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ERRATA TO “DISTANCE COVARIANCE IN METRIC SPACES”

BY RUSSELL LYONS1

Indiana University

We correct several statements and proofs in our paper, Ann. Probab. 41,
no. 5 (2013), 3284–3305.

We are grateful to Martin Emil Jakobsen for asking us about several gaps in
our proofs. Most of the mistakes and gaps below were noted first by Jakobsen,
whom we thank also for his help in checking these errata. His 2017 master’s thesis,
Jakobsen (2017), contains more details of some of our proofs, as well as some
extensions.

(i) In general, the metric spaces (X , d) should be assumed separable: separa-
bility ensures that (x, y) �→ d(x, y) is measurable with respect to the product Borel
σ -field.

(ii) The display after (2.1) should have dμ(x, x′)2 in place of dμ(x, x′).
(iii) The proof of Proposition 2.6 is not correct; we do not know whether the

statement is correct with only the assumption of finite first moments. The proof
does give a.s. convergence to dcov(θ) of the U-statistics for the kernel h given in
that proof.

Jakobsen (2017), Theorem 5.5, implies that if the marginals of θ have finite
5/3-moments, then the convergence of V-statistics as stated in Proposition 2.6 is
correct.

On the other hand, if X and Y have negative type, then the statement of Propo-
sition 2.6 is easily proved as follows: The strong law of large numbers in Hilbert
space tells us that if μ and ν denote the marginals of θ , and μn, νn the correspond-
ing marginals of θn, then βφ,ψ(θn − μn × νn) → βφ,ψ(θ − μ × ν) a.s. Thus, the
result follows from Proposition 3.7.

(iv) The conclusion of Theorem 2.7 is not quite correct, but should be changed
to ndcov(θn) ⇒ ∑

i λi(Z
2
i − 1) + D(μ)D(ν), omitting the claim that

∑
i λi =

D(μ)D(ν). The difficulty with the proof is that the operator in question need not
be trace class. Also, the proof of the first paragraph is not quite right; it should read
as follows:
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The triangle inequality gives that∣∣f (z1, z2, z3, z4)
∣∣ ≤ 2 min

{
d(z2, z3), d(z1, z4)

}
,

whence

f (z1, z2, z3, z4)
2 ≤ 4d(z1, z4) · d(z2, z3),

which shows that f (X1,X2,X3,X4) has finite second moment. Therefore, when
θ = μ × ν, h((X1, Y 1), . . . , (X6, Y 6)) has finite second moment.

One can also show that n times the U-statistics for h converge in distribution to∑
i λi(Z

2
i − 1); see Jakobsen (2017), Theorem 5.10, for details.

We now present an example where the operator of Theorem 2.7 is not trace
class. Given a probability measure μ on a metric space X with finite first moment,
write Tμ for the Hilbert–Schmidt operator that sends F ∈ L2(μ) to the function

x �→
∫
X

dμ

(
x, x′)F (

x′)dμ
(
x′).

Since θ = μ × ν, the operator of Theorem 2.7 is the tensor product Tμ ⊗ Tν . The
eigenvalues of the tensor product are the products of the eigenvalues, whence the
tensor product is trace class iff each of the terms is. We will take X = Y to be
constructed out of Paley graphs. Recall that for a prime q that is congruent to 1
modulo 4, the Paley graph Gq is a Cayley graph of the group Zq with respect to the
generators S := {k2;k 	= 0}; that is, Gq has vertex set {0,1, . . . , q −1} and j , k are
joined by an edge when j −k is a nonzero square modulo q . Write q = 4t +1. The
Paley graph Gq is strongly regular with parameters (q,2t, t − 1, t), meaning that
the number of vertices is q , the degree is 2t , each pair of adjacent vertices has t −1
common neighbors and each pair of nonadjacent vertices has t common neighbors.
In particular, all graph distances are 0, 1 or 2. The adjacency matrix has eigenvalues
2t (with multiplicity 1) and (−1 ± √

q)/2 (with multiplicity 2t each). For these
facts, see Brouwer and Haemers (2012), Proposition 9.1.1 and Theorem 9.1.3.
It follows easily from this that the eigenvalues of the distance matrix of Gq are
6t and (−5 ± √

q)/2, with the corresponding multiplicities. Let μq denote the
uniform measure on the vertices of Gq . The preceding facts imply that the trace
norm of the operator Tμq is asymptotic to

√
q/2 as q → ∞. Choose a sequence of

primes qn ≡ 1 (mod 4) so that
∑

n 1/
√

qn = 1/c < ∞. Now let X be the graph
formed from the disjoint union of all Gqn , with an edge added between each pair
of vertices that belong to different Gqn . Let μ be the probability measure that

puts mass c/q
3/2
n on each vertex of Gqn . The eigenvectors of Tμq are constant or

are orthogonal to the constants. Therefore, a short calculation shows that for any
eigenvector v ⊥ 1 of Tμq with eigenvalue λ, the function

fn(x) :=
{
v(x) if x ∈ Gqn,

0 otherwise,
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is an eigenvector of Tμ with eigenvalue λ · c/√qn. Therefore, Tμ is not trace class,
whence neither is the operator Tμ ⊗ Tμ of Theorem 2.7.

