ergodic theorem to deduce that
∫

α dµ̂ = (νµ)(A), where
νµ stands for the measure d(νµ)(G, o) = νG(o)dµ(G, o). On the other hand, α is a shift-
invariant function, which, according to Theorem 4.6, means that α is a constant µ̂-a.s. Thus,
we conclude that α = (νµ)(A) µ̂-a.s. Consider any non-trivial convex combination of two
unimodular probability measures, µ1 and µ2, that gives µ. Then µ̂ is a (possibly different)
convex combination of µ̂1 and µ̂2. The above applies to each of µ̂i (i = 1, 2) and the associ-

ated probability measures aiνµi, where ai :=
(∫

νG(o) dµi(G, o)
)−1

. Therefore, we obtain that
a1(νµ1)(A) = (νµ)(A) = a2(νµ2)(A). Since this holds for all A, we obtain a1(νµ1) = a2(νµ2).
Since µ1 and µ2 are probability measures, this is the same as µ1 = µ2, whence µ is extremal.

We define the speed of a path 〈wn〉 in a graph G to be limn→∞ distG(w0, wn)/n when this limit
exists, where distG indicates the distance in the graph G.

The following extends Lemma 4.2 of Benjamini, Lyons, and Schramm (1999).

Proposition 4.8 (Speed Exists). Let µ be a unimodular probability measure on G∗ with an envi-
ronment and stationary initial distribution ν•(•) with

∫
νG(o) dµ(G, o) = 1, so that the associated

random walk distribution µ̂ is a probability measure. Then the speed of random walk exists µ̂-a.s.
and is equal µ̂-a.s. to an I-measurable function. The same holds for simple random walk when
deg(µ) < ∞.

Proof. Let fn

(
(G, o), w

)
:= distG

(
w(0), w(n)

)
. Clearly

fn+m

(
(G, o), w

)
≤ fn

(
(G, o), w

)
+ fm

(
Sn

(
(G, o), w

))
,

so that the Subadditive Ergodic Theorem ensures that the speed limn→∞ fn

(
(G, o), w

)
/n exists

µ̂-a.s. Since the speed is shift invariant, Theorem 4.6 shows that the speed is equal µ̂-a.s. to
an I-measurable function. The same holds for simple random walk since it has an equivalent
stationary probability measure (degree biasing) when deg(µ) < ∞.

In the case of simple random walk on trees, we can actually calculate the speed:

Theorem 4.9 (Speed on Trees). Let µ ∈ U be concentrated on infinite trees. If µ is extremal
and deg(µ) < ∞, then the speed of simple random walk is µ̂-a.s.

∫
degG(o) − 2

degG(o)
dµ(G, o) . (4.4)

This is positive iff deg(µ) > 2.
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Proof. Given a rooted tree (G, o) and x ∈ V(G), write |x| for the distance in G between o and
x. The speed of a path 〈wn〉 is the limit

lim
n→∞

1

n
|wn| = lim

n→∞

1

n

n−1∑

k=0

(
|wk+1| − |wk|

)
.

Now the strong law of large numbers for martingale differences (Feller (1971), p. 243) gives

lim
n→∞

1

n

n−1∑

k=0

(
|wk+1| − |wk|

)
= lim

n→∞

1

n

n−1∑

k=0

E
[
|wk+1| − |wk|

∣∣ 〈wi ; i ≤ k〉
]

a.s.

Provided wk 6= o, the kth term on the right equals

degG wk − 2

degG wk
. (4.5)

Since G is a.s. infinite, wk = o for only a set of k of density 0 a.s., whence the speed equals

lim
n→∞

1

n

n−1∑

k=0

degG wk − 2

degG wk
.

Since this is the limit of averages of an ergodic stationary sequence, the ergodic theorem tells us
that it converges a.s. to the mean of an element of the sequence, which is (4.4).

According to the Cauchy-Schwarz inequality,
∫

degG(o) − 2

degG(o)
dµ(G, o)

∫
degG(o)dµ(G, o) ≥

∫ (
degG(o) − 2

)
dµ(G, o) ,

which proves half of the last sentence. The other half follows from the trivial inequality
∫

degG(o) − 2

degG(o)
dµ(G, o) ≤

∫ (
degG(o) − 2

)
dµ(G, o) .

When we study percolation, the following consequence will be useful.

Proposition 4.10 (Comparison of Transience on Trees). Suppose µ ∈ U is concentrated on
networks whose underlying graphs are trees that are transient for simple random walk. Sup-
pose that the mark space is (0,∞), that marks ψ(•, •) on edges are the same at both endpoints,
that the environment is pG(x, y) := ψ(x, y)/νG(x), where νG(x) :=

∑
y∼x ψ(x, y), and that∫

νG(o) dµ(G, o) = 1, so that the associated random walk distribution µ̂ is a probability measure.
Then random walk is also transient with respect to the environment p•(•) µ-a.s.

Proof. Let A be the set of p•(•)-recurrent networks. Suppose that µ(A) > 0. By conditioning on
A, we may assume without loss of generality that µ(A) = 1. By Theorem 6.2 and the recurrence
of simple random walk on trees with at most two ends, we have deg(µ) > 2. Let ǫ > 0 be
sufficiently small that ∫

|{x ∼ o ; ψ(o, x) ≥ ǫ}| dµ(G, o) > 2 .
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Since finite trees have average degree strictly less than 2, is follows that the subnetwork (Gǫ, o),
defined to be the connected component of o formed by the edges with marks at least ǫ, is infinite
with positive probability. Let µ′ be the law of (Gǫ, o) when (G, o) has the law µ, and conditioned
on the event B that (Gǫ, o) is infinite. Then µ′ ∈ U and deg(µ′) > 2. By Proposition 4.9,
simple random walk has positive speed µ′-a.s., so, in particular, is transient a.s. Now simple
random walk is the walk corresponding to all edge weights in Gǫ being, say, 1/ǫ. Rayleigh’s
monotonicity principle (Doyle and Snell (1984) or Lyons with Peres (2008)) now implies that
random walk is transient µ̂-a.s. on B. Thus, A∩B = ∅. This contradicts our initial assumption
that µ(A) = 1.

The converse of Proposition 4.10 is not true, as there are transient reversible random walks on
1-ended trees (see Example 9.2 for an example of such graphs; weights can be defined appropri-
ately). Also, Proposition 4.10 does not extend to arbitrary networks, as one may construct an
invariant network on Z

3 that gives a recurrent random walk.

Given two probability measures µ and µ′ on rooted networks and one of the standard notions
of product networks, one can define the independent product µ ⊠ µ′ of the two measures by
choosing a network from each measure independently and taking their product, rooted at the
ordered pair of the original roots.

Proposition 4.11 (Product Networks). Let µ and µ′ be two unimodular probability measures
on G∗. Then their independent product µ⊠µ′ is also unimodular. If µ and µ′ are both extremal,
then so is µ ⊠ µ′.

Proof. Let Gn and G′
n be finite connected networks whose random weak limits are µ and µ′,

respectively. Then Gn × G′
n clearly has random weak limit µ ⊠ µ′, whence the product is

unimodular. Now suppose that both µ and µ′ are extremal. Let A ∈ I. Then A(G′,o′) :=
{(G, o) ; (G, o)×(G′, o′) ∈ A} ∈ I since Aut(G)×Aut(G′) ⊆ Aut(G×G′). Therefore, µA(G′,o′) ∈
{0, 1}. On the other hand, A(G′,o′) = A(G′,o′′) for all o′′ ∈ V(G′) because A ∈ I. Therefore,
B := {(G′, o′) ; µA(G′,o′) = 1} ∈ I, whence µ′B ∈ {0, 1}. Hence Fubini’s theorem tells us that
(µ ⊠ µ′)(A) ∈ {0, 1}, as desired.

Remark 4.12. Another type of product that can sometimes be defined does not always produce
an extremal measure from two extremal measures. That is, suppose that µ and µ′ are two
extremal unimodular probability measures on G∗ that, for simplicity, we assume are concentrated
on networks with a fixed underlying transitive graph, G. Let µ′′ be the measure on networks
given by taking a fixed root, o, and choosing the marks as (ψ, ψ′), where ψ gives a network with
law µ, ψ′ gives a network with law µ′, and ψ, ψ′ are independent. Then it may be that µ′′ is not
extremal. For an example, consider the following. Fix an irrational number, α. Given x ∈ [0, 1],
form the network Gx on the integer lattice graph by marking each integer n with the indicator
that the fractional part of nα + x lies in [0, 1/2]. Let µ be the law of (Gx, 0) when x is chosen
uniformly. Then µ is unimodular and extremal (by ergodicity of Lebesgue measure with respect
to rotation by α), but if µ′ = µ and µ′′ is the associated measure above, then µ′′ is not extremal
since when the marks come from x, y ∈ [0, 1], the fractional part of x − y is I-measurable.

It may be useful to keep in mind the vast difference between stationarity and reversibility in
this context. For example, let T be a 3-regular tree and ζ be an end of T . Mark each edge by
two independent random variables, one that is uniform on [0, 1] and the other uniform on [1, 2],
with the latter one at its endpoint closer to ζ and with all these random variables mutually
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independent for different edges. Then simple random walk is stationary in this scenery, but not
reversible, even though T is a Cayley graph.

5 Trace and Stochastic Comparison

There is a natural trace associated to every measure in U . This trace is useful for making
various comparisons. We illustrate this by extending results of Pittet and Saloff-Coste (2000)
and Fontes and Mathieu (2006) on return probabilities of continuous-time random walks.

Suppose that µ is a unimodular probability measure on G∗. Consider the Hilbert space
H :=

∫ ⊕
ℓ2

(
V(G)

)
dµ(G, o), a direct integral (see, e.g., Nielsen (1980) or Kadison and Ringrose

(1997), Chapter 14). Here, we always choose the canonical representative for each network,
which, recall, is a network on the vertex set N. The space H is defined as the set of (µ-
equivalence classes of) µ-measurable functions f defined on canonical rooted networks (G, o)
that satisfy f(G, o) ∈ ℓ2(N) and

∫
‖f(G, o)‖2 dµ(G, o) < ∞. We write f =

∫ ⊕
f(G, o) dµ(G, o).

The inner product is given by (f, g) :=
∫ (

f(G, o), g(G, o)
)
dµ(G, o). Let T : (G, o) 7→ TG,o be a

measurable assignment of bounded linear operators on ℓ2
(
V(G)

)
= ℓ2(N) with finite supremum

of the norms ‖TG,o‖. Then T induces a bounded linear operator T := Tµ :=
∫ ⊕

TG,o dµ(G, o)
on H via

Tµ :

∫ ⊕

f(G, o) dµ(G, o) 7→

∫ ⊕

TG,of(G, o) dµ(G, o) .

The norm ‖Tµ‖ of Tµ is the µ-essential supremum of ‖TG,o‖. Identify each x ∈ V(G) with
the vector 1{x} ∈ ℓ2

(
V(G)

)
. Let Alg = Alg(µ) be the von Neumann algebra of (µ-equivalence

classes of) such maps T that are equivariant in the sense that for all network isomorphisms
φ : G1 → G2, all o1, x, y ∈ V(G1) and all o2 ∈ V(G2), we have (TG1,o1x, y) = (TG2,o2φx, φy).
For T ∈ Alg, we have in particular that TG,o depends on G but not on the root o, so we shall
simplify our notation and write TG in place of TG,o. For simplicity, we shall even write T for
TG when no confusion can arise. Recall that if S and T are self-adjoint operators on a Hilbert
space H, we write S ≤ T if (Su, u) ≤ (Tu, u) for all u ∈ H. We claim that

Tr(T ) := Trµ(T ) := E
[
(TGo, o)

]
:=

∫
(TGo, o) dµ(G, o)

is a trace on Alg, i.e., Tr(•) is linear, Tr(T ) ≥ 0 for T ≥ 0, and Tr(ST ) = Tr(TS) for S, T ∈ Alg.
Linearity of Tr is obvious. Also, the second property is obvious since the integrand is nonnegative
for T ≥ 0. The third property follows from the Mass-Transport Principle: We have

E
[
(STo, o)

]
= E

[
(To, S∗o)

]
= E

[ ∑

x∈V(G)

(To, x)(x, S∗o)

]

= E

[ ∑

x∈V(G)

(To, x)(Sx, o)

]
= E

[ ∑

x∈V(G)

(Tx, o)(So, x)

]

= E
[
(TSo, o)

]
.

