
D
RA
FT

Natural Language Engineering 1 (1): 1–48. Printed in the United Kingdom

c© 2017 Cambridge University Press

1

To Use or Not to Use:
Feature Selection for Sentiment

Analysis of Highly Imbalanced Data

SANDRA KÜBLER
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Abstract

We investigate feature selection methods for machine learning approaches
in sentiment analysis. More specifically, we use data from the cooking
platform Epicurious and attempt to predict ratings for recipes based on
user reviews. In machine learning approaches to such tasks, it is a common
approach to use word or part-of-speech n-grams. This results in a large set
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of features, out of which only a small subset may be good indicators for
the sentiment. One of the questions we investigate concerns the extension
of feature selection methods from a binary classification setting to a multi-
class problem. We show that an inherently multi-class approach, multi-
class information gain, outperforms ensembles of binary methods. We also
investigate how to mitigate the effects of extreme skewing in our data
set by making our features more robust and by using review and recipe
sampling. We show that over-sampling is the best method for boosting
performance on the minority classes, but it also results in a severe drop
in overall accuracy of at least 6 percent points.

1 Introduction

Sentiment analysis has become an important area of research (Pang

and Lee, 2008; Bollen, Mao, and Zeng, 2011; Liu, 2012) in the last

decade, with a high potential of industrial applications. Sentiment

analysis is concerned with extracting opinions or emotions from text,

especially from user generated web content. Specific tasks include,

amongst others, differentiating opinions from facts, identifying senti-

ment targets/aspects, detecting positive or negative opinion polarity,

determining opinion strength, and monitoring mood and emotion.

Currently, two major approaches exist: lexicon and machine learning

based. Lexicon-based approaches use high quality, often manually

generated sentiment lexicons. Machine learning-based approaches

use automatically generated feature sets from various sources of ev-

idence (e.g., n-grams, parts of speech, emoticons, syntactic parses,

negation and clause types) in order to capture the nuances of senti-

ment. This means that generally, large sets of features are extracted,

out of which only a small subset may be good indicators for the sen-

timent.

In our work, we focus on the task of predicting user ratings from

reviews, based on a machine-learning approach, and more specifically
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on automatically selecting relevant features for this task. Given the

high number of initial features and their low overall quality, feature

selection has the potential of having a considerable impact on the

performance of a classifier. As a consequence of the large feature set,

we will focus on filter methods, i.e., on methods in which the quality

of a feature is evaluated by an extrinsic measure, such as informa-

tion gain, rather than by an evaluation on held-out data (Guyon

and Elisseeff, 2003), as in wrapper methods. The specific problems

that we will address in this study, the extension of feature selection

methods, which generally assume a binary classification, to a multi-

class setting, and the challenge that feature selection methods face

in a highly skewed setting, are dictated by characteristics of our data

set: We use a set of user reviews of online cooking recipes, collected

from Epicurious1.

On the Epicurious platform, users can leave ratings as well as re-

views of recipes. The platform additionally provides an overall rating

for a recipe, which is the average of all user ratings. In our setting, the

task of the machine learner is to predict the average rating based

on the user reviews. I.e., we use these ratings as underlying user

opinions, and the task is to predict those using textual information

from reviews. This is a simulation of situations in which only text

but no numeric expression of sentiment is available. This data set is

highly skewed: The majority of ratings is positive, and only few rat-

ings are negative. The obvious solutions, using either over-sampling

or under-sampling, are not ideal since the minority class constitutes

only approximately 1% of the whole data set. Thus, any sampling

has an inherent risk of ignoring or downgrading important features.

Additionally, we have empirically shown in previous work (Yu et al.,

2013) that under-sampling is detrimental to results.

1 www.epicurious.com
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The other important characteristic of the data set is that we have

4 different ratings, from 1-fork to 4-fork2, which serve as our target

classes in a classification setting. As a consequence of the four classes,

standard feature selection methods for binary classification are not

directly applicable. There are different methods of extending such

binary methods to a multi-class setting, and we will investigate those

for our problem.

Thus, the underlying questions that we attempt to answer in this

study concern the extension of binary feature selection methods to a

multi-class setting and the improvement of the classifier for minor-

ity classes. The latter will be approached by making features more

robust in the sense that we increase their coverage by using part-of-

speech (POS) tagging, stemming, and word clustering in addition to

or instead of word forms. One underlying challenge with our data

set, and potentially with a large range of other data sets in sentiment

analysis, lies in the problem that most words by themselves are not

good indicators for a single class. Rather, most words tend to occur

in several classes, and the few words that occur only in one cate-

gory tend to be very infrequent and thus do not generalize well. For

example, “sugar” or “awfully” may appear in both positively and

negatively rated recipes. In contrast, for topic classification, there

are words more characteristic of single classes, e.g., “parsing” from

an NLP paper is less likely to be used in a high performance com-

puting paper, where “GPU” would be more probable. Using longer

n-grams does not change this picture much, but adds data sparsity.

Thus, a feature selection method needs to be robust in order to han-

dle such challenging features sets. If there are clear features, it is

more likely that most feature selection methods will find them.

The remainder of this article is structured as follows: In section 2,

2 The platform also allows half-fork ratings, but to reduce data sparsity,
we have rounded those ratings down to the next integer.
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we present related work. Section 3 describes our research questions in

more detail, and section 4 describes our experimental setup, includ-

ing data set, preprocessing, classifier, and feature selection details.

In section 5, we present our results concerning the two research ques-

tions, and in section 6, we present a more in-depth analysis of the

different feature selection methods. In section 7, we conclude.

2 Related Work

Our work touches on several areas of research: sentiment analy-

sis, feature selection for machine learning, and machine learning for

highly skewed data sets. Since all of these fields have a wide vari-

ety of publications, we will focus in our review on the most relevant

publications. We will start with literature in sentiment analysis, then

move on to feature selection in the related field of text classification,

and finally discuss feature selection for highly skewed data and in

multi-class scenarios.

2.1 Sentiment Analysis

Currently, sentiment analysis is approached via supervised learning

when annotated data is available. Commonly used classifiers include

SVM, Naive Bayes, Maximum Entropy models and Neural Networks

(Pang and Lee, 2004; Mullen and Collier, 2004; Ye, Zhang, and Law,

2009; Glorot, Bordes, and Bengio, 2011). Sequential models, such as

Conditional Random Fields, are applied to capture sentiment shifts

(Nakagawa, Inui, and Kurohashi, 2010; Sadamitsu, Sekine, and Ya-

mamoto, 2008). In these approaches, feature engineering plays an

important role since such approaches often start from surface ori-

ented features, which provide a large feature base but are typically

not very informative individually. Typical features fall into several

categories: textual cues such as bag-of-words, bag-of-n-grams (e.g.
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Pang and Lee, 2004); syntactic cues such as POS tags, substruc-

tures from syntactic parses (e.g. Nakagawa, Inui, and Kurohashi,

2010; Wilson, Wiebe, and Hoffmann, 2005); and high-level cues such

as word clustering and word embeddings (e.g. Maas, Daly, Pham,

Huang, Ng, and Potts, 2011; Socher, Pennington, Huang, Ng, and

Manning, 2011). There are also resource-dependent features, such as

sentiment scores from a lexicon (e.g. Baccianella, Esuli, and Sebas-

tiani, 2010). We follow standard approaches and use word n-grams

as our feature base.

2.2 Feature Selection

In this section, we describe approaches to feature selection in senti-

ment analysis and in text classification, which can be regarded as a

more general definition of a set of tasks including sentiment analysis.

Text classification is a field that, similar to sentiment analysis,

often uses surface features such as a bag of words. Thus, feature se-

lection has received much attention in this field (c.f. e.g. Brank, Gro-

belnik, Milic-Frayling, and Mladenic, 2002; Zheng, Wu, and Srihari,

2004; Yang and Pedersen, 1997; Li, Xia, Zong, and Huang, 2009)).