(v) The change in (iv) leads to changing (2.5) of Corollary 2.8 to

ndcov(θn)

D(μn)D(νn)
⇒

∑
i λi(Z

2
i − 1)

D(μ)D(ν)
+ 1.

Similarly, the change in (iii) leads us to require stronger hypotheses in order to
apply Proposition 2.6 if dcov(θ) 	= 0.

(vi) On the other hand, if X and Y have negative type, then the original con-
clusions of Theorem 2.7 and Corollary 2.8 all hold. It suffices to show then that the
operator in question is trace class. To see that it is, we actually give another proof
of the final part of Theorem 2.7.

We suppose that θ = μ × ν. Let the embeddings φ and ψ witness the negative
type of X and Y . For vectors ξ,α1, α2 ∈ H ⊗ H , write

Mα1,α2(ξ) := 〈α1, ξ〉〈ξ,α2〉.
We claim that ndcov(θn) ⇒ 4‖ζ‖2, where ζ is a centered Gaussian H ⊗H -valued
random variable with covariance

(α1, α2) �→
∫

Mα1,α2

([
φ(x) − βφ(μ)

] ⊗ [
ψ(y) − βψ(ν)

])
dθ(x, y)

and

E
[
4‖ζ‖2] = D(μ)D(ν).

Indeed, write φ̂ := φ − βφ(μ) and ψ̂ := ψ − βψ(ν). Then

βφ,ψ(θn − μn × νn) = βφ̂,ψ̂ (θn) − βφ̂,ψ̂ (μn × νn).

Since E[βφ̂,ψ̂ (θn)] = βφ,ψ(θ) − βφ,ψ(μ × ν) = 0, the central limit theorem yields√
nβφ̂,ψ̂ (θn) ⇒ ζ . Also, by the central limit theorem

√
nβφ̂,ψ̂ (μn × νn) = (

n1/4βφ̂(μn)
) ⊗ (

n1/4βψ̂(νn)
) → 0

in probability. Thus the claim follows from Proposition 3.7.
Since the covariance operator of a Hilbert-space valued Gaussian random vari-

able is trace class, it has eigenvalues λi/2 ≥ 0 that allow one to write 4‖ζ‖2

as
∑

i λiZ
2
i , where Zi are independent standard normal random variables and∑

i λi = D(μ)D(ν). We claim that λi are the same as the non-0 eigenvalues
in Theorem 2.7. It suffices to prove that the representation of a distribution as∑

j cj (Z
2
j − 1) is unique if Zj are independent standard normal random vari-

ables, cj 	= 0 and
∑

j c2
j < ∞. Indeed, the square of the characteristic function

of Z2
j is t �→ 1/(1 − 2it). Therefore, the square of the characteristic function of∑

j cj (Z
2
j − 1) is t �→ ∏

j e−2icj t /(1 − 2icj t), which has a unique meromorphic

extension f (z) := ∏
j e−2icj z/(1 − 2icj z). Since the poles of f are at (2icj )

−1,
this proves the desired uniqueness.
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(vii) The example given in Remark 3.3 is incorrect. A correct example is the
following. Let ek and fk all be orthonormal for k ≥ 1. Write v0 := e1 and vk :=
−ek + ek+1/2 for k ≥ 1, and likewise write w0 := f1 and wk := −fk + fk+1/2 for
k ≥ 1. Then the collection {vk,wk;k ≥ 0} has no obtuse angles and is affinely in-
dependent (which is the same as the property that the barycenter determines every
finitely supported probability measure on the set), yet (1/3)(v0 +∑

k≥1 vk/2k−1) =
0 = (1/3)(w0 + ∑

k≥1 wk/2k−1).

(viii) We assumed that our Hilbert spaces were real just after Proposition 3.5,
but we should have assumed this just before Remark 3.4. Note that distances in the
realification of a complex Hilbert space are the same as in the original space.