1476



In order to justify this use of the Mass-Transport Principle, we check absolute integrability:

E

[ ∑

x∈V(G)

|(To, x)(x, S∗o)|

]
≤

(
E

[ ∑

x∈V(G)

|(To, x)|2
]
E

[ ∑

x∈V(G)

|(x, S∗o)|2
])1/2

=

(
E

[
‖To‖2

]
E

[
‖S∗o‖2

])1/2

≤ ‖T‖ · ‖S‖ < ∞ .

A general property of traces that are finite and normal, as ours is, is that if S ≤ T , then
Trf(S) ≤ Trf(T ) for any increasing function f : R → R. One proof is as follows. First, if f ≥ 0
and T is self-adjoint, then f(T ) ≥ 0. Second, if S, T ≥ 0, then Tr(ST ) = Tr

(
S1/2TS1/2

)
≥ 0

since S1/2TS1/2 = (T 1/2S1/2)∗(T 1/2S1/2) ≥ 0. Third, if f is an increasing polynomial and
S ≤ T , then

d

dz

(
Trf

(
S + z(T − S)

))
= Tr

(
f ′

(
S + z(T − S)

)
(T − S)

)
≥ 0

for z ≥ 0 since f ′ ≥ 0, S + z(T − S) is self-adjoint, and 0 ≤ T − S. This shows that with
these restrictive hypotheses, Trf(S) ≤ Trf(T ). Fourth, any monotone increasing function
can be approximated by an increasing polynomial. This shows the result in general. See
Brown and Kosaki (1990), pp. 6–7 for another proof. (They stated the result only for con-
tinuous f with f(0) = 0 because they dealt with more general traces and operators, but such
restrictions are not needed in our situation.)

Recall from Section 4 that given a network with positive edge weights and a time t > 0, we form
the transition operator Pt for continuous-time random walk whose rates are the edge weights;
in the case of unbounded weights (or degrees), we take the minimal process, which dies after an
explosion. If A is the Laplacian of the network, then Pt := e−At.

Theorem 5.1 (Return Probabilities). Let the mark space be R
+ and let R be ≤. Let µi ∈ U

have edge weights that are the same at both ends of each edge (i = 1, 2). Suppose that there is a

unimodular R-coupling ν of µ1 to µ2. Let P
(i)
t be the transition operators corresponding to the

edge weights (i = 1, 2). Then

∫
P

(1)
t (o, o) dµ1(G, o) ≥

∫
P

(2)
t (o, o) dµ2(G, o)

for all t > 0.

Proof. Suppose first that the weights are bounded a.s. The assumptions tell us that the infinites-
imal generators A(i) ∈ Alg satisfy A(1) ≤ A(2), so that for all t > 0, we have −A(1)t ≥ −A(2)t.

Therefore
∫

P
(1)
t (o, o) dµ1(G, o) = Trν(e

−A(1)t) ≥ Trν(e
−A(2)t) =

∫
P

(2)
t (o, o) dµ2(G, o).

In the case of unbounded weights, note that P
(i)
t (o, o) = limn→∞ P

(i,n)
t (o, o) for i = 1, 2, where

the superscript n refers to truncating all weights larger than n. (This is because we are looking
at the minimal process, which is reversible.) Thus, the result follows from the bounded case,
which we have proved.

Theorem 5.1 extends a result of Fontes and Mathieu (2006), who proved it in the case of Z
d for

processes without explosions. Pittet and Saloff-Coste (2000), Lemma 3.1, prove an analogous
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comparison result for Cayley graphs, but with different assumptions on the pairs of rates (which
are deterministic for them). The case of Theorem 5.1 specialized to finite networks was proved
earlier by Benjamini and Schramm; see Theorem 3.1 of Heicklen and Hoffman (2005).

This theorem also gives a partial answer to a question of Fontes and Mathieu, who asked whether
the same holds when µi are supported on a single Cayley graph, are invariant under the group
action, and are R-related. For example, the theorem shows that it holds when the networks
(which are the environments for the random walks) are given by i.i.d. edge marks, since in such
a case, it is trivial that being R-related implies the existence of a unimodular R-coupling. Also,
in the amenable case, the existence of a unimodular R-coupling follows from the existence of an
R-coupling, as is proved in Proposition 8.6; in the case of fixed amenable transitive graphs, this
is a well-known averaging principle.

Question 5.2. Does Theorem 5.1 hold without the assumption of a unimodular R-coupling,
but just an R-coupling?

This question asks whether we can compare the traces from two different von Neumann algebras.
One situation where we can do this is as follows.

If µ1 and µ2 are probability measures on G∗, then a probability measure ν on G∗ × G∗ whose
coordinate marginals are µ1 and µ2 is called a monotone graph coupling of µ1 and µ2 if ν is
concentrated on pairs of rooted networks

(
(G1, o), (G2, o)

)
that share the same roots and satisfy

V(G1) ⊆ V(G2). In this instance, let V1 be the inclusion of ℓ2
(
V(G1)

)
in ℓ2

(
V(G2)

)
.

When there is a unimodular coupling (as in Theorem 5.1), the following result is easy. The fact
that it holds more generally is useful.

Proposition 5.3 (Trace Comparison). Let ν be a monotone graph coupling of two unimodular
probability measures µ1 and µ2. Let T (i) ∈ Alg(µi) be self-adjoint with

T
(1)
G1

≤ V ∗
1 T

(2)
G2

V1 (5.1)

for ν-almost all pairs
(
(G1, o), (G2, o)

)
. Then Trµ1(T

(1)) ≤ Trµ2(T
(2)). If in addition for ν-

almost all pairs
(
(G1, o), (G2, o)

)
and for all x ∈ V(G1) we have

degG1
(x) < degG2

(x) =⇒
(
T

(1)
G1

x, x
)

<
(
T

(2)
G2

x, x
)
, (5.2)

then either
Trµ1(T

(1)) < Trµ2(T
(2)) (5.3)

or
V(G1) = V(G2) , E(G1) = E(G2) , and T

(1)
G1

= T
(2)
G2

ν-a.s. (5.4)

Proof. Suppose that (5.1) holds. The fact that Trµ1(T
(1)) ≤ Trµ2(T

(2)) is an immediate conse-
quence of the definition of trace and of the hypothesis:

Trµ1(T
(1)) =

∫ (
T

(1)
G o, o

)
dµ1(G, o) =

∫ (
T

(1)
G1

o, o
)
dν

(
(G1, o), (G2, o)

)

≤

∫ (
V ∗

1 T
(2)
G2

V1o, o
)
dν

(
(G1, o), (G2, o)

)

=

∫ (
T

(2)
G2

o, o
)
dν

(
(G1, o), (G2, o)

)
= Trµ2(T

(2)) .
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Suppose that equality holds in this inequality, i.e., (5.3) fails. Then

(
T

(1)
G1

o, o
)

=
(
T

(2)
G2

o, o
)

ν-a.s.

Of course, we also have by hypothesis that ν-a.s.,

(
T

(1)
G1

x, x
)
≤

(
T

(2)
G2

x, x
)

(5.5)

for all x ∈ V(G1). Assume now that (5.2) holds. We shall prove that (5.4) holds. First, we claim
that ν-a.s.,

V(G1) = V(G2), E(G1) = E(G2) , (5.6)

and (
T

(1)
G1

x, x
)

=
(
T

(2)
G2

x, x
)

(5.7)

for all x ∈ V(G2). If not, let k be the smallest integer such that with positive ν-probability,
there is a vertex x at G1-distance k from o where (5.7) does not hold. Such a k exists by

virtue of (5.2). Consider
(
T

(i)
Gi

x, x
)

as part of the mark at x. According to Theorem 4.1, the
random walk on Gi given in Remark 4.2 yields a shift-stationary measure µ̂i on trajectories(
(Gi, w0), 〈wn ; n ≥ 0〉

)
for each i. In particular, the distribution of

(
T

(i)
Gi

wk, wk

)
is the same as

that of
(
T

(i)
Gi

w0, w0

)
. Now the latter is the same for i = 1 as for i = 2 (since w0 = o). Note that

for all x at distance less than k from o, we have degG1
(x) = degG2

(x) by (5.2). Thus, the walks

may be coupled together up to time k, whence the distribution of
(
T

(i)
Gi

wk, wk

)
is not the same

for i = 1 as for i = 2 in light of (5.5) and choice of k. This is a contradiction. It follows that
degG1

(x) = degG2
(x) for all x ∈ V(G1), whence (5.6) and (5.7) hold.

Now T := T
(2)
G2

− T
(1)
G1

≥ 0 is self-adjoint. It follows that for any x, y ∈ V(G2) and any complex
number α of modulus 1,

0 ≤
(
T (αx + y), αx + y

)
= 2ℜ

{
α(Tx, y)

}
,

whence
(
Tx, y

)
= 0. That is, T = 0 and (5.4) holds.

6 Percolation

We now begin our collection of extensions of results that are known for unimodular fixed graphs.
For most of the remainder of the paper, we consider graphs without marks, or, equivalently, with
constant marks, except that marks are used as explained below to perform percolation on the
given graphs. We begin this section on percolation with some preliminary results on expected
degree.

Theorem 6.1. (Minimal Expected Degree). If µ is a unimodular probability measure on G∗

concentrated on infinite graphs, then deg(µ) ≥ 2.

This is proved exactly like Theorem 6.1 of BLPS (1999b) is proved. In the context of equivalence
relations, this is well known and was perhaps first proved by Levitt (1995).

Theorem 6.2 (Degree Two). If µ is a unimodular probability measure on G∗ concentrated on
infinite graphs, then deg(µ) = 2 iff µ-a.s. G is a tree with at most 2 ends.
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The proof is like that of Theorem 7.2 of BLPS (1999b).

Proposition 6.3 (Limits of Trees). If Gn are finite trees with random weak limit µ, then
deg(µ) ≤ 2 and µ is concentrated on trees with at most 2 ends.

Proof. Since deg
(
U(Gn)

)
< 2, we have deg(µ) ≤ 2. The remainder follows from Theorem 6.2.

We now discuss what we mean by percolation on a random rooted network. Given a probability
measure µ ∈ U , we may wish to randomly designate some of the edges of the random network
“open”. For example, in Bernoulli(p) bond percolation, each edge is independently open with
probability p. Recall that in Section 10 we have added a second independent uniform [0, 1]
coordinate to the edge marks to form µB ∈ U , the standard coupling of Bernoulli percolation on
µ. For p ∈ [0, 1], one can define Bernoulli(p) bond percolation on µ as the measure µB

p that
replaces the second coordinate of each edge mark by “open” if it is at most p and by “closed”
otherwise.

Note that if φ : Ξ × [0, 1] → Ξ is the projection onto the first coordinate, then µ = µB
p ◦ φ−1.

We have changed the mark space, but a fixed homeomorphism would bring it back to Ξ. Thus,
more generally, if ψ : Ξ → Ξ is Borel, then we call µ a percolation on µ ◦ ψ−1.

Definition 6.4. Let G =
(
V(G), E(G)

)
be a graph. Given a configuration A ∈ {0, 1}E(G) and an

edge e ∈ E(G), denote ΠeA the element of {0, 1}E(G) that agrees with A off of e and is 1 on e. For
A ⊂ {0, 1}E(G), we write ΠeA := {ΠeA ; A ∈ A}. For bond percolation, call an edge “closed” if
it is marked “0” and “open” if it is marked “1”. A bond percolation process P on G is insertion
tolerant if P(ΠeA) > 0 for every e ∈ E(G) and every Borel A ⊂ {0, 1}E(G) satisfying P(A) > 0.
The primary subtlety in extending this notion to percolation on unimodular random networks is
that it may not be possible to pick an edge measurably from a rooted-automorphism-invariant
set of edges. Thus, we shall make an extra assumption of distinguishability with marks. That
is, a percolation process P on a unimodular probability measure on G∗ is insertion tolerant
if P-a.s. there is no nontrivial rooted isomorphism of the marked network and for any event
A ⊆ {(A, G) ; A ⊆ E(G), G ∈ G∗} with P(A) > 0 and any Borel function e : G 7→ e(G) ∈ E(G)
defined on G∗, we have P(ΠeA) > 0.