Feature selection mainly aims to 1) increase computational efficiency

by finding a subset of features that perform as well as a much larger

set and 2) filter out noise and less relevant features to avoid overfit-

ting. Feature selection is mainly categorized into filter methods and

wrapper methods (Guyon and Elisseeff, 2003). Filter methods gen-

erally evaluate features by assigning them a ranking score based on

the distributional statistics in the data. Wrapper methods identify

the optimal subset of features using held-out data. Since the number

of subsets is exponential, wrapper methods are extremely inefficient

when the feature set is large, even with greedy algorithms. For this

reason, we focus on filter methods.

Since filter methods use an external ranking method that is not
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task-related, one of the concerns is whether such methods prefer fre-

quent or infrequent features. While infrequent features tend to be

very characteristic for a class, they may not generalize well to the

test data. Highly frequent features, in contrast, generalize well, but

may not be very predictive of a class. Filter methods can be based on

information theory, statistical tests, or more common principles. Li,

Xia, Zong, and Huang (2009) show that mutual information tends to

assign high scores to infrequent words. Information gain can be inter-

preted as a weighted average of mutual information, which reduces

the bias towards infrequent words. Li et al. (2009) and Kummer and

Savoy (2012) show that Chi-square and Z-score tend to prefer very

frequent features. There are more general methods, for example odds

ratio, the class discrimination measure (CDM) (Chen, Huang, Tian,

and Qu, 2009), term strength (Yang and Pedersen, 1997) and using

feature weights from a machine learner. (Brank et al., 2002) finds

odds ratio to favor rare words, and they observe a performance im-

provement when using weights from an SVM classifier to eliminate

features of poor quality.

We now turn to sentiment analysis. Certain tasks, such as subjec-

tivity classification, polarity classification, and rating prediction, can

be regarded as special cases of text classification. However, the tasks

differ in that sentiment analysis usually works with much shorter

texts, and words seem to be less specific to a certain class. Thus, not

all results from text classification transfer to sentiment analysis.

Most approaches to feature selection in sentiment analysis are fil-

ter methods. An exception can be found in the work by Duric and

Song (2012), which uses Hidden Markov Model Latent Dirichlet Al-

location to separate terms describing entities from terms expressing

opinions. Filter methods are dominated by methods based on Cat-

egorical Proportional Difference (CPD), which measures a feature’s

difference in frequency of occurring in positive vs. negative reviews.

O’Keefe and Koprinska (2009) compare CPD with two feature selec-
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tion methods based on manually assigned scores from SentiWordNet.

They show that CPD outperforms the other methods in a polarity

classification task. Agarwal and Mittal (2012) propose two variants

of CPD: Probability Proportion Difference (PPD) uses the difference

of the CPD values for the positive and negative class, and Categor-

ical Probability Proportion Difference (CPPD) combines CPD and

PPD. Agarwal and Mittal (2012) show that CPPD performs best in

terms of F-measure in a polarity classification task, outperforming

CPD, information gain, and the baseline using the whole feature set.

Kummer and Savoy (2012) focus on a new classification scheme, but

they point out that Z-scores tend to assign high scores to frequent

terms.

A related task to ours is approached by Severyn and Moschitti

(2015), who use SVMs to learn a sentiment lexicon from twitter

data using distant supervision.

2.3 Feature Selection for Highly Skewed Data Sets

In sentiment analysis, most studies are performed on the Movie

Review data set, which has become an established benchmark for

sentiment analysis. This set is balanced, consisting of 1000 posi-

tive and 1000 negative movie reviews. The balance was created via

sampling and does not represent the class distribution in the origi-

nal reviews. For this reason, we focus here on approaches from text

classification, where the question of skewing has been approached.

Of particular relevance to our work is the work by Forman (2003),

who conducted an extensive study of 12 features selection methods

on 229 binary text classification data sets, with an average skew-

ing ratio of 1:31. Forman (2003) introduces a new feature selection

method, Bi-Normal Separation (BNS), which is the separation be-

tween two thresholds in a normal distribution, each corresponding

to the probability of a feature occurring in the positive or negative



D
RA
FT

To Use or Not to Use 9

class. Forman (2003) shows that BNS performs within 1% of the best

F-measure on 65% of the data sets while information gain is within

this margin for 40% of the data sets. In general, the more skewed the

class distribution, the more significant the gain that feature selection

produces (compared to using the whole feature set). Forman (2003)

reports that BNS is more beneficial for highly imbalanced settings.

Additionally, while BNS yields higher recall for the minority class,

information gain (IG) yields better precision, and BNS favors more

infrequent words while IG tends to prefer frequent features, therefore

leading to a lower dimensionality and thus more efficient models.

Our current work is based on previous work (Liu, Kübler, and Yu,

2014), in which we evaluated 5 feature selection methods (including

BNS and IG) on a binary classification task, based on two highly

imbalanced sentiment analysis data sets, both from the social media

domain. We sampled both data sets to investigate the effect of vary-

ing skewing ratios, from 1:1 (balanced), 1:1.57 (slightly skewed), to

1:8 (highly skewed). We found that the benefit of performing feature

selection is more significant when the data set is balanced or slightly

skewed. We also found that IG is the most stable and best per-

forming method while the other methods tend to fluctuate. For this

reason, we chose IG for our current experiments, which extends our

previous work by investigating more robust features and multi-class

classification.

2.4 Feature Selection in Multi-Class Scenarios

One straightforward extension to our previous work towards multi-

class problems is multi-class information gain, a metric originating

from decision tree learning (Mitchell, 1997). Forman (2004) shows

that multi-class IG tends to promote many features from the easy

class and choosing only a few from the difficult classes, making it

difficult to fully represent the difficult classes. In Forman’s work,
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easy and difficult classes are identified according to the F-measure

in a multi-class classification task. As a solution, Forman (2004) in-

troduces two variants of round-robin experiments decomposing an

n-class classification problem into n 1-vs-all subtasks. The methods

vary in how they choose features, either each subtask contributes an

equal number of features or the numbers are randomly drawn. Both

methods outperform multi-class IG on 19 multi-class text classifica-

tion data sets. Note that these methods are similar to our approaches

presented in section 3.1.

3 Research Questions

In this section, we discuss the two major research questions in more

detail. The first question focuses on how to extend standard binary

feature selection methods to a multi-class scenario. The second ques-

tion investigates how we can improve performance for the minority

classes. Here, the underlying idea is to improve feature representa-

tion such that we improve the coverage of the selected features in

the minority classes. This means making features more general, for

example by using part-of-speech tags in addition to words.

For all questions, we rely on our previous findings (Liu, Guo,

Dakota, Rajagopalan, Li, Kübler, and Yu, 2014; Liu, Kübler, and

Yu, 2014) and use words as features, either as unigrams, bigrams,

or trigrams (but see section 3.2 for modifications). We concentrate

on information gain (IG) as the metric underlying feature selec-

tion since it proved to be the most robust method. We also use a

multi-class classifier (for details see section 4.4). This means that

all features chosen in competitions are merged and given in their

entirety to the classifier. An alternative architecture would consist

of binary classifiers parallel to the competitions in combination with

a final voting mechanism. Since the focus of the current work is on

feature selection, this approach is beyond the scope of this paper.
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3.1 From Binary to Multi-Class Feature Selection

For this research question, we investigate the following five methods:

1. Binary feature selection (BIN)

2. Automatic feature selection (Lasso)

3. 1-vs-all competition (1-vs-ALL)

4. 1-vs-neighbor competition (1-vs-NBS)

5. Multi-class information gain (M-IG)

For all four methods except Lasso, we use information gain. For

all settings except for the multi-class information gain, we use the

standard definition for two classes. The equation for information

gain in a binary setting is shown in (1).

IG(f) =
∑

f∈{0,1}

∑
C∈{0,1}

P (f, C)log
P (f, C)

P (f)P (C)
(1)

where f is a feature and C represents one of the two classes. In the

case of multi-class IG, this equation is extended as shown in (2)

(Yang and Pedersen, 1997).