(ix) The proof of Lemma 3.8 has a gap, since we did not show that νk has a
finite first moment. Here is a reformulation of the lemma and its proof to remedy
this. It incorporates Lemma 3.9 as well.

LEMMA 3.8. Let X , Y have strong negative type. Then there are embed-
dings φ and ψ that witness strong negative type such that βφ⊗ψ is injective on
M1,1(X × Y ).

PROOF. Let φ′ : X → H and ψ ′ : Y → H witness strong negative type.
Define φ(x) := (φ′(x) − φ′(o),1) and ψ(x) := (ψ ′(x),1). These embed into
H ⊕ R. Then βφ and βψ are injective on M1(X ) and M1(Y ), respectively, and
φ(o) = (0,1).

Let θ ∈ M1,1(X × Y ) satisfy βφ⊗ψ(θ) = 0. For k ∈ H , define the bounded
linear map Tk : H ⊗ H → H by linearity, continuity and

Tk(u ⊗ v) := 〈u, k〉v.

More precisely, one uses the above definition on ei ⊗ ej for an orthonormal basis
{ei} of H and then extends. Also, define

νk(B) :=
∫ 〈

φ(x), k
〉
1B(y) dθ(x, y) (B ⊆ Y Borel).

We claim that νk = 0 for all k ∈ H .
Let F be the closed linear span of the image of φ. For k ⊥ F , it is immediate that

νk = 0. Consider k = φ(z) for some z. Then 2〈φ(x),φ(z)〉 = d(x, z) − d(o, x) −
d(o, z) + 2; the triangle inequality shows that this lies in [2 − 2d(o, z),2]. Thus, if
f ≥ 0, ∫

f d|νk| ≤ (
1 + d(o, z)

) ∫
f (y) d|θ |(x, y).

Now use f (y) := d(o, y) to see that νk has finite first moment. Since

βψ(νk) =
∫ 〈

φ(x), k
〉
ψ(y)dθ(x, y)

=
∫

Tk

(
φ(x) ⊗ ψ(y)

)
dθ(x, y) = Tk

(
βφ⊗ψ(θ)

) = 0,
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this implies that νk = 0 by injectivity of βψ . Since k �→ νk is linear, we also have
that νk = 0 for all k in the linear span of the image of φ. It follows that the same
holds for all k ∈ F and, therefore, for all k ∈ H , because

|νk|(B) ≤
∫ ∥∥φ(x)

∥∥ · ‖k‖1B(y) d|θ |(x, y)

≤ ‖k‖
(∫ [

d(o, x) + 1
]
dμ(x)

)1/2
ν(B)1/2,

where the marginals of |θ | are μ and ν.
Since νk = 0 for each k ∈ H , we obtain that for every Borel B ⊆ Y ,∫

φ(x)1B(y) dθ(x, y) = 0.

Defining

μB(A) := θ(A × B) (A ⊆ X Borel),

we have βφ(μB) = ∫
φ(x)1B(y) dθ(x, y) = 0, whence μB = 0 by injectivity

of βφ . In other words, θ(A × B) = 0 for every pair of Borel sets A and B .
Since such product sets generate the product σ -field on X × Y , it follows that
θ = 0. �

(x) The justification of the claim at the end of the penultimate paragraph in the
proof of Theorem 3.16, which says, “we have that for ρ-a.e. w, for all v ∈ R

K

and all s ∈ R, β(μ)((v,w), s) = 0,” is the following. Let M := ∫ ‖u‖2 d|μ|(u) and
ε > 0. Let v, v′ ∈ R

K with ‖v − v′‖2 < ε2/M . Let w ∈ R
∞ and i = 1,2. Since

(v,w)(u) = 〈u≤K,v〉 + w(u>K) and μi{u; ‖u≤K‖2 > M/ε} < ε, we have

μi

{
u; (

v′,w
)
(u) ≤ s − ε

} − ε < μi

{
u; (v,w)(u) ≤ s

}
< μi

{
u; (

v′,w
)
(u) ≤ s + ε

} + ε.

Fix w such that β(μ)((v′,w), s) = 0 for λK -a.e. v′ ∈ R
K and for λ-a.e. s ∈ R.

Then for every v ∈ R
K , we may choose v′ ∈ R

K with ‖v − v′‖2 < ε2/M and
β(μ)((v′,w), t) = 0 for t = s ± ε. It follows that |β(μ)((v,w), s)| < 2ε. Since
this holds for all ε > 0 and λ-a.e. s ∈ R, it follows that β(μ)((v,w), s) = 0 for
λ-a.e. s ∈ R. Finally, since β(μ)((v,w), s) is continuous from the right, we obtain
the same equality for all s ∈ R.
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