For example, Bernoulli(p) bond percolation is insertion tolerant when p ∈ (0, 1].

We call a connected component of open edges (and their endpoints) a cluster. Given a rooted
graph (G, o), define

pc(G, o) := sup{p ; Bernoulli(p) percolation on G has no infinite clusters a.s.} .

Clearly pc is I-measurable, so if µ ∈ U is extremal, then there is a constant pc(µ) such that
pc(G, o) = pc(µ) for µ-a.e. (G, o).

Example 6.5. Even if µ ∈ U satisfies deg(µ) < ∞, it does not necessarily follow that pc(G) > 0
for µ-a.e. (G, o). For example, let pk := 1/[k(k + 1)] for k ≥ 1 and p0 := 0. Let UGW be
the corresponding unimodular Galton-Watson measure (see Example 1.1). Then deg(UGW) =
6/(12 − π2) by (1.2), but since

∑
kpk = ∞, we have pc(G) = 0 a.s. by Lyons (1990).

A more elaborate example shows that no stochastic bound on the degree of the root, other than
uniform boundedness, implies pc(µ) > 0:
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Example 6.6. Given an > 0, we shall construct µ ∈ U such that µ[degG(o) ≥ n] < an for
all large n and pc(G) = 0 for µ-a.e. (G, o). We may assume that

∑
an < ∞. Consider the

infinite tree T of degree 3 and o ∈ V(T ). Let j ≥ 2 and set pj := 1
2 + 1

j . Consider supercritical
Bernoulli(pj) bond percolation on T , so that

θj := P[o belongs to an infinite component] > 0 .

Define qj < 1 by pjqj = 1
2 + 1

2j , so that the fragmentation of an infinite pj-component by an
independent qj percolation process will still contain infinite components. Let Nj be the smallest
integer with (1 − 1

j2 )Nj < 1 − qj . Finally, choose some sequence 1 > rj ↓ 0 sufficiently fast. We
label the edges of T by the following operations, performed independently for each j ≥ 2.

Take the infinite components of Bernoulli(pj) bond percolation on T . “Thin” by retaining each
component independently with probability rj and deleting other components. For each edge e
in the remaining components, let Lj(e) := Nj , while Lj(e) := 1 for deleted edges e.

Now let L(e) := supj Lj(e). Since rj → 0 fast, L(e) < ∞ for all e a.s. Consider the graph G
obtained by replacing each edge e of T by L(e) parallel chains of length 2. To estimate degG(o),
note that the chance that o is incident to an edge e with Lj(e) = Nj (thus contributing at most
3Nj to the degree) equals rjθj . Thus, by choice of 〈rj〉, we can make the root-degree distribution
have tail probabilities eventually less than an. Now consider Bernoulli(1/j) bond percolation on
G. For an edge e of T which is replaced by Nj chains of G, the chance of percolating across at
least one of these Nj chains is (by definition of Nj) larger than qj . Thus the percolation clusters
on G dominate the qj-percolation clusters on the retained components of the original infinite
pj-percolation clusters on T , and as observed above must therefore contain infinite components.

To see how to make this into a probability measure in U , note that L is an invariant random
network on T . Therefore, we obtain a probability measure in U by Theorem 3.2. We may now
use the edge labels to replace an edge labeled n by n parallel chains of length 2, followed by
a suitable re-rooting as in Example 9.8 (below). This gives a new probability measure in U
that has the property desired, since the expected degree of the root is finite by the hypothesis∑

n an < ∞. Also, the re-rooting stochastically decreases the degree since it introduces roots of
degree 2.

The following extends a well-known result of Häggström and Peres (1999). The proof is the
same.

Theorem 6.7 (Uniqueness Monotonicity and Merging Clusters). Let µ be a unimodular prob-
ability measure on G∗. Let p1 < p2 and Pi (i = 1, 2) be the corresponding Bernoulli(pi) bond
percolation processes on µ. If there is a unique infinite cluster P1-a.s., then there is a unique
infinite cluster P2-a.s. Furthermore, in the standard coupling of Bernoulli percolation processes,
if µ is extremal, then µ-a.s. for all p1, p2 satisfying pc(µ) < p1 < p2 ≤ 1, every infinite p2-cluster
contains an infinite p1-cluster.

As a consequence, for extremal µ ∈ U , there is a constant pu(µ) such that for any p > pu(µ), we
have Pp-a.s., there is a unique infinite cluster, while for any p < pu(µ), we have Pp-a.s., there is
not a unique infinite cluster.

Every unimodular probability measure on G∗ can be written as a Choquet integral of extremal
measures. In the following, we refer to these extremal measures as “extremal components”.
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Lemma 6.8. If P is an insertion-tolerant percolation on a unimodular random network that is
concentrated on infinite graphs, then almost every extremal component of P is insertion tolerant.

Proof. The proof can be done precisely as that of Lemma 1 of Gandolfi, Keane, and Newman
(1992), but by using the present Theorems 4.1, 4.6, and 4.7, as well as Remark 4.2 to replace
the use of a measure-preserving transformation in Gandolfi, Keane, and Newman (1992) by the
shift on trajectories of a stationary Markov chain. The fact that P is concentrated on infinite
graphs is used to deduce that the corresponding Markov chain is not positive recurrent, whence
the asymptotic frequency of visits to any given neighborhood of the root is 0.

Corollary 6.9 (Number of Infinite Clusters). If P is an insertion-tolerant percolation on a
unimodular random network, then P-almost surely, the number of infinite clusters is 0, 1 or ∞.

The proof is standard for the extremal components; cf. Newman and Schulman (1981).

The following extends Häggström and Peres (1999) and Proposition 3.9 of Lyons and Schramm
(1999a). The proof is parallel to that of the latter.

Proposition 6.10. Let P be a percolation on a unimodular random network. Then P-a.s. each
infinite cluster that has at least 3 ends has no isolated ends.

The following corollary is proved just like Proposition 3.10 of Lyons and Schramm (1999a).
There is some overlap with Theorem 3.1 of Paulin (1999).

Corollary 6.11 (Many Ends). Let P be an insertion-tolerant percolation on a unimodular
random network. If there are infinitely many infinite clusters P-a.s., then P-a.s. every infinite
cluster has continuum many ends and no isolated end.

The following extends Lemma 7.4 and Remark 7.3 of BLPS (1999b) and is proved similarly.

Lemma 6.12 (Subforests). Let P be a percolation on a unimodular random network. If P-a.s.
there is a component of the open subgraph ω with at least three ends, then there is a percolation
F on ω whose components are trees such that a.s. whenever a component K of ω has at least
three ends, there is a component of K ∩ F that has infinitely many ends and has pc < 1.

The following extends Proposition 3.11 of Lyons and Schramm (1999a) and is proved similarly
(using the preceding Lemma 6.12).

Proposition 6.13 (Transient Subtrees). Let P be an insertion-tolerant percolation on a uni-
modular random network. If there are P-almost surely infinitely many infinite clusters, then
P-a.s. each infinite cluster is transient and, in fact, contains a transient tree.

In order to use this, we shall use the comparison of simple to network random walks given in
Proposition 4.10.

Definition 6.14. A percolation process P on a unimodular probability measure on G∗ has
indistinguishable infinite clusters if for any event A ⊆ {

(
A, (G, o)

)
; A ∈ {0, 1}V(G) ×

{0, 1}E(G), (G, o) ∈ G∗} that is invariant under non-rooted isomorphisms, almost surely, for all
infinite clusters C of the open subgraph ω, we have (C, ω) ∈ A, or for all infinite clusters C, we
have (C, ω) /∈ A.
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The following extends Theorem 3.3 of Lyons and Schramm (1999a) and is proved similarly
using the preceding results: For example, instead of the use of delayed simple random walk
by Lyons and Schramm (1999a), we use the network random walk in Remark 4.2. This is a
reversible random walk corresponding to edge weights (x, y) 7→ 1/[(deg x)(deg y)]. It is transient
by Propositions 6.13 and 4.10, combined with Rayleigh’s monotonicity principle.

Theorem 6.15 (Indistinguishable Clusters). If P is an insertion-tolerant percolation on a
unimodular random network, then P has indistinguishable infinite clusters.

Among the several consequences of this result is the following extension of Theorem 4.1 of
Lyons and Schramm (1999a), proved similarly.

Theorem 6.16 (Uniqueness and Long-Range Order). Let P be an insertion-tolerant percolation
on a unimodular random network, µ. If P is extremal and there is more than one infinite cluster
P-a.s., then µ-a.s.,

inf
{
P[there is an open path from x to y | G] ; x, y ∈ V(G)

}
= 0 .

The following extends Theorem 6.12 of Lyons and Schramm (1999a) and is proved similarly.

Theorem 6.17 (Uniqueness in Products ). Suppose that µ, µ1, and µ2 are extremal unimodular
probability measures on G∗, with µ supported on infinite graphs and µ1 a percolation on µ2. Then
pu(µ ⊠ µ1) ≥ pu(µ ⊠ µ2). In particular, pu(µ) ≥ pu(µ ⊠ µ2).

More results on percolation will be presented in Section 8.

7 Spanning Forests

An interesting type of percolation other than Bernoulli is given by certain random forests. There
are two classes of such random forests that have been widely studied, the uniform ones and the
minimal ones.

We first discuss the uniform case. Given a finite connected graph, G, let UST(G) denote the
uniform measure on spanning trees on G. Pemantle (1991) proved a conjecture of Lyons, namely,
that if an infinite connected graph G is exhausted by a sequence of finite connected subgraphs
Gn, then the weak limit of 〈UST(Gn)〉 exists. However, it may happen that the limit measure
is not supported on trees, but on forests. This limit measure is now called the free (uniform)
spanning forest on G, denoted FSF or FUSF. If G is itself a tree, then this measure is trivial,
namely, it is concentrated on {G}. Therefore, Häggström (1998) introduced another limit that
had been considered on Z

d more implicitly by Pemantle (1991) and explicitly by Häggström
(1995), namely, the weak limit of the uniform spanning tree measures on G∗

n, where G∗
n is the

graph Gn with its boundary identified (“wired”) to a single vertex. As Pemantle (1991) showed,
this limit also always exists on any graph and is now called the wired (uniform) spanning
forest, denoted WSF or WUSF. It is clear that both FSF and WSF are concentrated on the set
of spanning forests2 of G that are essential, meaning that all their trees are infinite. Both FSF

and WSF are important in their own right; see Lyons (1998) for a survey and BLPS (2001) for
a comprehensive treatment.

2By a “spanning forest”, we mean a subgraph without cycles that contains every vertex.
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In all the above, one may work more generally with a weighted graph, where the graph has
positive weights on its edges. In that case, UST stands for the measure such that the probability
of a spanning tree is proportional to the product of the weights of its edges. The above theorems
continue to hold and we use the same notation for the limiting measures.

Most results known about the uniform spanning forest measures hold for general graphs. Some,
however, require extra hypotheses such as transitivity and unimodularity. We extend some of
these latter results here.

Given µ, taking the wired uniform spanning forest on each graph gives a percolation that we
denote WUSF(µ). Our first result shows, among other things, that the kind of limit considered
in this paper, i.e., random weak convergence, gives another natural way to define WSF. It might
be quite useful to have an explicit description of measures on finite graphs whose random weak
limit is the free spanning forest.

Proposition 7.1 (UST Limits). If µ is a unimodular probability measure on infinite networks
in G∗, then deg

(
WUSF(µ)

)
= 2. If Gn are finite connected networks whose random weak limit

is µ, then UST(Gn) ⇒ WUSF(µ). More generally, if µn are unimodular probability measures on
G∗ with µn ⇒ µ, then WUSF(µn) ⇒ WUSF(µ).