IG(f) =

m∑
i=1

P (ci)logP (ci)+
∑

f∈{0,1}

P (f)

m∑
i=1

P (ci|f)logP (ci|f) (2)

where m ranges over all classes and ci is the ith class. For our task,

m = 4.

Every n-gram, from unigrams to trigrams, in the corpus is consid-

ered a feature. Probabilities of classes (given features) are calculated

as their relative frequency in the training data.

Binary feature selection (BIN) This is our baseline, which we have

used before (Liu, Guo, Dakota, Rajagopalan, Li, Kübler, and Yu,

2014; Liu, Kübler, and Yu, 2014). In this case, we perform feature
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selection based on two classes, the positive class (including reviews

for 3-fork and 4-fork recipes) and the negative class (including 1-fork

and 2-fork recipes) and then use all selected features for the classifi-

cation task. This method simplifies feature selection in a multi-class

classification scenario to a binary one, assuming that the features

selected for either class are still clear enough to help the classifier to

choose correctly between all four classes. This method is applicable

in our case because we only have 4 classes, and a 1-fork rating can

be considered a more extreme case of a 2-fork rating, etc.

Automatic feature selection (Lasso) As a more competitive base-

line, we perform logistic regression using L1 regularization, which

performs implicit feature selection during training of the regression

model. The regularization decreases the weights of some features to

zero, and those features are ignored. Logistic regression has been

shown to successfully perform feature selection in the presence of

exponentially many irrelevant features (Ng, 2004).

1-vs-all competition (1-vs-ALL) In this setting, we perform four in-

dependent, binary feature selection subtasks, in which every class

is paired with all other classes. I.e., the first round consists of se-

lecting features from 1-fork recipes versus all other recipes. This is

a standard solution to multi-class feature selection and similar to

multi-class SVMs (Crammer and Singer, 2002), in which an n-class

prediction problem is divided into n binary prediction subtasks, with

each prediction distinguishing one class from the rest. Afterwards,

features selected from each binary subtask are combined into a global

feature set.

While the binary feature selection method is more coarse grained

(it only distinguishes positive from negative recipes), 1-vs-ALL

chooses features for each individual class. However, the downside of

this selection method is that we may choose features that are good
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at separating a class from a far class, for example, 1-fork from 3-fork

rather than from the closer 2-fork class. This may be a serious risk

for minority classes since the words indicative of positive reviews are

more pervasive and thus have a higher chance of being chosen in the

selection process for 1-fork vs. all other classes. Thus, this method

may leave us with many features that occur across classes and are

not very discriminative.

1-vs-neighbor competition (1-vs-NBS) In this setting, we address the

concern we have for the 1-vs-ALL setting. Here, we have three se-

lection subtasks, each involving a target class versus its next higher

class, i.e., 1-fork versus 2-fork, then 2-fork versus 3-fork, and 3-fork

versus 4-fork. Our assumption is that this variant will produce more

reliable features for the minority classes than the 1-vs-ALL compe-

tition since we use a different search space in each case, thus creat-

ing ‘experts’ that can distinguish close neighbors rather than search

across the whole spectrum. Note that this method also requires or-

dered classes.

Multi-class information gain (M-IG) This is a straightforward ex-

tension of information gain, i.e., we use equation (2) rather than (1).

Here, features are directly ranked with respect to their ability for

separating the four classes. Our assumption is that this method will

give the best separation into the four classes, but at the same time,

(Forman, 2004) has shown that M-IG has a tendency to choose fea-

tures from the easiest class. Thus, we would expect that many of the

features in the global set will be selected from the majority classes.

3.2 Improving Performance on the Minority Classes

For this research question, we investigate how we can improve accu-

racy on the minority classes given that we have extreme skewing in
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the data set. Our previous work (Liu et al., 2014) has shown that the

choice of feature selection metrics has little effect on the performance

on minority classes. Additionally, in many of our initial experiments,

we saw that because of the extreme skewing in the data, no exam-

ples are classified as 1-fork or 2-fork. Our underlying hypothesis is

that with highly skewed data distributions, reviews belonging to a

minority class contain many low-frequency features, which means

that features selected from the minority classes do not generalize

well to new reviews. Consequently, in order to retrieve at least some

minority classes, we mostly investigate methods that allow a general-

ization of the features. We also look at standard sampling methods,

such as over-sampling. More specifically, we investigate the following

methods:

1. Stemming

2. POS tagging

3. Brown clustering

4. Review sampling

5. Over-sampling

Stemming This condition is based on the assumption that feature

selection suffers from data sparsity. This can be alleviated by using

stemmed forms instead of fully inflected word forms. We assume that

the inflections do not carry important sentiment information and

that stemming should not harm performance by over-generalizing.

POS tagging This is another form of generalizing from a word form.

Here, we add POS tags as additional features. We use the Penn

Treebank tagset (Santorini, 1990), which uses 36 POS tags. How-

ever, while this approach reduces data sparsity, it is possible that

this generalization is too coarse grained since it generalizes both

positive and negative adjectives to a standard adjective label (JJ),

for example. We use POS n-grams in addition to word n-grams.
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Brown clustering This is a hierarchical clustering method that clus-

ters words based on their contexts (Brown, Della Pietra, deSouza,

Lai, and Mercer, 1992). Brown clustering has been shown to be

beneficial for parsing (Koo, Carreras, and Collins, 2008), relation

extraction (Sun, Grishman, and Sekine, 2011), and named entity

recognition (Tkachenko and Simanovsky, 2012), among other prob-

lems. It creates smaller ‘classes’ of closely related words, thus is in

granularity between POS tags and full word forms.

Review sampling This is an attempt to level out the effect on feature

selection methods based on the fact that recipes from the majority

classes have a large number of reviews while recipes from the minor-

ity classes have only a few. If we look at recipes with more than 10

reviews we find that only 1.38% of the 1-fork recipes fall into that

category, 16% of 2-fork, 49% of 3-fork, and 57% of 4-fork recipes.

Consequently, we restrict the maximal number of reviews per recipe

to 10 randomly sampled reviews, thus mitigating the skewing at

the review level. However, the removed reviews may contain valu-

able information, such as sentiment-bearing expressions not present

in the sampled reviews. They may also provide more stable feature

frequencies, which are important for rating prediction.

Over-sampling A widely adopted method to improve machine learn-

ing performance on skewed data sets is to conduct over- or under-

sampling. We investigate how much effect over-sampling can have

on the minority class in an extremely skewed data set. In this case,

we randomly sample from the training data until we have a balanced

training set. We do not investigate under-sampling here since in data

sets with extreme skewing, under-sampling discards the majority of

the whole data set, losing valuable information, as shown by Yu et al.

(2013).
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Rating No. of recipes(all) In train In test

1-fork 108 72 36

2-fork 787 522 265

3-fork 5 648 3 763 1 885

4-fork 3 546 2 365 1 181

total 10 089 6 722 3 467

Table 1. The distribution of ratings in the Epicurious data set.

4 Experimental Setup

4.1 Data Set

We have developed a web crawler to collect user reviews for about

20 000 recipes, published on the Epicurious website before and on

April 02, 20133. On the website, each recipe is assigned a rating

of 1 to 4 forks, including the intermediate values of 1.5, 2.5, and

3.5. This is an accumulated rating over all user reviews. We then

exclude recipes with ratings of 0, which usually indicate that recipes

have not received any ratings. We round down all the half ratings,

e.g., 1.5 fork counts as 1 fork, based on the observation that users

are generous when rating recipes. We also exclude recipes without

reviews or without rated reviews. The latter occur when a user rates

a recipe without leaving a comment.

After these clean-up steps, the data set consists of 10 089 recipes,

the distribution of ratings in the data set is shown in table 1. Since

1-fork and 2-fork recipes constitute only 3.4% of the data set, it is

obvious that we face a problem with extreme skewing.

The data set is split into training and test sets in a stratified

3 The data set can be obtained by contacting the first author.



D
RA
FT

To Use or Not to Use 17

way to maintain the rating distribution. Since the feature selection

experiments with all variables we are considering for the current

work are extremely time consuming, we have decided to forego cross-

validation and use a dedicated split into training and test data with

a ratio of 2 : 1, see table 1. Initial experiments with a 3-fold cross-

validation setting showed little variation in results.

4.2 Data Preprocessing

Before splitting the data into training and test sets, preprocessing is

conducted on the whole data set. Text from online reviews is known

to be written informally. For example, words and punctuations are

not properly spaced: “I like this cake,however it needs more butter.”

Here, white-space segmentation is not sufficient to separate “cake”

and “however”. Letters are often repeated and thus create multiple

forms of the same word: “yummy”, “yuuumy”, “yuuummmy”. Punc-

tuations can be repeated for emphasis: “I love it!!!!!”; again creating

multiple word forms. Contractions also increase the vocabulary size

by appending the contracted part to the former word: “I’ve”, “my

friend’s”. Additionally, URLs are common in online reviews when

authors make recommendations or produce spam. These character-

istics in online reviews increase data sparsity. Thus, we use a pipeline

that performs the following normalizations:

1. Replace all URLs by a special token “URL”.

2. Replace all emoticons by a special token “EMO”.

3. Replace all numbers - integers, time intervals, fractions - by a

special token “KNUMK”.

4. Replace all words and punctuations with repeating letters by

their original form.

5. Properly segment sentences, run-on punctuation, and run-on

words.
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6. Separate all contractions into the first word and the contracted

part. For example “don’t” is separated into “do” and “n’t”.

For the experimental settings concerning our second research ques-

tion (see section 3.2), we perform stemming using the Porter Stem-

mer (Porter, 1980) to normalize words, and POS tagging using the

TnT tagger (Brants, 2000). Since we need to keep the word seg-

mentation consistent between the baseline feature set and the POS

tagged set, we had to choose a POS tagger that does not perform

segmentation internally, which restricted our choices. Consequently,

we use TnT because it is known to perform well on data sets with

many unknown words (cf. e.g. Maier, Kübler, Dakota, and Whyatt,

2014)). We use the pre-trained WSJ model.

For the experiments involving Brown clustering we use the im-

plementation by Liang (2005). The clustering is carried out on the

training set after normalization. Then, each individual word in the

training and test set is replaced with its cluster number, and the

same replacement is carried out for all n-grams. In postprocessing,

we grouped all words with a frequency of less than four occurrences

in a RARE cluster. Unknown words in the test data were also as-

signed to this cluster. We have experimented with 1 000 and 1 500

unique word clusters. However, the number of clusters had little ef-

fect on classification results.

We do not filter stop words for two reasons: 1) Stop words are do-

main dependent, and some stop words may be informative for senti-

ment analysis. For example, users are likely to write more formally in

negative reviews, listing specific factors for their negative arguments,

thus punctuations like “,” and “.” are likely to be sentiment-bearing

in our data set. 2) Uninformative words that are equally common in

all classes should be excluded by feature selection if the method is

successful.
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4.3 Feature Representation

Different feature representation schemes can influence the accuracy

in sentiment analysis but since we focus on feature selection in this

paper, we use the commonly adopted bag-of-words approach, ex-

tended to word n-grams. Each recipe is represented by all n-grams

from its reviews with 1 ≤ n ≤ 3. Research in sentiment analysis

(Pang, Lee, and Vaithyanathan, 2002) has shown that using binary

feature values performed better than using weighting schemes in a

task of classifying positive and negative movie reviews. However,

movie reviews are relatively short, so other feature weightings may

not necessarily out-perform binary weighting. In contrast, topic clas-

sification generally uses term frequency as feature weighting. Given

the length of the (combined) reviews from each recipe and the fo-

cus of this paper, we use the n-gram frequency as feature weighting.

In order to avoid noise and overfitting, we remove all features that

occur fewer than 4 times in the training set.

4.4 Classifiers

Feature selection methods can behave differently in combination

with different classification models, because of the underlying dif-

ferences in parameter estimation and treatment of features. Given

the wide success of Support Vector Machines (SVMs) (Crammer

and Singer, 2002) in text classification and sentiment analysis, we

conduct all experiments reported here based on SVMs in the imple-

mentation of SVM multi-class V1.01 (Joachims, 1999). SVMs are

a discriminative classifier that finds hyperplanes to separate differ-

ent classes by maximizing the margin between the hyperplane and

the support vectors. SVMs are capable of successfully using a large

number of numeric features and are thus a logical choice given our

feature set.

Initial experiments showed that SVM multi-class V1.01 reaches
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better performance on our skewed data set than the current V2.20

implementation. For this reason, all our experiments are based on

V1.01. Because model learning and optimization is not the focus of

this study, we use the default linear kernel and other default pa-

rameter values. We are aware that the parametrization can affect

our results, but finding optimal parameters is a difficult problem,

especially given our time intensive experiments, thus we leave this

for future work.

For the experiments using logistic regression using L1 regulariza-

tion (Lasso), we use the logistic regression implementation in Scikit

learn4. We use the default parameters where the inverse of regular-

ization strength is 1. Since logistic regression is a binary classifier,

the multi-class learner is built by voting on 4 individual binary clas-

sifiers.

4.5 Evaluation

Classification results are evaluated by the micro-averaged F measure,

the macro-averaged F-measure, as well as precision and recall for

each class. Note that in classification tasks for which every test case

is guaranteed to be assigned one and exactly one class, micro-F is

equivalent to accuracy. While micro-F averages over all instances in

the test set, macro-F first averages over all instances per class and

then averages over all class results. Thus in calculating macro-F,

every class receives equal emphasis while in micro-F, the weight is

proportional to the number of examples in the test data. The latter

means that in macro-F, the minority classes have the same effect on

accuracy as the majority classes while in micro-F, errors in minority

class examples have less influence on accuracy since there are so few

such examples. We perform significance tests using McNemar’s test.

4 http://scikit-learn.org/stable/
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4.6 Feature Selection

Feature selection is performed on the training data only. We vary

the number of features selected from 500 to 5 000 out of a total of

387 000 n-gram features, at a step size of 500. For the 1-vs-ALL and

1-vs-NBS settings, we take an equal number of features (M) from

each binary classification subtask, with M ranging between 500 and

5 000. A subtask refers to a 1-vs-rest binary prediction problem,

and produces a local feature set. The union of these local feature

sets then produces the global feature set. Thus, for 1-vs-ALL, this

results in a size of the feature set between M and 4M and between

M and 3M for 1-vs-NBS. Note that we report the number of features

selected per sub-task instead of the number of features in the global

set since some features are selected in more than one subtask and

thus, the overall number can be misleading. We will investigate these

multiply chosen features in more detail in section 6.

We generally do not experiment beyond 5 000 features since such

experiments are time consuming given the variables that are inves-

tigated, and performance generally peaks at about 2 500 or 3 000

features. For completeness sake, we do present results for the full

feature set for question 1.

5 Results

5.1 Feature Selection Methods for Multi-Class

Classification

We first evaluate the four methods for multi-class feature selection

presented in section 3.1. For this evaluation, we mainly report micro-

F (= accuracy). Figure 1 presents the results (micro-F) of all four

feature selection methods when different numbers of features are se-

lected. The results show that the four methods reach their optimal

performance with different numbers of selected features: The 1-vs-



D
RA
FT
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Fig. 1. Comparing methods for multi-class feature selection (micro-F).

neighbor method (1-vs-NBS) reaches a performance peak at 1 000

features, 1-VS-ALL reaches the peak at 2 000 features, and multi-

class information gain (M-IG) and the binary method (BIN) peak

at 2 500 and 3 000 features. This comparison also shows that the

binary selection method is surprisingly successful once a larger set of

features is available. 1-vs-ALL and 1-vs-NBS are both initially com-

petitive, but less so with a larger feature set. All these observations

show that using an inherently multi-class feature selection provides

a better feature set than using an approximation via several binary

choices.