Proof. Suppose first that µ is concentrated on recurrent networks. Then Wilson’s algorithm
gives both UST(Gn) and WUSF(µ). Hence it is clear that UST(Gn) ⇒ WUSF(µ). Since
deg(UST(Gn)) = 2 − 2/|V(Gn)| ≤ 2, this limit relation in combination with Fatou’s lemma
shows that deg(WUSF(µ)) ≤ 2, whence equality results from Theorem 6.1.

Suppose next that µ is concentrated on transient networks. Then the proof of Theorem 6.5 of
BLPS (2001) gives the same result.

Finally, if µ is concentrated on neither recurrent nor transient networks, then we may write µ
as a mixture of two unimodular measures that are concentrated on recurrent or on transient
networks and apply the preceding.

This proves the first sentence. The second sentence is a special case of the third, so we prove
the third.

If µn ⇒ µ, then USTR(µn) ⇒ USTR(µ) as n → ∞ and the intersection of WUSF(µn) with the ball
of radius R stochastically dominates USTR(µn), so that every weak limit point of 〈WUSF(µn)〉
stochastically dominates WUSF(µ). However, since they all have expected degree 2 by what we
have just shown, they are equal.

We next show that the trees of the WSF have only one end a.s. The first theorem of this type
was proved by Pemantle (1991). His result was completed and extended in Theorem 10.1 of
BLPS (2001), which dealt with the transitive unimodular case. The minor modifications needed
for the quasi-transitive unimodular case were explained by Lyons (2005). Another extension is
given by Lyons, Morris, and Schramm (2007), who showed that for graphs with a “reasonable”
isoperimetric profile, each tree has only one end WSF-a.s.

Theorem 7.2 (One End). If µ is a unimodular probability measure on G∗ that is concentrated
on transient networks with bounded degree, then WUSF(µ)-a.s., each tree has exactly one end.

Proof. The proof is essentially the same as in BLPS (2001), with the following modifications.
In the proof of Theorem 10.3 of BLPS (2001), which is the case where there is only one tree
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a.s., we replace x and y there by o and Xn, where 〈Xn〉 is the simple random walk starting from
the root; to use stationarity, we bias the underlying network by the degree of the root. This
gives a measure equivalent to µ, so that almost sure conclusions for it hold for µ as well. The
stationarity and reversibility give that the probability that the random walk from o ever visits
Xn is equal to the probability that a random walk from Xn ever visits o. By transience, this
tends to 0 as n → ∞, which allows the proof of BLPS (2001) to go through. [Here, we needed
finite expected degree to talk about probability since we used the equivalent probability measure
of biasing by the degree.]

In the proof of Theorem 10.4 of BLPS (2001), the case when there is more than one tree a.s.,
we need the degrees to be bounded for the displayed equality on p. 36 of BLPS (2001) to hold
up to a constant factor.

For our proof, we had to assume transience; there is presumably an extension to the recurrent
case, which would say that the number of ends WUSF(µ)-a.s. is the same as the number of
ends µ-a.s. when µ is concentrated on recurrent networks. Also, presumably the assumption
that the degrees are bounded is not needed. In any case, our result here goes beyond what
has been done before and gives a partial answer to Question 15.4 of BLPS (2001); removing
the assumption of bounded degrees would completely answer that question. It also applies,
e.g., to transient clusters of Bernoulli percolation; see Grimmett, Kesten, and Zhang (1993)
and Benjamini, Lyons, and Schramm (1999) for sufficient conditions for transience.

We now prove analogous results for the other model of spanning trees, the minimal ones. Given
a finite connected graph, G, and independent uniform [0, 1] random variables on its edges, the
spanning tree that minimizes the sum of the labels of its edges has a distribution denoted
MST(G), the minimal spanning tree measure on G. If G is infinite, there are two analogous
measures, as in the uniform case. They can be defined by weak limits, but also directly (and by
pointwise limits). Namely, given independent uniform [0, 1] edge labels, remove all edges whose
label is the largest in some cycle containing that edge. The remaining edges form the free
minimal spanning forest, FMSF. If one also removes the edges e both of whose endpoints
belong to infinite paths of edges that are all labeled smaller than e is, then the resulting forest
is called the wired minimal spanning forest, WMSF.

The following is analogous to Proposition 7.1 above and is proved similarly to it and part of
Theorem 3.12 of Lyons, Peres, and Schramm (2006), using Theorem 8.11 below. Parts of it
were also proved by Aldous and Steele (2004).

Proposition 7.3 (MST Limits). If µ is a unimodular probability measure on infinite networks
in G∗, then deg

(
WMSF(µ)

)
= 2. If Gn are finite connected networks whose random weak limit

is µ, then MST(Gn) ⇒ WMSF(µ). More generally, if µn are unimodular probability measures
on G∗ with µn ⇒ µ, then WMSF(µn) ⇒ WMSF(µ).

The following extends a result of Lyons, Peres, and Schramm (2006), which in turn extends
a result of Alexander (1995), who proved this in fixed Euclidean lattices. Our proof follows
slightly different lines. For information on when the hypothesis is satisfied, see Theorem 8.11
below.

Theorem 7.4 (One End). If µ is an extremal unimodular probability measure on infinite net-
works in G∗ and there is Ppc(µ)-a.s. no infinite cluster, then WMSF(µ)-a.s., each tree has exactly
one end.
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Proof. By the first part of Proposition 7.3 and by Theorem 6.2, each tree has at most 2 ends
WMSF(µ)-a.s. Suppose that some tree has 2 ends with positive probability. A tree with precisely
two ends has a trunk, the unique bi-infinite simple path in the tree. By the definition of WMSF,
the labels on a trunk cannot have a maximum. By the Mass-Transport Principle, the limsup in
one direction must equal the limsup in the other direction, since otherwise we could identify the
one edge that has label larger than the average of the two limsups and is the last such edge in
the direction from the larger limsup to the smaller limsup. Let p be this common limsup. By the
preceding, all the labels on the trunk are strictly less than p. The root belongs to the trunk with
positive probability. Assume this happens. Then the root belongs to an infinite p-cluster (the
one containing the trunk). Now invasion from the root will fill (the vertices of) this p-cluster
and is part of the tree containing the root (see Lyons, Peres, and Schramm (2006)), whence the
tree contains (the vertices of) the entire p-cluster of the root. By Theorem 6.7, the tree therefore
also contains an infinite p′-cluster for every p′ ∈ (pc(µ), p) if p > pc(µ). Let x be a vertex in the
tree that is in an infinite p′-cluster C for p′ := (pc(µ) + p)/2. Now invasion from x has a finite
symmetric difference with invasion from o (see Lyons, Peres, and Schramm (2006)), invasion
from x does not leave C, and invasion from o fills the trunk. It follows from the definition of p
that p′ ≥ p. That is, p = pc(µ). Therefore, there is Ppc(µ)-a.s. an infinite cluster.

8 Amenability and Nonamenability

Recall that a graph G is (vertex) amenable iff there is a sequence of subsets Hn ⊂ V(G) with

lim
n→∞

|∂VHn|

|V(Hn)|
= 0 ,

where |•| denotes cardinality.

Amenability, originally defined for groups, now appears in several areas of mathematics, includ-
ing probability theory and ergodic theory. Its presence provides many tools one is used to from Z

actions, yet its absence also provides a powerful threshold principle. There are many equivalent
definitions of amenability. We choose one that is not standard, but is useful for our probabilistic
purposes. We show that it is equivalent to other definitions. Then we shall illustrate its uses.

Definition 8.1. Let prj : Ξ → Ξ be the composition of a homeomorphism of Ξ with Ξ2 followed
by the projection onto the first coordinate. If a rooted network (G, o) is understood, then for a
subset Ξ0 ⊆ Ξ and vertex x, the Ξ0-component of x is the set of vertices that can be reached
from x by edges both of whose marks lie in Ξ0. Write K(Ξ0) for the Ξ0-component of the root.
For a probability measure µ on rooted graphs, denote by FC(µ) the class of percolations on
µ that have only finite components. That is, FC(µ) consists of pairs (ν, Ξ0) such that ν is a
unimodular probability measure on G∗, Ξ0 ⊆ Ξ is Borel, µ = ν ◦ prj−1, and K(Ξ0) is finite ν-a.s.
(By Lemma 2.3, all Ξ0-components are then finite ν-a.s.) For Ξ0 ⊆ Ξ and x ∈ V(G), write

n(x,Ξ0) := |{y ∈ V(G) ; (x, y) ∈ E(G), some edge mark of (x, y) is /∈ Ξ0}| .

For K ⊂ V(G), define

n(K, Ξ0) :=
∑

x∈K

n(x,Ξ0) .
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Define

ιE(µ) := inf

{∫
n
(
K(Ξ0), Ξ0

)

|K(Ξ0)|
dµ′(G, o) ; (µ′, Ξ0) ∈ FC(µ)

}
.

Call µ amenable if ιE(µ) = 0. Define

deg(µ′, Ξ0) :=

∫ [
degG(o) − n(o,Ξ0)

]
dµ′(G, o) ,

the expected degree in the Ξ0-component of the root, and

α(µ) := sup
{
deg(µ′, Ξ0) ; (µ′, Ξ0) ∈ FC(µ)

}
.

Of course, neither ιE(µ) nor α(µ) depends on the choice of homeomorphism in prj. Further-
more, these quantities depend only on the probability measure on the underlying graphs of the
networks, not on the marks.

This definition of amenability is justified in three ways: It agrees with the usual definition of
amenability for fixed unimodular quasi-transitive graphs by Theorems 5.1 and 5.3 of BLPS
(1999b); it agrees with the usual notion of amenability for equivalence relations by Theorem 8.5
below; and it allows us to extend to non-amenable unimodular random rooted graphs many
theorems that are known for non-amenable unimodular fixed graphs, as we shall see.

We say that a graph G is anchored amenable if there is a sequence of subsets Hn ⊂ V(G)
such that

⋂
n Hn 6= ∅, each Hn induces a connected subgraph of G, and

lim
n→∞

|∂VHn|

|V(Hn)|
= 0 .

The relationship between amenability of µ and amenability or anchored amenability of µ-a.e.
graph is as follows. The first clearly implies the third, which implies the second, but the third
does not imply the first. Indeed, take a 3-regular tree and randomly subdivide its edges by a
number of vertices whose distribution does not have a finite exponential tail. Chen and Peres
(2004) show that the result is anchored amenable a.s. However, there is an appropriate unimod-
ular version if the subdividing distribution has finite mean (see Example 2.4.4 of Kaimanovich
(1998) or Example 9.8 below), and it is non-amenable by Corollary 8.10 below.

In order to work with this definition, we shall need some easy facts.

Lemma 8.2. If µ is a unimodular probability measure on G∗ and (µ′, Ξ0) ∈ FC(µ), then

∫
n
(
K(Ξ0), Ξ0

)

|K(Ξ0)|
dµ′ =

∫
n(o,Ξ0) dµ′ .

Proof. Let Kx be the Ξ0-component of x. Let each vertex x send mass n(y, Ξ0)/|Kx| to each
y ∈ Kx. Then the left-hand side is the expected mass sent from the root and the right-hand
side is the expected mass received by the root.

Proposition 8.3. If µ is a unimodular probability measure on G∗, then

ιE(µ) + α(µ) = deg(µ) . (8.1)

Therefore, if deg(µ) < ∞, then µ is amenable iff α(µ) = deg(µ).
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Proof. This is obvious from Lemma 8.2.

Lemma 8.4. Let µ, ν ∈ U with ν a percolation on µ, that is, there is some Borel ψ : Ξ → Ξ
such that µ = ν ◦ ψ−1. Let κ be a regular conditional probability measure of µ with respect
to the σ-field generated by ψ, i.e., a disintegration of ν with respect to ψ, with κ(G,o) being
the probability measure on the fiber over (G, o). Let h : G∗∗ → [0, 1] be Borel and symmetric:
h(G, x, y) = h(G, y, x). Define k(G, x, y) :=

∫
h(G, x, y) dκ(G,x). Then there is a symmetric

Borel λ such that for µ-a.e. (G, o) and all x ∈ V(G), we have k(G, o, x) = λ(G, o, x).

Proof. It suffices to show that for all f : G∗∗ → [0, 1], we have

∫ ∑

x∈V(G)

k(G, o, x)f(G, o, x) dµ(G, o) =

∫ ∑

x∈V(G)

k(G, x, o)f(G, o, x) dµ(G, o) ,

since this shows symmetry of k a.e. with respect to the left measure µL. To see that this equation
holds, observe that

∫ ∑

x∈V(G)

k(G, o, x)f(G, o, x) dµ(G, o) =

∫ ∫ ∑

x∈V(G)

h(G, o, x)f(G, o, x) dκ(G,o) dµ(G, o)

=

∫ ∫ ∑

x∈V(G)

h(G, x, o)f(G, x, o) dκ(G,o) dµ(G, o)

[by the Mass-Transport Principle for ν]

=

∫ ∫ ∑

x∈V(G)

h(G, o, x)f(G, o, x) dκ(G,x) dµ(G, o)

[by the Mass-Transport Principle for µ]

=

∫ ∫ ∑

x∈V(G)

h(G, x, o)f(G, o, x) dκ(G,x) dµ(G, o)

[by symmetry of h]

=

∫ ∑

x∈V(G)

k(G, x, o)f(G, o, x) dµ(G, o) .

We now prove some properties that are equivalent to amenability. Most of these are stan-
dard in the context of equivalence relations. With appropriate modifications, these equiva-
lences hold with a weakening of the assumption of unimodularity. They are essentially due to
Connes, Feldman, and Weiss (1981) and Kaimanovich (1997), although (ii) seems to be new.

Theorem 8.5 (Amenability Criteria). Let µ be a unimodular probability measure on G∗ with
deg(µ) < ∞. The following are equivalent:

(i) µ is amenable;
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(ii) there is a sequence of Borel functions λn : G∗∗ → [0, 1] such that for all (G, x, y) ∈ G∗∗ and
all n, we have

λn(G, x, y) = λn(G, y, x) (8.2)

and for µ-a.e. (G, o), we have

∑

x∈V(G)

λn(G, o, x) = 1 (8.3)

and
lim

n→∞

∑

x∈V(G)

∑

y∼x

|λn(G, o, x) − λn(G, o, y)| = 0 ; (8.4)

(iii) there is a sequence of Borel functions λn : G∗∗ → [0, 1] such that for µ-a.e. (G, o),

∑

x∈V(G)

λn(G, o, x) = 1

and
lim

n→∞

∑

y∼o

∑

x∈V(G)

|λn(G, o, x) − λn(G, y, x)| = 0 ;

(iv) µ is hyperfinite, meaning that there is a unimodular measure ν on G∗, an increasing se-
quence of Borel subsets Ξn ⊆ Ξ, and a Borel function ψ : Ξ → Ξ such that if G denotes
a network with law ν and Gn the subnetwork consisting of those edges both of whose edge
marks lie in Ξn, then ψ(G) has law µ, all components of Gn are finite, and

⋃
n Ξn = Ξ.

Proof. Assume from now on that µ is carried by networks with distinct marks. We shall use the
following construction. Suppose that (ν, Ξ0) ∈ FC(µ). Let κ be a regular conditional probability
measure of µ with respect to the σ-field generated by prj. By Lemma 8.4, there is a Borel
symmetric λ : G∗∗ → [0, 1] such that for µ-a.e. (G, o) and x ∈ V(G), we have

λ(G, o, x) =

∫
1{x∈K(Ξ0)}/|K(Ξ0)| dκ(G,o) . (8.5)

Clearly, ∑

x∈V(G)

λ(G, o, x) = 1 (8.6)

for µ-a.e. (G, o). For µ-a.e. (G, o), we have

∑

x∈V(G)

∑

y∼x

|λ(G, o, x) − λ(G, o, y)|

≤
∑

x∈V(G)

∑

y∼x

∫
|1{x∈K(Ξ0)} − 1{y∈K(Ξ0)}|/|K(Ξ0)| dκ(G,o)

≤

∫
2n

(
K(Ξ0), Ξ0

)

|K(Ξ0)|
dκ(G,o) . (8.7)
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Now if (i) holds, then we may choose (µn, Ξn) ∈ FC(µ) such that

∫ ∑

n

n
(
K(Ξn), Ξn

)

|K(Ξn)|
dµn < ∞ .

Let κ(n) and λn be as above (but for µn). Then by (8.7), we have

∑

n

∫ ∑

x∈V(G)

∑

y∼x

∣∣λn(G, o, x) − λn(G, o, y)
∣∣ dµ(G, o)

≤
∑

n

∫ ∫
2n

(
K(Ξn), Ξn

)

|K(Ξn)|
dκ

(n)
(G,o) dµ(G, o)

=
∑

n

∫
2n

(
K(Ξn), Ξn

)

|K(Ξn)|
dµn < ∞ ,

which shows that (ii) holds.

Next, suppose that (ii) holds. Then by the bounded convergence theorem, we have

lim
n→∞

∫ ∑

x∈V(G)

∑

y∼x

|λn(G, o, x) − λn(G, o, y)| dµ(G, o) = 0 .

On the other hand, the Mass-Transport Principle and (8.2) show that this integral is the same
as ∫ ∑

y∼o

∑

x∈V(G)

|λn(G, o, x) − λn(G, y, x)| dµ(G, o) .

Therefore, by taking a subsequence if necessary, we achieve (iii).

Next, suppose that (iii) holds. Then we may define a sequence similar to λn on the corresponding
equivalence relation (see Example 9.9), which implies that the equivalence relation is amenable
by Kaimanovich (1997), and hence hyperfinite by a theorem of Connes, Feldman, and Weiss
(1981). (Another proof of the latter theorem was sketched by Kaimanovich (1997), with more
details given by Kechris and Miller (2004)). Translating the definition of hyperfinite equivalence
relation to rooted networks gives (iv).

Finally, that (iv) implies (i) is an immediate consequence of Lebesgue’s Dominated Convergence
Theorem, our assumption that deg(µ) < ∞, and Lemma 8.2.

Now we show how to produce unimodular networks from non-unimodular ones on amenable
measures, just as we can produce invariant measures from non-invariant ones on amenable
groups. We illustrate in the context of couplings.

Proposition 8.6 (Coupling From Amenability). Let R ⊆ Ξ × Ξ be a closed set. If µ1, µ2 ∈ U
are amenable and µ1 is R-related to µ2, then there is a unimodular R-coupling of µ1 to µ2.

Proof. Let ν be an R-coupling of µ1 to µ2. Let λn be as in Theorem 8.5(ii) for (µ1 + µ2)/2.
Define the measures νn by

νn(B) :=

∫ ∑

x∈V(G)

λn(G, o, x)1{(G,x)∈B} dν(G, o)
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for Borel B ⊆ G∗ (with mark space Ξ × Ξ). Then νn is a probability measure by (8.3). Since ν
is carried by networks all of whose marks are in R, so is νn. If B is an event that specifies only
the first coordinates of the marks, i.e., B = B1 × 2Ξ for some B1, then

νn(B) =

∫ ∑

x∈V(G)

λn(G, o, x)1{(G,x)∈B} dν(G, o)

=

∫ ∑

x∈V(G)

λn(G, o, x)1{(G,x)∈B1} dµ1(G, o)

=

∫ ∑

x∈V(G)

λn(G, x, o)1{(G,o)∈B1} dµ1(G, o)

=

∫
1{(G,o)∈B1} dµ1(G, o)

= µ1(B)

by the Mass-Transport Principle, (8.2), and (8.3). Likewise, if B is an event that specifies only
the second coordinates of the marks, then νn(B) = µ2(B). Thus, νn is an R-coupling of µ1 to
µ2.

Now by definition of νn, we have
∫

f(G, o) dνn(G, o) =

∫ ∑

x∈V(G)

λn(G, o, x)f(G, x) dν(G, o)

for every Borel f : G∗ → [0,∞]. Therefore, for every Borel h : G∗∗ → [0, 1] with h(G, x, y) = 0
unless x ∼ y, we have

∫ ∑

y∈V(G)

h(G, o, y) dνn(G, o) =

∫ ∑

x∈V(G)

λn(G, o, x)
∑

y∈V(G)

h(G, x, y) dνn(G, o)

=

∫ ∑

y∈V(G)

∑

x∈V(G)

h(G, x, y)λn(G, o, x) dν(G, o)

and
∫ ∑

y∈V(G)

h(G, y, o) dνn(G, o) =

∫ ∑

x∈V(G)

λn(G, o, x)
∑

y∈V(G)

h(G, y, x) dνn(G, o)

=

∫ ∑

y∈V(G)

∑

x∈V(G)

h(G, x, y)λn(G, o, y) dν(G, o) ,

where, in the last step, we have interchanged x and y. Therefore,
∣∣∣∣
∫ ∑

y∈V(G)

h(G, o, y) dνn(G, o) −

∫ ∑

y∈V(G)

h(G, y, o) dνn(G, o)

∣∣∣∣

≤

∫ ∑

y∈V(G)

∑

x∼y

|λn(G, o, x) − λn(G, o, y)| dν(G, o)

=

∫ ∑

y∈V(G)

∑

x∼y

|λn(G, o, x) − λn(G, o, y)| dµ1(G, o) ,

1491



which tends to 0 by (8.4). Thus, any limit point of νn is involution invariant and, since R is
closed, is an R-coupling of µ1 to µ2.

Proposition 8.7 (Recurrence Implies Amenability). If µ ∈ U and simple random walk is µ-a.s.
recurrent, then µ is amenable.

Proof. Consider the “lazy” simple random walk that moves nowhere with probability 1/2 and
otherwise moves to a random neighbor, like simple random walk. It is recurrent by hypothesis
and aperiodic by construction. Let λn(G, o, x) be the probability that lazy simple random walk
on G starting from o will be at x at time n. By Orey (1962) and recurrence, the functions λn

satisfy property (iii) of Theorem 8.5, whence µ is amenable.

The following is proved similarly to Remark 6.2 of BLPS (2001).

Proposition 8.8 (Forests in Amenable Networks). If µ ∈ U is amenable and Ξ0 ⊆ Ξ is such
that the Ξ0-open subgraph F of (G, o) is a forest µ-a.s., then the expected degree of o in F is at
most 2.

The following extends Theorem 5.3 of BLPS (1999b). In the following, we say that P is a
percolation on µ that gives subgraphs A a.s. if there is a Borel function ψ : Ξ → Ξ such
that µ = P ◦ ψ−1 and there is a Borel subset Ξ0 ⊆ Ξ such that if G(Ξ0) denotes the Ξ0-open
subnetwork of G, then ψ

(
G(Ξ0)

)
∈ A for P-a.e. G.

Theorem 8.9. Let µ ∈ U with deg(µ) < ∞. The following are equivalent:

(i) µ is amenable;

(ii) there is a percolation P on µ that gives spanning trees with at most 2 ends a.s.;

(iii) there is a percolation P on µ that gives non-empty connected subgraphs ω that satisfy
pc(ω) = 1 a.s.

Proof. The proof that (i) implies (ii) is done as for Theorem 5.3 of BLPS (1999b), but uses
Propositions 8.8 and 6.3. That (ii) implies (iii) is obvious. The proof that (iii) implies (i)
follows the first part of the proof of Theorem 1.1 in Benjamini, Lyons, Peres, and Schramm
(1999a).

Corollary 8.10 (Amenable Trees). A unimodular probability measure µ on infinite rooted trees
is amenable iff deg(µ) = 2 iff µ-a.s. G has 1 or 2 ends.

Proof. Combine Theorem 8.9 with Theorem 6.2.

The next result was proved for non-amenable unimodular transitive graphs in BLPS (1999b)
with a more direct proof in Benjamini, Lyons, Peres, and Schramm (1999a). This extension is
proved similarly. Presumably, the hypothesis that µ is non-amenable can be replaced by the
assumption that pc(µ) < 1. (This is a major open conjecture for quasi-transitive graphs.)