Table 2 shows the results for the four feature selection methods in

more detail, with BIN and Lasso as baseline. For Lasso, the number

of selected features ranges between 46 and 1059, with the number of
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No. 1-fork 2-fork 3-fork 4-fork

Method f. prec rec prec rec prec rec prec rec micro-F macro-F

None - 0.00 0.00 39.02 6.04 65.87 79.95 62.04 54.53 64.36† 38.15

BIN 3.0 0.00 0.00 20.00 1.51 68.65 80.37 66.32 64.01 67.57 37.57

Lasso - 0.00 0.00 25.00 1.13 65.82 86.63 71.30 52.58 67.03† 37.61

1-vs-ALL 2.0 0.00 0.00 37.50 2.26 69.45 78.62 65.19 67.06 67.72† 39.78

1-vs-NBS 1.0 0.00 0.00 16.67 0.38 69.02 78.46 65.08 67.06 67.48† 37.07

M-IG 2.5 0.00 0.00 0.00 0.00 68.95 80.80 66.81 65.45 68.19† 35.20

Table 2. Results comparing feature selection methods for multi-class

classification. The highest micro-F score is shown in bold. (The num-

ber of features is reported as per thousand.) †= significant on the 0.1

level as compared to BIN.

features correlating with the size of the class. The None setting uses

the entire set of n-gram features, around 387 000. The results show

that using all features (None) results in the lowest micro-F, which

shows that the large set of features potentially contains irrelevant

ones that affect the performance of the SVM. Lasso shows a similar

performance to BIN, with a slightly lower micro-F and a slightly

higher macro-F, thus showing that L1 regularization does not work

well in our setting. For this reason, we will not continue this option

further.

For the feature selection models, we focus on the optimal num-

ber of features per method, and we include precision and recall for

the individual rating classes as well as macro-F. For the majority

classes, we see that the trends for BIN and M-IG are different from

those for 1-vs-ALL and 1-vs-NBS: BIN and M-IG have lower preci-

sion and higher recall for 3-fork; with the opposite trend for 4-fork.

This shows that BIN and M-IG have a tendency to choose the 3-
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BIN M-IG 1-vs-NBS 1-vs-ALL

! , spiedies banana

not not spiedie dish

? . binghamton lasagna

easy ! speidies banana bread

pho bland lupo ’s garlic

delicious the lupo cheesecake

pupusas to caviar pho

used is is pretty ever

and ? vegan mayo user this dish

you but vegan mayo pupusas

Table 3. Top 10 features chosen by different feature selection

methods.

fork class while the other two methods prefer 4-fork. The results for

macro-F are approximately 30 percent points lower than the micro-

F results, thus showing that the low performance on classes 1 and

2 is extremely detrimental. We also see that given this evaluation,

1-vs-ALL performs better than all other methods, increasing results

from 37.57 for BIN to 39.78 for 1-vs-ALL.

Table 3 shows the 10 features that reach the highest IG per feature

selection method. For 1-vs-ALL and 1-vs-NBS, the highest value for

a feature reflects the highest score out of all subtasks. It is obvious

that both BIN and M-IG chose a high number of stop words while

the other two methods tend to select less common words, such as

“pho”. We will investigate the features selected by M-IG more closely

in section 6.1.

The analysis in table 2 also shows that none of the four feature

selection methods allows the classifier to predict any 1-fork ratings.
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Additionally, all feature selection methods except M-IG allow find-

ing some 2-fork examples, albeit with extremely low recall. Using

multi-class information gain, the method with the highest accuracy

over all classes, in contrast, results in not finding any 2-fork exam-

ples. In a setting where we may be interested in reliably identifying

unsuccessful recipes, which should not be suggested to other users,

this situation is far from being satisfying. For this reason, in the

following section, we will investigate improving the situation for the

two minority classes, 1-fork and 2-fork.

5.2 Improving Performance on Minority Classes

In this section, we investigate whether methods for generalizing our

lexical features will lead to improvements for the minority classes:

We investigate stemmed words, POS tags, and word clusters based

on Brown clustering (Liang, 2005) and compare them to the base-

line where the features consist of word n-grams. These methods are

based on the assumption that our feature selection methods are not

able to find features that represent the 1-fork and 2-fork classes well.

Since we have fewer recipes in these classes, we consequently have

fewer features extracted from them, and it is less likely that these

features will occur in test reviews. Thus, if we can make those fea-

tures more general, and consequently more robust, we may have a

better chance of identifying examples of the minority classes. Ad-

ditionally, we investigate more traditional sampling methods, where

we either sample the number of reviews per recipe5 or we over-

sample the minority recipes. Note that the goal here is to improve

performance on the minority classes, even if this means a decrease

in overall accuracy.

Table 4 shows the results of all methods. We focus here on a set

5 For details such as sampling rate, see section 3.2.
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of 2 500 features across all experiments since this is a good compro-

mise given the results in section 5.1. These results show that using

POS tags in combination with either 1-vs-ALL, 1-vs-NBS, and M-IG

actually result in a slight increase of accuracy over the least robust

method using word forms as features (shown as Base in the table6).

When we look at the performance of the generalization and sam-

pling methods on the 1-fork class, we see that only over-sampling

results in finding 1-fork examples across all feature selection meth-

ods. Using over-sampling, we gain considerably in recall (ranging

from 5.56% for 1-vs-ALL to 41.67% for BIN and M-IG), but pre-

cision is extremely low (ranging from 6.36% for M-IG to 7.54% for

BIN). Looking at the 2-fork class, the picture looks more promising.

Recall remains low for all generalizations but reaches values between

40.00% for BIN and M-IG and 42.64% for 1-vs-ALL when we use

over-sampling. When we look at precision for the 2-fork class, the

highest values are reached by using review sampling, ranging from

35.71% for BIN to 61.91% for 1-vs-ALL. Any success for the minor-

ity classes directly translates into a gain in macro-F: Both sampling

methods consistently outperform the baseline.

In general, stemming shows some improvement for the 2-fork class

while keeping accuracy stable. Using POS tags does not show any

obvious improvement for the minority classes but results in small

gains in accuracy. In contrast, Brown clustering, either with 1000

clusters or with 1500 clusters, shows little or no improvement over

the baseline. We assume that this is due to the low quality of Brown

clusters, which are obtained from a relatively small training set.

Table 5 presents examples of clusters. These examples show that on

6 Note that these values mostly differ from those shown in table 2 since
they are based on a different number of selected features. Here, we
uniformly use 2 500 features while the optimum number of features
differed for the previous experiments, as shown in table 2.
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the one hand, these clusters group misspelled words with the correct

variant, such as “loiked” and “liked”, thus reducing data sparsity.

On the other hand, they group words with positive sentiment along

with negative words into the same cluster, for example “disliked”

and “liked”. Such clusters may not be useful for rating prediction.

Review sampling shows the highest improvement on the 2-fork

class but also results in a decrease of accuracy in the range of 4 per-

cent points. On the one hand, the number of reviews per recipe for

each class is more balanced, resulting in a less skewed corpus. On

the other hand, by restricting to 10 reviews we lose a great amount

of information for the majority class, which is important for the

separation between 3- and 4-fork classes. Thus, we see a drop in

performance for these two classes. Over-sampling is the most suc-

cessful method for minority classes, especially with regard to recall,

but the drop in accuracy is even more pronounced than for review

sampling, reaching almost 13 percent points for the multi-class IG

feature selection.

We further need to establish whether the observed positive behav-

ior of the two sampling methods is stable across different numbers of

selected features. Figure 2 shows a comparison of the the precision

and recall values between the baseline and the sampling methods

for 1-vs-ALL (solid lines) and 1-vs-NBS (dotted lines) for the 2-fork

class. The graphs show that precision is stable for both sampling

methods; recall increases steadily for review sampling and decreases

for over-sampling. However, for both methods, recall is clearly supe-

rior compared to the baseline.