Theorem 8.11 (Critical Percolation). Let µ be an extremal unimodular non-amenable proba-
bility measure on G∗ with deg(µ) < ∞. There is Ppc(µ)-a.s. no infinite cluster.
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This can be interpreted for finite graphs as follows. Suppose that Gn are finite connected graphs
with bounded average degree whose random weak limit is extremal and non-amenable with
critical value pc. Consider Bernoulli(pc) percolation on Gn. Let αn(ℓ) be the random variable
giving the proportion of vertices of Gn that belong to simple open paths of length at least ℓ.
Then limℓ→∞ limn→∞ αn(ℓ) = 0 in probability.

The following theorem is proved similarly to Benjamini and Schramm (2001a), as extended by
Lyons with Peres (2008), and by using Example 9.6.

Theorem 8.12 (Planar Percolation). Let µ ∈ U be extremal, non-amenable, and carried by plane
graphs with one end and bounded degree. Then 0 < pc(µ) < pu(µ) < 1 and Bernoulli(pu(µ))
percolation on µ has a unique infinite cluster a.s.

The following extends Theorems 3.1, 3.2, 3.5, 3.6, and 3.10 of Benjamini, Lyons, and Schramm
(1999) and is proved similarly. If P is a percolation on µ with P ◦ ψ−1 = µ and with Ξ0 ⊆ Ξ
defining the open subgraphs, we call P′ a subpercolation on P that gives subgraphs in A′

with positive probability if there is a Borel function ψ′ : Ξ → Ξ such that P = P′ ◦ψ′−1 and
there is a Borel subset Ξ1 ⊆ Ξ such that if G(Ξ1) denotes the Ξ1-open subnetwork of G, then

P′
[
ψ

(
ψ′

(
G(Ξ1)

)(
Ξ0

))
∈ A′

]
> 0.

Theorem 8.13 (Non-Amenable Subgraphs). Let µ be a unimodular probability measure on G∗

with finite expected degree and P be a percolation on µ with open subgraph ω.

(i) If h > 0 and E[degω o | o ∈ ω] ≥ α(µ) + 2h, then there is a subpercolation P′ on P that
gives a non-empty subgraph ω′ with ιE(ω′) ≥ h with positive P′-probability.

(ii) If ω is a forest a.s., h > 0 and E[degω o | o ∈ ω] ≥ 2 + 2h, then there is a subpercolation
P′ on P that gives a non-empty subgraph with ιE ≥ h with positive probability.

(iii) If µ is non-amenable and ω has exactly one infinite cluster P-a.s., then there is a subper-
colation P′ on P that gives a non-empty subgraph ω′ with ιE(ω′) > 0 P′-a.s.

(iv) If ω has components with at least three ends P-a.s., then there is a subpercolation P′ on P
that gives a non-empty forest F with ιE(F) > 0 P′-a.s.

(v) If µ is concentrated on subgraphs with spectral radius less than 1 and ω has exactly one
infinite cluster P-a.s., then there is a subpercolation P′ on P that gives a non-empty forest
F with ιE(F) > 0 P′-a.s.

The following extends a result of Häggström (1995) and is proved similarly to Corollary 6.3 of
BLPS (2001).

Proposition 8.14 (Amenability and Boundary Conditions). Let µ be an amenable unimodular
probability measure on G∗. Then FUSF(µ) = WUSF(µ) and FMSF(µ) = WMSF(µ).

We may now strengthen Proposition 8.7, despite the fact that not every graph is necessarily
non-amenable µ-a.s. It extends Theorem 4.3 of Benjamini, Lyons, and Schramm (1999) and is
proved similarly, using Theorem 8.13(iii) with P := µ.

Theorem 8.15. Positive Speed on Non-Amenable Graphs[] If µ ∈ U is non-amenable and
concentrated on graphs with bounded degree, then the speed of simple random walk is positive
µ-a.s.
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9 Examples

We present here a variety of interesting examples of unimodular measures.

Example 9.1. (Renewal Processes) Given a stationary (delayed) renewal process on Z, let µ
be the law of (Z, 0) with the graph Z, some fixed mark at renewals, and some other fixed mark
elsewhere. Then µ ∈ U .

Example 9.2. (Half-Plane) Fix d ≥ 3 and let T be the d-regular tree. Let µ1 be the random
weak limit of balls of growing radii in T . Note that µ1 is carried by trees with only one end.
Let µ2 be concentrated on the fixed graph (Z, 0). Now let µ := µ1 ⊠ µ2. This is a unimodular
version of the half-plane N × Z.

Example 9.3. For a rooted network (G, o), its universal cover is the rooted tree (T, o) =
T (G, o) formed as follows. The vertices of T are the finite paths in G that start at o and do
not backtrack. Two such vertices are joined by an edge in T if one is an extension of the other
by exactly one edge in G. The path with no edges consisting of just the vertex o in G is the
root o of T . There is a natural rooted graph homomorphism π : (T, o) → (G, o) (the cover map)
that maps paths to their last point. Marks on T are defined by lifting the marks on G via π.
It is clear that if µ ∈ U and ν is the law of T (G, o) when (G, o) has the law µ, then ν ∈ U and
deg(µ) = deg(ν).

Example 9.4. Let P be a unimodular percolation on µ that labels edges either open or closed.
Let ν be the law of the open cluster of the root when the network is chosen according to P
conditional on the root belonging to an infinite open cluster. Then ν is unimodular, as a direct
verification of the definition shows. When µ is concentrated on a fixed unimodular graph, this
fact has been widely used in the study of percolation.

Example 9.5. (Tilings) Let X be a Euclidean space or hyperbolic space (of constant curvature).
Write Γ for its isometry group. There is a Mass-Transport Principle for X that says the following;
see Benjamini and Schramm (2001a) for a proof. Let ρ be a positive Borel measure on X × X
that is invariant under the diagonal action of Γ. Then there is a constant c such that for
all Borel A ⊂ X of volume |A| > 0, we have ρ(A × X) = ρ(X × A) = c|A|. Suppose that
P is a (countable) point process in X whose law is Γ-invariant. For example, Poisson point
processes are Γ-invariant. One often considers graphs G that are functions G = β(P ), where
β commutes with the action of Γ. For a few recent examples, see Benjamini and Schramm
(2001a), Holroyd and Peres (2003), or Timár (2004). For instance, the 1-skeleton of the Voronoi
tessellation corresponding to P is such a graph. In general, we call such measures on graphs
Γ-equivariant factors of P . They are necessarily Γ-invariant.

Another way that invariant measures on graphs embedded in X occur is through (aperiodic)
tilings of X. Again, one can take the 1-skeleton. An important tool for studying aperiodic
tilings is a limit measure obtained from translates of a given tiling (in the Euclidean case),
or, more generally, invariant measures on tilings with special properties; see, e.g., Robinson
(1996), Radin (1997), Solomyak (1997), Radin (1999), or Bowen and Radin (2003) for some
examples.

Let ν be any Γ-invariant probability measure on graphs embedded in X. Fix a Borel set A ⊂ X
of positive finite volume. If v(A) :=

∫
|V(G)∩A| dν(G) < ∞, then define µ as follows. Choose G

with the law ν biased by |V(G) ∩ A|. Then choose the root o of G uniformly among all vertices

1494



that belong to A. The law of the resulting graph (G, o) is µ. We claim that µ is unimodular
and does not depend on A. In fact, µ is the same as the Palm measure of (G, o), except that µ
is a measure on isomorphism classes of graphs that does not involve any geometric embedding.
To prove our claims, we first write µ in symbols:

µ(A) := v(A)−1

∫ ∑

o∈A

1{(G,o)∈A} dν(G)

for Borel A ⊂ G∗. Let f : G∗∗ → [0,∞] be Borel. Define

ρ(B × C) :=

∫ ∑

x∈V(G)∩B

∑

y∈V(G)∩C

f(G, x, y) dν(G)

for Borel B, C ⊆ X. Since ν is invariant, ρ is diagonally invariant. Therefore,

∫ ∑

x∈V(G)

f(G, o, x) dµ(G, o) = v(A)−1ρ(A × X) = v(A)−1ρ(X × A)

=

∫ ∑

x∈V(G)

f(G, x, o) dµ(G, o) ,

which means that µ satisfies the Mass-Transport Principle, i.e., is unimodular. Furthermore, if
we take f(G, x, y) := 1{x=y}, then we see that ρ(A × X) = v(A), so that there is a constant c
such that v(A) = c|A|. Likewise, if f(G, x, y) := 1{x=y,(G,x)∈A}, then we see that for each A,
there is another constant cA such that v(A)µ(A) = cA|A|. It follows that µ does not depend on
A.

Example 9.6. (Planar Duals) Let µ be a unimodular probability measure on plane graphs
all of whose faces have finitely many sides. We are assuming that to each graph, there is a
measurably associated plane embedding. Thus, each graph G has a plane dual G† with respect
to its embedding. In fact, to be technically accurate in what follows, we replace the embedding
by an assignment (possibly random) of marks to the edges that indicate the cyclic order in which
they appear around a vertex in a fixed orientation of the plane. (For example, if a vertex x has
d edges incident to it, then one can let the d edge marks associated to x be {1, 2, . . . , d} in cyclic
order, with the one marked 1 chosen at random, independently of marks elsewhere.) Then the
plane dual graph is defined entirely with respect to the resulting network in an automorphism-
equivariant way, needing no reference to the plane.

Provided a certain finiteness condition is satisfied, there is a natural unimodular probability
measure on the dual graphs, constructed as follows. For a face f , let deg f denote the number of
sides of f . For a vertex x, let F (x) :=

∑
f∼x 1/ deg f . Assume that Z :=

∫
F (o) dµ(G, o) < ∞.

To create a unimodular probability measure µ† on the duals, first choose (G, o) with law µ biased
by F (o)/Z. Then choose a face f0 incident to o with probability proportional to 1/ deg f0. The
law of the resulting rooted graph (G†, f0) is µ†:

µ†(A) := Z−1

∫ ∑

f0∼o

1

deg f0
1{(G†,f0)∈A} dµ(G, o)

1495



for Borel A ⊆ G∗. To prove that µ† is indeed unimodular, let k : G∗∗ → [0,∞] be Borel. Then

Z

∫ ∑

f∈V(G†)

k(G†, f0, f) dµ†(G†, f0) =

∫ ∑

f0∼o

1

deg f0

∑

f∈V(G†)

k(G†, f0, f) dµ(G, o)

=

∫ ∑

f0∼o

∑

f∈V(G†)

1

deg f0
k(G†, f0, f)

∑

x∼f

1

deg f
dµ(G, o)

=

∫ ∑

x∈V(G)

∑

f0∼o

∑

f∼x

1

deg f0

1

deg f
k(G†, f0, f) dµ(G, o)

=

∫ ∑

x∈V(G)

∑

f0∼x

∑

f∼o

1

deg f0

1

deg f
k(G†, f0, f) dµ(G, o)

[by the Mass-Transport Principle for µ]

=

∫ ∑

x∈V(G)

∑

f∼x

∑

f0∼o

1

deg f0

1

deg f
k(G†, f, f0) dµ(G, o)

= Z

∫ ∑

f∈V(G†)

k(G†, f, f0) dµ†(G†, f0) .

Thus, µ† satisfies the Mass-Transport Principle, so is unimodular. A similar argument shows
that (µ†)† = µ.