We also had a closer look at the accuracies for over-sampling given

increasing numbers of selected features. These results are shown in

figure 3. This graph shows that while the baseline methods (the four

highest curves) remain stable across feature sizes, over-sampling in

combination with all feature selection methods increases steadily

with an increase in the number of features. However, even the best
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Fig. 2. Effect of using review sampling and over-sampling on the

precision and recall of the 2-fork class.

method using over-sampling, 1-vs-ALL, remains below the accuracy

of the baselines without over-sampling. This may mean that over-

sampling requires more features than the unsampled baselines. But

since using a high number of features is costly when using SVMs,

we refrain from increasing the feature sets further, especially given

the results from figure 2, which show that recall for the 2-fork class

decreases while precision remains stable. Thus, adding more features

will only increase a preference for the majority classes.



D
RA
FT

To Use or Not to Use 29

1000 2000 3000 4000 5000

45
50

55
60

65
70

Number of Features Chosen

A
cc
ur
ac
y

BIN
1-vs-ALL
1-vs-BNS
M-IG

Fig. 3. Loss in accuracy using over-sampling.

To conclude, the two most successful feature selection methods

are 1-vs-ALL and 1-vs-NBS, in combination with review sampling

for high precision and with over-sampling for high recall. The method

with the highest performance in terms of accuracy, multi-class IG,

in contrast, cannot profit very much from the methods presented

here. These results lead to further questions, namely whether we

can improve the performance of the multi-class IG feature selection,

whether it is possible to combine the strengths of multi-class IG and

1-vs-NBS, and how well the selected features are distributed across

different classes. We will investigate these questions in the following

section.

6 Further Analysis

6.1 Multi-Class IG Analysis

Our results in section 5.1 show that multi-class IG is the highest

performing feature selection method where accuracy is concerned.

However, we have also seen that multi-class IG reaches its high per-
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formance by exclusively grouping recipes into the majority classes,

3-fork and 4-fork. This leads us to the assumption that this method

is not able to represent the minority classes suitably and that per-

formance on the minority classes can be improved if we increase

the contribution of the features selected from those classes. In order

to investigate this assumption, we implement a variant of under-

sampling, in which we sample the features from recipes of different

classes rather than the individual recipes or reviews. This gives us

control over the ratios of features from different classes. We can, for

example, reach a feature ratio of 1 : 1 : 1 : 1, which means that all

classes provide the same number of features, with the smallest class

(1-fork) controlling the overall number. However, note that the ratio

mentioned above is an idealization because a feature may be selected

for more than one task and is thus counted towards each class with

which it occurs. Originally, if we use all features from the different

classes, we have the ratio 1 : 15 : 228 : 222.

We experiment with sizes between 400 and 800 features per class.

However, since the smallest class controls the amount of features

selected, the range of feature set sizes per class is smaller than in

the experiments reported in section 5. We investigate using the same

number of features for all classes (1 : 1 : 1 : 1), allowing twice as

many features for all classes except 1-fork (1 : 2 : 2 : 2), three times

as many (1 : 3 : 3 : 3), and four times as many (1 : 4 : 4 : 4). Con-

sequently, this method emphasizes the contribution of the minority

classes to the feature set, but it has the possible drawback that

we ignore many (highly discriminative) features from the majority

classes.

The results of these experiments are shown in table 6. Since low

feature set sizes consistently produced low results, we refrain from

reporting them here and focus instead on 600, 700, and 800 features

per class. For the same reason, we do not show the results for ratio

1 : 1 : 1 : 1.
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The results for under-sampling show that the lower ratios result

in a lower accuracy than the baseline, which reached an accuracy of

68.19% in table 2. However, at a size of 700 features, we observe a

slight increase of accuracy over the baseline for both higher ratios, in

the case of using 4 times as many features coupled with an improved

performance for the 2-fork class. This setting reaches a precision of

28.57% and a recall of 0.75%. For the sizes of 600 and 800 features

and higher ratios, in contrast, we see a decrease in accuracy, but an

increase in precision for the 2-fork class to 50.00% for 1 : 3 : 3 : 3

and to 33.33% and 11.11% for 1 : 4 : 4 : 4.

The results from the above experiments show that under-sampling

the features from each class does not improve accuracy (with the

exception of a minimal improvement using 700 features). To have a

closer look, we plotted the information gain of the highest ranked

features per class in figure 4. For readability the scale on the y-axis

is multiplied by 107. In the box plot, the thick black lines in each

box are the medians, and quantiles are delimited, by the bars, the

boxes, and the median. Any values beyond the two bars are outliers.

Figure 4 gives an indication that the top features chosen by M-

IG are identical for all 4 classes. Table 3 in section 5 additionally

shows that the 10 highest ranked features for multi-class IG are all

stop words with very high frequencies. In the calculation of M-IG

for each term, the conditional probabilities are weighted by p(f). It

seems that the latter term outweighs any discrimination produced

by the other terms. Thus, one drawback of M-IG is that it is biased

towards extremely frequent words, which tend to be stop words.

As described in section 4, we did not remove these stop-words in

preprocessing because we believe a good feature selection method

should be able to filter out non-discriminative features including stop

words. However, we did carry out an additional experiment, in which

we removed punctuation and stop words using the nltk stop word

list (Bird, Klein, and Loper, 2009). These results were consistently
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Fig. 4. Information gain values for features chosen by M-IG, outliers

reflect the common words.

about 2 percent points lower, thus showing that the stop words were

not the (only) cause for the low results. We still see many frequent

words, which are not stop words.

We also experiment with a setting in which we relax the con-

straint that features need to occur at least 4 times in the minority

classes in order to encourage more contribution from these classes.

This method, however, leads to consistently lower results, both in

terms of accuracy and in terms of performance on minority classes.

We assume that the additional features do not generalize well and

are thus not useful in testing. Additionally, we experiment with re-

defining the sample size of features for calculating the probabilities

P (f) and P (c|f) in equation (2): Instead of using the frequency of

each term in a given class, we normalize it by the number of doc-

uments in that class. For instance, “Love it. Love it. Love it” is a

more strongly positive sentiment than just “Love it”. The standard
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approach rates both cases similarly while the normalization achieves

a middle ground between the two approaches. However, this setting

resulted in a slight improvement for some settings of the lower ra-

tios, but these results did not reach the results of the higher ratios

in the downsampled setting.

6.2 Combination of Methods

In this section, we have a closer look at combining feature selection

methods in order to combine their strengths. The results presented

in section 5.1 show that multi-class IG results in high accuracy,

especially for the majority classes, but 1-vs-NBS has the best per-

formance on the minority classes. This raises the question whether

we can combine the strengths of both approaches. Such a combina-

tion can be performed in two ways: 1) We can take the intersection

of the features sets, which means that we keep features that are cho-

sen by both multi-class IG and 1-vs-NBS. I.e., we focus on features

that are rated highly by both methods. 2) Or we take the union, i.e.,

we keep features chosen by either M-IG or 1-vs-NBS. In this setting,

we obtain a larger set of features since they are chosen by at least

one method.

The experiments are conducted with the number of features vary-

ing from 500 to 5 000, the results are reported for 2 500 features

to ensure comparability with previous analyses. The trends for the

other feature set sizes show very similar regularities.

The results in table 7 show that neither the intersection nor the

union of features from the two methods yield the expected increase

in performance. Both methods reach a higher accuracy than the

1-vs-NBS methods, but they cannot reach the accuracy of M-IG.

However, it is interesting to see that the union reaches similar results

for the individual classes to 1-vs-NBS while the intersection is closer

to M-IG.
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Fig. 5. Feature coverage for different settings combining M-IG and

1-vs-NBS (as ratios of the full sets).