Another important construction comes from combining the primal and dual graphs into a new
plane graph by adding a vertex where each edge crosses its dual. That is, if G is a plane graph
and G† its dual, then every edge e ∈ E(G) intersects e† ∈ E(G†) in one point, ve. (These are
the only intersections of G and G†.) For e ∈ E(G), write ê for the pair of edges that result from

the subdivision of e by ve, and likewise for ê†. This defines a new graph Ĝ, whose vertices are

V(G) ∪ V(G†) ∪
{

ve ; e ∈ E(G)
}

and whose edges are
⋃

e∈E(G)(ê ∪ ê†). If deg(µ) < ∞, then

we may define a unimodular probability measure µ̂ on the graphs Ĝ from µ as follows. Let
Ẑ := (3/2)deg(µ) + Z ≤ (5/2)deg(µ) < ∞. For x ∈ V(G), let N̂(x) be the set consisting of x
itself plus the vertices of Ĝ that correspond to edges or faces of G that are incident to x. For
w ∈ V(Ĝ), define

δ(w) := |{x ∈ V(G) ; w ∈ N̂(x)}|−1 =






1 if w ∈ V(G),

1/2 if w = ve for some e ∈ E(G),

1/ deg w if w ∈ V(G†).

Define

µ̂(A) := Ẑ−1

∫ ∑

w0∈ bN(o)

δ(w0)1{( bG,w0)∈A}
dµ(G, o) .

Note that µ̂ is a probability measure. To prove that µ̂ is unimodular, let k : G∗∗ → [0,∞] be
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Borel. Then

Ẑ

∫ ∑

w∈V( bG)

k(Ĝ, w0, w) dµ̂(Ĝ, w0) =

∫ ∑

w0∈ bN(o)

δ(w0)
∑

w∈V( bG)

k(Ĝ, w0, w) dµ(G, o)

=

∫ ∑

w0∈ bN(o)

∑

w∈V( bG)

δ(w0)k(Ĝ, w0, w)
∑

x ; w∈ bN(x)

δ(w) dµ(G, o)

=

∫ ∑

x∈V(G)

∑

w0∈ bN(o)

∑

w∈ bN(x)

δ(w0)δ(w)k(Ĝ, w0, w) dµ(G, o)

=

∫ ∑

x∈V(G)

∑

w0∈ bN(x)

∑

w∈ bN(o)

δ(w0)δ(w)k(Ĝ, w0, w) dµ(G, o)

[by the Mass-Transport Principle for µ]

=

∫ ∑

x∈V(G)

∑

w∈ bN(x)

∑

w0∈ bN(o)

δ(w0)δ(w)k(Ĝ, w, w0) dµ(G, o)

= Ẑ

∫ ∑

w∈V( bG)

k(Ĝ, w, w0) dµ̂(Ĝ, w0) .

Thus, µ̂ satisfies the Mass-Transport Principle, so is unimodular.

Example 9.7. (Poisson Weighted Infinite Tree) Our definition (Section 2) of the metric on
the space G∗ of rooted graphs refers to “balls of radius r” in which distance is graph distance,
i.e., edges implicitly have length 1. Aldous and Steele (2004) work in the setting of graphs
whose edges have positive real lengths, so that distance becomes minimum path length. This
setting permits one to consider graphs which may have infinite degree, but which are still “locally
finite” in the sense that only finitely vertices fall within any finite radius ball. Of course, edge
lengths are a special (symmetric) case of edge marks. An important example is the following.
Consider a regular rooted tree T of infinite degree. Fix a continuous increasing function Λ
on [0,∞) with Λ(0) = 0 and limt→∞ Λ(t) = ∞. Order the children of each vertex of T via a
bijection with Z

+. For each vertex x, consider an independent Poisson process on R
+ with mean

function Λ. Define the length of the edge joining x to its nth child to be the nth point of the
Poisson process associated to x. This is a unimodular random network in the extended sense of
Aldous and Steele (2004). It can be derived by taking the random weak limit of the complete
graph on n vertices whose edge lengths are independent with cdf t 7→ 1 − e−Λ(t)/n (t ≥ 0) and
then deleting all edges in the limit whose length is ∞. (We are working here with the mark
space [0,∞].) See Aldous (1992).

Example 9.8. (Edge Replacement) Here is a general way to create unimodular random rooted
graphs from existing unimodular fixed graphs. This is an extension of the random subdivision
(or stretching) introduced by Adams and Lyons (1991) and studied further in Example 2.4.4
of Kaimanovich (1998) and Chen and Peres (2004). Let FG2 be the set of isomorphism classes
of finite graphs with an ordered pair of distinct distinguished vertices. For our construction,
we may start with a fixed unimodular quasi-transitive connected graph, G, or, more generally,
with any unimodular probability measure µ on G∗. In the former case, fix an orientation of the
edges of G and let L be a random field on the oriented edges of G that is invariant under the
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automorphism group of G and takes values in FG2 and such that
∣∣V

(
L(e)

)∣∣ has finite mean for
each edge e. Replace each edge e with the graph L(e), where the first of the distinguished vertices
of L(e) is identified with the tail of e and the second of its distinguished vertices is identified with
the head of e. Call the resulting random graph H. There is a unimodular probability measure
that is equivalent to this measure on random graphs. Namely, let µi be the law of (H, oi), where
{oi} is a complete section of the vertex orbits of G. Given H, write

A(x) := 2 +
∑

e∼x

(∣∣V
(
L(e)

)∣∣ − 2
)

and
c :=

∑

i

E
[
A(oi)

]∣∣Stab(oi)
∣∣−1

.

Choose oi with probability c−1E
[
A(oi)

]∣∣Stab(oi)
∣∣−1

. Given oi, choose (H, oi) with distribu-
tion µi. Given this, list the non-distinguished vertices of all L(e) for e incident to oi as
z1, z2, . . . , zA(oi)−2 and set zA(oi)−1 := zA(oi) := oi. Let U be a uniform integer in

[
1, A(oi)

]
.

Then (H, zU ) is unimodular and, clearly, has law with respect to which
∑

i µi is absolutely
continuous.

Indeed, we state and prove this more generally. Suppose that µ is a unimodular probability
measure on G∗. Orient the edges of the rooted networks arbitrarily. Let ψ(e) denote the ordered
pair of the marks of the edge e (ordered by the orientation of e). Suppose L : Ξ2 → FG2 is Borel
with the property that whenever L(ξ1, ξ2) = (G, x, y), we also have L(ξ2, ξ1) = (G, y, x). (This
will ensure that the orientation of the edges will not affect the result.) If

∫ ∑

e∼o

[∣∣∣V
(
L

(
ψ(e)

))∣∣∣ − 2

]
dµ(G, o) < ∞ ,

then let µ′ be the following measure. Define

A(G, o) := 2 +
∑

e∼o

[∣∣∣V
(
L

(
ψ(e)

))∣∣∣ − 2

]
.

Choose (G, o) with probability distribution µ biased by A(G, o) and replace each edge e by the
graph L

(
ψ(e)

)
, where the tail and head of e are identified with the first and second distinguished

vertices of L
(
ψ(e)

)
, respectively; call the resulting graph H. Write A := A(G, o) and list the non-

distinguished vertices of all L
(
ψ(e)

)
for e incident to o as z1, z2, . . . , zA−2 and set zA−1 := zA := o.

Let U be a uniform integer in [1, A]. Finally, let µ′ be the distribution of (H, zU ).

This is unimodular by the following calculation. Write H(G) for the graph H formed as
above from the network G. Let V0(ξ1, ξ2) be the set of non-distinguished vertices of the
graph L(ξ1, ξ2). Write zi(G, o) (1 ≤ i ≤ A(G, o) − 2) for the vertices of the neighbor-
hood B(G, o) :=

⋃
e∼o V0

(
ψ(e)

)
. Write zi(G, o) := o for i = A(G, o) − 1, A(G, o). Put

c :=
∫

A(G, o) dµ(G, o). In order to show that µ′ is unimodular, let f : G∗∗ → [0,∞] be
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Borel. Define f : G∗∗ → [0,∞] by

f(G, x, y) :=
1

c

∑

z∈B(G,x)

∑

z′∈B(G,y)

f
(
H(G), z, z′

)
+

2

c

∑

z∈B(G,x)

f
(
H(G), z, y

)

+
2

c

∑

z′∈B(G,y)

f
(
H(G), x, z′

)
+

2

c
f
(
H(G), x, y

)
.

Then
∫ ∑

z∈V(H)

f(H, o, z) dµ′(H, o)

=
1

c

∫
1

A(G, o)

A(G,o)∑

i=1

∑

z∈V(H(G))

f
(
H(G), zi(G, o), z

)
A(G, o) dµ(G, o)

=

∫ ∑

x∈V(G)

f(G, o, x) dµ(G, o)

=

∫ ∑

x∈V(G)

f(G, x, o) dµ(G, o)

=

∫ ∑

z∈V(H)

f(H, z, o) dµ′(H, o) .

Our final example details the correspondence between random rooted graphs and graphings of
equivalence relations.

Example 9.9. Let µ be a Borel probability measure on a topological space X and R be a Borel
subset of X2 that is an equivalence relation with finite or countable equivalence classes. We call
the triple (X, µ, R) a measured equivalence relation. For x ∈ X, denote its R-equivalence
class by [x]. We call R measure preserving if

∫

x∈X

∑

y∈[x]

f(x, y) dµ(x) =

∫

x∈X

∑

y∈[x]

f(y, x) dµ(x)

for all Borel f : X2 → [0,∞]. A graphing Φ of R is a Borel subset of X2 such that the
smallest equivalence relation containing Φ is R. A graphing Φ induces the structure of a graph
on the vertex set X by defining an edge between x and y if (x, y) ∈ Φ or (y, x) ∈ Φ. Denote the
subgraph induced on [x] and rooted at x by Φ(x). Given Borel maps ψ : X → Ξ and φ : X2 → Ξ,
we regard ψ(x) as the mark at x and φ(x, y) as the mark at x of the edge from x to y. Thus,
Φ(x) is a random rooted network. Its law (or, rather, the law of its rooted isomorphism class)
is unimodular iff R is measure preserving.

Conversely, suppose that µ is a probability measure on G∗. Add independent uniform marks as
second coordinates to the existing marks and call the resulting measure ν. Write G# ⊂ G∗ for
the set of (isomorphism classes of) rooted networks with distinct marks. Thus, ν is concentrated
on G#. Define R ⊂ G2

# to be the set of pairs of (isomorphism classes of) rooted networks
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that are non-rooted isomorphic. Define Φ ⊂ R to be the set of pairs of isomorphic rooted
networks whose roots are neighbors in the unique (non-rooted) isomorphism. Then (G#, ν, R) is
a measured equivalence relation with graphing Φ. We have that R is measure preserving iff µ
is unimodular. If we define the mark map prj that forgets the second coordinate, then ν pushes
forward to µ, i.e., µ = ν ◦ prj−1.

Thus, the theory of unimodular random rooted networks has substantial overlap with the the-
ory of graphed measure-preserving equivalence relations. The largest difference between the
two theories lies in the foci of attention: We focus on probabilistic aspects of the graph-
ing, while the other theory focuses on ergodic aspects of the equivalence relation (and, thus,
considers all graphings of a given equivalence relation). The origins of our work lie in two
distinct areas: one is group-invariant percolation on graphs, while the other is asymptotic
analysis of finite graphs. The origin of the study of measured equivalence relations lies in
the ergodic theory of group actions. Some references for the latter work, showing relations
to von Neumann algebras and logic, among other things, are Feldman and Moore (1977a,b),
Feldman, Hahn, and Moore (1978), Connes, Feldman, and Weiss (1981), Zimmer (1984),
Kechris and Miller (2004), Becker and Kechris (1996), Kechris (1991), Adams and Lyons
(1991), Kaimanovich (1997, 1998), Paulin (1999), Gaboriau (2000, 2002), and Furman
(1999a,b).

10 Finite Approximation

Although we do not present any theorems in this section, because of its potential importance,
we have devoted the whole section to the question of whether finite networks are weakly dense
in U . Let us call random weak limits of finite networks sofic.

Question 10.1. (Finite Approximation) Is every probability measure in U sofic? In other
words, if µ is a unimodular probability measure on G∗, do there exist finite networks Gn such
that U(Gn) ⇒ µ?

To appreciate why the answer is not obvious, consider the special case of the (non-random) graph
consisting of the infinite rooted 3-regular tree. It is true that there exist finite graphs Gn that
approximate the infinite 3-regular tree in the sense of random weak convergence; a moment’s
thought shows these cannot be finite trees. This special case is of course known (one can use
finite quotient groups of Z2 ∗Z2 ∗Z2, random 3-regular graphs, or expanders Lubotzky (1994)),
but the constructions in this special case do not readily extend to the general case.

Another known case of sofic measures is more difficult to establish. Namely, Bowen (2003)
showed that all unimodular networks on regular trees are sofic. (To deduce this from his result,
one must use the fact, easily established, that networks with marks from a finite set are dense
in G∗.)

Example 10.2. The general unimodular Galton-Watson measure UGW (Example 1.1) is also
sofic. To see this, consider the following random networks, sometimes called “fixed-degree distri-
bution networks” and first studied by Molloy and Reed (1995). Given 〈rk〉 and n vertices, give
each vertex k balls with probability rk, independently. Then pair the balls at random and place
an edge for each pair between the corresponding vertices. There may be one ball left over; if so,
ignore it. Let m0 :=

∑
krk, which we assume is finite. In the limit, we get a tree where the root
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has degree k with probability rk, each neighbor of the root, if any, has degree k with probability
krk/m0, etc. In fact, we get UGW for the offspring distribution k 7→ (k + 1)rk+1/m0. Thus, if
we want the offspring distribution 〈pk〉, we need merely start with rk := c−1pk−1/k for k ≥ 1
and r0 := 0, where c :=

∑
k≥0 pk/(k + 1).

Let us compare the intuitions behind amenability and unimodularity. One can define an average
of any bounded function on the vertices of, say, an amenable Cayley graph; the average will be
the same for any translate of the function. This can also be regarded as an average of the func-
tion with respect to a probability measure that chooses a group element uniformly at random;
however, the precise justification of this requires a measure that, though group invariant, is only
finitely additive. Nevertheless, this invariant measure is approximated by uniform measures on
finite sets, namely, Følner sets. By contrast, the justification that a unimodular random rooted
graph provides a uniform distribution on the vertices is via the Mass-Transport Principle. The
measure itself is, of course, countably additive; if it is sofic, then it, too, is approximated by
uniform measures on finite sets. The two intuitions concerning uniform measures that come from
amenability and from unimodularity agree insofar as every amenable quasi-transitive graph is
unimodular, as shown by Soardi and Woess (1990) and Salvatori (1992).

One might think that if a sequence 〈Gn〉 of finite graphs has a fixed transitive graph G as
its random weak limit, then any unimodular probability measure on networks supported by G
would be a random weak limit of some choice of networks on the same sequence 〈Gn〉. This is
false, however; e.g., if G is a 3-regular tree, then almost any choice of a sequence of growing
3-regular graphs has G as its random weak limit. However, there is a random independent set3 of
density 1/2 on G whose law is automorphism invariant, while the density of independent sets in
random 3-regular graphs is bounded away from 1/2 (see Frieze and Suen (1994)). Nevertheless,
if Question 10.1 has a positive answer, then it is not hard to show that there is some sequence
of finite graphs that has this property of carrying arbitrary networks.

Recall that the Cayley diagram of a group Γ generated by a finite subset S is the network
(G, o) with vertex set Γ, edge set

{
(x, xs) ; x ∈ Γ, s ∈ S

}
, root o the identity element of Γ, and

edge marks s at the endpoint x of (x, xs) and s−1 at the endpoint xs of (x, xs), as in Remark 3.3.
We do not mark the vertices (or mark them all the same). Weiss (2000) defined Γ to be sofic if
its Cayley diagram is a random weak limit of finite networks with edge marks from S∪S−1. It is
easy to check that this property does not depend on the generating set S chosen. By embedding
S ∪ S−1 into Ξ, we can use a positive answer to Question 10.1 to give every Cayley diagram
as a random weak limit of some finite networks. Changing the marks on the finite networks to
their nearest points in S ∪ S−1 gives the kind of approximating networks desired. That is, we
would have that every finitely generated group is sofic. As we mentioned in the introduction,
this would have plenty of consequences.

To illustrate additional consequences of a positive answer to Question 10.1, we establish the
existence of various probability measures on sofic networks. The idea is that if a class of prob-
ability measures is specified by a sequence of local “closed” conditions in such a way that there
is a measure in that class on any finite graph, then there is an automorphism-invariant measure
in that class on any sofic quasi-transitive graph. Rather than state a general theorem to that
effect, we shall illustrate the principle by two examples.

3This means that no two vertices of the set are adjacent.
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Example 10.3. (Invariant Markov Random Fields) Consider networks with vertex marks ±1
and no (or constant) edge marks. Given a finite graph G, h ∈ R, and β > 0, the probability
measure νG on mark maps ψ : V(G) → {−1, +1} given by

νG(ψ) := Z−1 exp
{ ∑

x∈V(G)

βhψ(x) −
∑

x∼y

βψ(x)ψ(y)
}

,

where Z is the normalizing constant required to make these probabilities add to 1, is known
as the anti-ferromagnetic Ising model at inverse temperature β and with external field h on
G. Let G now be an infinite sofic transitive graph. Let 〈Gn〉 be an approximating sequence of
finite graphs and let νn := νGn

be the corresponding probability measures. Write Gn for the
corresponding random network on Gn and, as usual, U(Gn) for the uniformly rooted network.
Since U(Gn) is unimodular, so is any weak limit point, µ. By tightness, there is such a weak
limit point, and it is concentrated on networks with underlying graph G. By Theorem 3.2, we
may lift µ to an automorphism-invariant measure ν = λµ on networks on G. This measure ν is a
Markov random field with the required Gibbs specification, meaning that for any finite subgraph
H of G, the conditional ν-distribution of ψ↾V(H) given ψ↾∂VH is equal to the conditional νH -
distribution of the same thing. One is often interested in invariant random fields, not just any
random fields with the given Gibbs specification. One can easily get a Markov random field
with the required Gibbs specification by taking a limit over subgraphs of G, but this will not
necessarily produce an invariant measure. In case G is amenable, one could take a limit of
averages of the resulting measure to obtain an invariant measure, but this will not work in the
non-amenable case. That is the point of the present construction. A variation on this is spin
glasses: Here, for finite graphs G, the measure νG is

νG(ψ) := Z−1 exp
{ ∑

x∈V(G)

βhψ(x) +
∑

x∼y

βJx,yψ(x)ψ(y)
}

,

where Jx,y are, say, independent ±1-valued random variables. Again, one can find an invariant
spin glass (coupled to the independent interactions Jx,y) with the same parameters h and β on
any transitive sofic graph by the above method.

Example 10.4. (Invariant Sandpiles) Consider now networks with vertex marks in N and
no edge marks. Given a finite rooted graph (G, o), a mark map ψ : V(G) → N is called
critical (or stable and recurrent) if for all x ∈ V(G), we have ψ(x) < deg(x) and for
all subgraphs W of G \ {o}, there is some x ∈ V(W ) such that ψ(x) ≥ degW (x); we may
take ψ(o) ≡ 0. In this context, one usually calls the root “the sink”. It turns out that the
set of such mark maps form a very interesting group, called the sandpile group or chip-
firing group of G; see Bak, Tang, and Wiesenfeld (1988), Dhar (1999), Biggs (1997), and
Meester, Redig, and Znamenski (2001). Let ν(G,o) be the uniform measure on critical mark
maps. Given a transitive sofic graph G and an approximating sequence 〈Gn〉 of finite graphs,
let νn := ν(Gn,on) be the corresponding probability measures for any fixed choice of roots on.

Write (Gn, on) for the corresponding random network on (Gn, on) and, as usual, U(Gn) for the
uniformly rooted network. (This root is unrelated to on.) Since U(Gn) is unimodular, so is any
weak limit point, µ. By tightness, there is such a weak limit point, and it is concentrated on
networks with underlying graph G. (Probably the entire sequence 〈U(Gn)〉 in fact converges to
µ.) By Theorem 3.2, we may lift µ to an automorphism-invariant measure ν on networks on G.
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This measure ν is supported by networks with only critical mark maps in the sense that for all
x ∈ V(G), we have ψ(x) < deg(x) and for all subgraphs W of G, there is some x ∈ V(W ) such
that ψ(x) ≥ degW (x).

However, we do not know how to answer the following question.

Question 10.5. (Invariant Coloring) Given a quasi-transitive infinite graph G and a number
c that is at least the chromatic number of G, is there an Aut(G)-invariant probability measure
on proper c-colorings of the vertices of G? Let D := maxx∈V(G) degG x. A positive answer for
c ≥ D + 1 is due to Schramm (personal communication, 1997). If G is sofic, then we can also
obtain such a measure for c = D by using a well-known result of Brooks (see, e.g., Bollobás
(2001), p. 148, Theorem V.3.) The question is particularly interesting when G is planar and
c = 4. In fact, it is then also of great interest to know whether there is a quasi-transitive proper
4-coloring of G.
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7.4. We also thank Oded Schramm and Ádám Timár for various suggestions. We are indebted to
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Häggström, O. and Peres, Y. (1999). Monotonicity of uniqueness for percolation on Cayley
graphs: all infinite clusters are born simultaneously. Probab. Theory Related Fields 113,
273–285.

Heicklen, D. and Hoffman, C. (2005). Return probabilities of a simple random walk on
percolation clusters. Electron. J. Probab. 10, no. 8, 250–302 (electronic).

Holroyd, A.E. and Peres, Y. (2003). Trees and matchings from point processes. Electron.
Comm. Probab. 8, 17–27 (electronic).

Kadison, R.V. and Ringrose, J.R. (1997). Fundamentals of the Theory of Operator Algebras.
Vol. II, volume 16 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI. Advanced theory, Corrected reprint of the 1986 original.

Kaimanovich, V.A. (1997). Amenability, hyperfiniteness, and isoperimetric inequalities. C.
R. Acad. Sci. Paris Sér. I Math. 325, 999–1004.

Kaimanovich, V.A. (1998). Hausdorff dimension of the harmonic measure on trees. Ergodic
Theory Dynam. Systems 18, 631–660.

Kaplansky, I. (1969). Fields and Rings. The University of Chicago Press, Chicago, Ill.-London.

Kechris, A.S. (1991). Amenable equivalence relations and Turing degrees. J. Symbolic Logic
56, 182–194.

Kechris, A.S. and Miller, B.D. (2004). Topics in Orbit Equivalence, volume 1852 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin.

Levitt, G. (1995). On the cost of generating an equivalence relation. Ergodic Theory Dynam.
Systems 15, 1173–1181.

Lubotzky, A. (1994). Discrete Groups, Expanding Graphs and Invariant Measures, volume
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Markov Process. Related Fields 5, 163–200.

Pemantle, R. (1991). Choosing a spanning tree for the integer lattice uniformly. Ann. Probab.
19, 1559–1574.

Pittet, C. and Saloff-Coste, L. (2000). On the stability of the behavior of random walks
on groups. J. Geom. Anal. 10, 713–737.

Radin, C. (1997). Aperiodic tilings, ergodic theory, and rotations. In Moody, R.V., editor, The
Mathematics of Long-Range Aperiodic Order, volume 489 of NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., pages 499–519. Kluwer Acad. Publ., Dordrecht. Proceedings of the NATO
Advanced Study Institute held in Waterloo, ON, August 21–September 1, 1995.

Radin, C. (1999). Miles of Tiles, volume 1 of Student Mathematical Library. American Math-
ematical Society, Providence, RI.

Robinson, Jr., E.A. (1996). The dynamical theory of tilings and quasicrystallography. In
Pollicott, M. and Schmidt, K., editors, Ergodic Theory of Zd Actions, volume 228 of London
Math. Soc. Lecture Note Ser., pages 451–473. Cambridge Univ. Press, Cambridge. Proceedings
of the symposium held in Warwick, 1993–1994.

Royden, H.L. (1988). Real Analysis. Macmillan Publishing Company, New York, third edition.

Salvatori, M. (1992). On the norms of group-invariant transition operators on graphs. J.
Theoret. Probab. 5, 563–576.

Schick, T. (2001). L2-determinant class and approximation of L2-Betti numbers. Trans. Amer.
Math. Soc. 353, 3247–3265 (electronic).
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