Figure 5 shows the coverage of features in terms of the percent-

age of features in the global feature set occurring in each class. For

example, for 1-vs-NBS, less than 20% of the global feature set con-

stitute features from 1-fork recipes. Again, a feature can be shared

by multiple classes and is then counted towards every class in which

it appears. This means that the percentages of one setting do not

add up to 100. The figure corroborates that M-IG and the intersec-

tion have very similar feature distributions and that 1-vs-NBS and

the union are equally similar. If we take the results from table 7 and

figure 5, into account, we can conclude that the features selected

by multi-class IG almost constitute a subset of the features selected

by 1-vs-NBS. This also means that the additional features in 1-vs-

NBS improve performance for the minority classes, but that simply

adding them to the mix is insufficient to improve overall results; they

need to be given proper weight.
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6.3 The Role of Multiply Occurring Features

The motivation for using feature selection was based on our assump-

tion that the feature selection process would identify highly discrim-

inative features for the individual classes. However, when we had a

closer look at the features selected in the experiments in section 5.1,

we noticed that individual features often occur in more than one

binary feature selection subtask. A subtask is one binary feature se-

lection in the 1-vs-ALL setting that selects features that can tell one

class apart from all other classes (e.g. 1-fork vs. all other classes).

This observation led us to investigate how useful or harmful these

features selected by multiple subtasks are for the classification task.

There are two possibilities: 1) They are not specific for distinguish-

ing a particular class and thus harmful in the multi-class prediction

task. Therefore, by removing such features, we expect an increased

accuracy. 2) The features are discriminative, potentially in combi-

nation with other features, of multiple classes at the same time and

are thus useful in the multi-class prediction task. Thus, by focus-

ing on these multiply chosen features, we should reach an increased

accuracy. We will look into the following settings:

1. Remove>1

In this setting, features that are chosen by more than 1 binary

subtask are removed. Thus, we only keep features unique to

one subtask.

2. Remove>2

In this setting, we allow more overlap and only remove features

that are chosen by more than 2 subtasks.

3. Keep>1

This setting is the counterpart of experiment “Remove>1”:

We only keep features chosen by more than 1 subtask.

4. Keep>2
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This setting is the counterpart of experiment “Remove>2”:

We keep the features chosen by more than 2 subtasks.

In this analysis, we concentrate on the 1-vs-ALL setting, which

has been shown to be the most robust next to the multi-class IG

setting, which has been analyzed in the previous section. We report

results for 2 500 features to ensure comparability to the experiments

in section 5.1. We have conducted experiments with varying feature

numbers from 500 to 5 000 and observed similar trends.

We show the effects of manipulating the multiply chosen features

on accuracy in table 8. The baseline repeats the results for 1-vs-

ALL from section 5.1. Surprisingly, we see that removing the fea-

tures chosen by multiple subtasks has a detrimental effect on ac-

curacy: Remove>2 results in a decrease in accuracy of around 5-6

percent points while Remove>1 results in an even more extreme loss

of around 15-16 percent points. These findings support the hypoth-

esis that such multiply chosen features, especially in their entirety,

are useful discriminators in a multi-class prediction task. This is cor-

roborated by our findings for the cases where we only keep multiply

occurring features. In the case where we keep features chosen by

more than 1 subtask, our results increase by almost 1 percent point.

This is a clear indication that these features, even though they are

not very discriminative by themselves do support multi-class predic-

tion. I.e., even though some features have high IG values, they may

be good predictors of the ALL class rather than the class that is sep-

arated out. This would explain why they are chosen by more than

one subtask. Additionally, one drawback of filter-based feature selec-

tion methods is that they do not examine combinations of features,

but only look at them individually.

We also had a closer look at the performance of the classifier on

different classes. These results are also shown in table 8. They show

inconclusive trends: While removing the multiply occurring features
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has a detrimental effect on the majority classes, keeping only features

occurring in more than 1 class has a positive effect on them. With

regard to the minority classes, both removing all features in more

than 1 subtask and keeping only features that occur in more than 1

subtask has a positive effect on precision for 2-forks while removing

features that occur more than once has a positive effect on recall for

2-forks. However, since the number of examples affected is rather

small, we assume that this is not a stable effect: 1-vs-ALL correctly

predicts 7 out of 20 2-fork instances, Keep> 1 correctly predicts 6

out of 14 instances. Thus we can conclude that removing multiply

occurring features has a minimally positive effect on the minority

classes. This can be attributed to the fact that the deleted features

generally originate from the majority classes. Thus, we obtain a focus

on pure minority features.

To further understand this phenomenon, we examine the feature

distribution across classes in relation to their information gain val-

ues. Figure 6 illustrates the information gain values for features per

class obtained in each setting. This analysis focuses on the quality of

features per class. Again, the scale on the y-axis is multiplied by 107.

The analysis in figure 6 shows that the feature coverage is relatively

similar for each setting. However, there are major differences in fea-

ture quality for the individual settings. The base setting produces

feature values around IG values of 5(∗10−7), with Remove>2 having

slightly lower IG values between 3 to 4. The Remove>1 setting has

the lowest IG values, below 2 for most classes. In contrast, for the

multiply occurring features, Keep>1 reaches IG values of above 5,

and Keep>2 at around 10; the later are the highest values across

all settings. Note that these findings correlate with the accuracies

shown in table 8.

These findings suggest several conclusions: 1) In a 1-vs-ALL set-

ting for feature selection, the more subtasks a feature is chosen in,

the higher its IG value is. This supports our finding that multiply se-
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Fig. 6. Feature quality in different settings for manipulating multiply

occurring features.

lected features are indeed beneficial for a multi-class classification. 2)
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Fig. 7. Feature coverage for different ways of handling multiply

occurring features.

Keep>2 yields a set of high quality features – using a much smaller

feature set as shown in table 9 – and maintains competitive results.

Thus this setting has the best time performance among all others.

3) The quality of the features used in each setting is directly indica-

tive of the multi-class classifier performance. Thus, a look at this

quality can indicate whether a set of features will perform well in

classification.

In figure 6, we also notice that the 1-fork minority class has the

lowest performance but is represented by the highest quality features

compared with other classes. In contrast, the majority classes 3- and

4-fork, are represented by features of low quality. To understand this

situation better, we look at the coverage of features across classes.

We define coverage as the percentage of the global feature set that

occurs with a class. The feature coverage is shown in figure 7. Note

that one feature can occur in more than one class and is counted to-
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40 Kübler et al.

wards all classes in which it occurs. Thus, the percentages in figure 7

do not necessarily add up to 100.

This analysis shows that even though the features that represent

the 1-fork class have high IG values, there are only very few of them.

Also, the percentage of 1-fork features remains equally low across

all settings whereas the percentages of features for the other classes

increase. Keep>2, which reaches the highest accuracy, also has the

highest percentage of majority class features. We also notice that

in the Keep>2 setting, 4-fork produces more features than 3-fork,

which translates into higher precision for 4-fork in this setting (see

table 8).

We also looked at the absolute number of features for the differ-

ent settings, shown in table 9. These numbers corroborate that the

number of features for 1-fork is low across all settings, in compari-

son to the features for other classes. Note that the number of 2-fork

features is the highest for the baseline, closely followed by Keep>1,

which reaches the highest precision and recall values for this class

across all settings (see table 8).

From these findings, we can draw the conclusion that there are not

enough features from the minority classes in any setting to reach

a good coverage. Thus, in cases of extreme skewing with a small

number of training instances, even high quality features cannot mit-

igate the low coverage. In addition, these features from the minority

classes do not generalize well on test data. For example, of the 32 out

of 2 500 features from 1-vs-ALL that are exclusive for 1-fork recipes,

20 do not occur at all in the test data, 2 features occur between 3

and 5 times, and 8 features occur once or twice. Given that there

are 3 368 test instances in total, the contribution of these features

towards 1-fork ratings is minimal.

To conclude this section, we have shown that features chosen by

multiple binary feature selection subtasks are good discriminators for

multi-class prediction. We have also shown that the quality of fea-
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tures correlates with the classification performance. However, feature

quality alone is not sufficient to boost the performance for minority

classes, because of a lack of feature coverage for those classes. While

Keep>2 is the setting with the highest feature quality, we lack high

quality features that are exclusive for each class. This implies that

this type of sentiment analysis is a difficult task, likely due to the

fact that reviewers use similar expressions in comments reflecting

various ratings. In contrast, spam detection is a well-known classi-

fication task which is also subject to extreme skewing, but which

can be solved effectively. This task seems to have more features that

are exclusive in spam and non-spam (such as “21 million dollars”,

“prize!!!” , or “viagra”), which cover up the effect of extreme skew-

ing. However, a confirmation of this assumption is outside the scope

of the current work.

7 Conclusion

In this study, we have investigated a variety of methods for multi-

class feature selection for sentiment analysis when the data set is

highly skewed in terms of the class distribution. We have also inves-

tigated the effect of feature selection on the performance of minority

classes. We have used a data set of cooking recipe reviews, which

provides us with novel challenges: On the one hand, the reviews dif-

fer from other text classification data sets in that they do not have

surface-level features that are exclusive for a single class. Instead,

many surface-level features occur across different classes, which pro-

vides a challenge for feature selection methods. On the other hand,

we decided to use the extremely skewed data set rather than sam-

pling from the data set to reach an equal class distribution. Thus, we

focus on a more realistic view of the problem of sentiment analysis

than previous work.

Our results show that multi-class information gain (M-IG) is the
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best feature selection method in terms of overall accuracy. At first

glance, these results seem to contradict the findings by Forman

(2004), who found for document classification that a Round-Robin

version of 1-vs-ALL performed better than M-IG. However, they

show the same trend: Forman (2004) found that M-IG is good at

predicting easy classes, which correspond to the majority classes in

our data set. Since our data set is extremely skewed, the benefit of

M-IG for majority classes outweighs the benefit of 1-vs-ALL and

1-vs-NBS for minority classes. Consequently, we observe a higher

overall accuracy from M-IG.

In analyzing the features, we have found that M-IG tends to select

the most common features, including stop words. This is a drawback

since a good feature selection method should be able to filter out

stop words by itself. It also explains why this method cannot profit

from selecting features from minority classes since this restriction

would again mainly choose highly frequent words. In contrast, 1-vs-

ALL and 1-vs-NBS tend to select more rare features, with a higher

percentage of words that represent the minority classes.

A closer look at the 1-vs-ALL method shows that many features

with high information gain values tend to occur in more than one

class, thus corroborating our suspicion that in our task, there are no

highly discriminative features for individual classes. Many words or

phrases are shared among reviews of all ratings. Consequently, we

need a larger set of words, which reach a high accuracy in classifica-

tion in combination with other words. These findings also indicate

that we can restrict the size of the feature set, thus reducing training

and testing time while maintaining performance, by using features

that are selected in more than two binary prediction subtasks.

Finally to address the issue of extreme skewing, we have seen small

improvements using 1-vs-NSB and 1-vs-ALL along with POS tag-

ging or stemming to make our features more general. However, no

setting produces satisfactory results on minority classes. We show



D
RA
FT

To Use or Not to Use 43

that features from the minority classes are of high quality, with re-

gard to information gain, but they still reach the lowest coverage in

the global feature set. Thus, we need to conclude that feature selec-

tion is not able to mitigate the effect of extreme skewing since we

cannot increase the coverage of the features even by making the fea-

tures more general. In such cases, collecting more data (if possible)

seems to be the only way to reach better performance for the minor-

ity class. However, this also shows that using an evenly sampled data

set (with regard to class distribution) means ignoring an important

and extremely challenging problem and that results gained under

such conditions may not generalize to the more realistic, skewed

scenario.
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1-fork 2-fork 3-fork 4-fork

Method prec rec prec rec prec rec prec rec micro-F macro-F

Binary Feature Selection (BIN)

Base 0.00 0.00 26.32 1.89 68.53 79.84 65.63 64.01 67.30 38.19

Stem 0.00 0.00 25.00 1.13 67.36 81.33 66.05 60.29 66.77 37.54

POS 0.00 0.00 30.77 1.51 67.99 80.21 65.40 62.57 66.97 38.40

Brown 0.00 0.00 13.33 0.76 68.32 76.76 63.21 66.05 66.20 36.05

RevSample 100 2.78 35.71 1.89 65.77 76.55 60.45 59.27 63.83 45.72

OverSample 7.54 41.67 23.45 40.00 75.92 40.64 55.71 80.53 54.59 45.13

1-vs-All Feature Selection (1-vs-ALL)

Base 0.00 0.00 35.00 2.64 69.81 76.66 63.84 68.93 67.30 39.45

Stem 0.00 0.00 52.94 3.40 69.75 76.45 63.86 69.26 67.36 41.44

POS 0.00 0.00 50.00 3.77 69.83 78.09 64.92 67.99 67.86† 41.37

Brown 0.00 0.00 31.58 2.26 69.29 74.32 62.16 69.69 66.23 38.55

RevSample 0.00 0.00 61.91 4.91 66.40 73.58 58.71 62.49 63.50 40.19

OverSample 6.90 5.56 26.65 42.64 76.11 53.58 58.85 79.09 61.15 43.62

1-vs-Neighbor Feature Selection (1-vs-NBS)

Base 0.00 0.00 30.00 2.26 69.01 75.97 62.89 67.74 66.47 38.38

Stem 0.00 0.00 52.63 3.77 69.18 77.03 63.73 67.40 67.06 41.20

POS 0.00 0.00 41.18 2.64 69.61 77.40 64.91 68.93 67.72‡ 40.31

Brown 0.00 0.00 33.33 1.89 69.13 74.59 61.99 69.18 66.17 38.62

RevSample 0.00 0.00 60.00 4.53 66.29 75.12 59.46 60.97 63.80 40.02

OverSample 6.88 30.56 25.94 41.89 76.50 49.39 59.54 78.75 58.90 45.84

Multi-Class IG Feature Selection (M-IG)

Base 0.00 0.00 0.00 0.00 68.94 80.80 66.81 65.45 68.19 35.20

Stem 0.00 0.00 50.00 0.38 68.93 80.27 66.24 65.62 67.98 40.86

POS 0.00 0.00 0.00 0.00 68.64 81.96 68.19 64.44 68.49† 35.36

Brown 0.00 0.00 33.33 0.38 69.42 78.62 65.66 68.33 68.01 39.29

RevSample 0.00 0.00 50.00 1.13 66.96 73.21 59.39 65.37 64.00 38.98

OverSample 6.36 41.67 25.18 40.00 77.07 41.54 56.97 81.71 55.51 45.79

Table 4. Results for improving performance on minority classes (us-

ing 2 500 features). † = significant on the 0.1 level as compared to

BIN; ‡ = significant on the 0.05 level as compared to BIN and as

compared to the next lower POS result.
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awfull disliked terribly burn waist

discusting hated overwhelmingly overcook waste

indescribable liked intensely overwhelm veteran

unbelieveable loathed delicately disappoint wast

awesome invade over-the-top overbake wad

exquisite flubbed sickly justify jumble

unbelievable intesified excessively overdo thunderstorm

incredible loiked richly deliver hodge-podge

amazing over-grilled sickeningly penetrate ’big

unpleasantly dominate size’

disgustingly spoil preventive

satisfyingly identify

powerfully

Table 5. Examples of word clusters created by Brown clustering.
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Feature No. 1-fork 2-fork 3-fork 4-fork
Ratio f/cl prec rec prec rec prec rec prec rec micro-F macro-F

Base

2 500 0.00 0.00 0.000 0.00 68.95 80.80 66.81 65.45 68.19 35.20

Down-Sampling

1:2:2:2 600 0.00 0.00 33.33 0.38 68.50 80.42 66.29 64.61 67.72 38.99
700 0.00 0.00 0.00 0.00 68.17 80.11 65.91 64.18 67.36 34.75
800 0.00 0.00 0.00 0.00 68.47 81.33 67.47 64.27 68.07 35.15

1:3:3:3 600 0.00 0.00 50.00 0.38 69.06 80.64 66.58 65.62 68.19 40.96
700 0.00 0.00 0.00 0.00 69.38 80.05 66.55 67.06 68.34 35.32
800 0.00 0.00 50.00 0.38 69.18 78.94 65.49 67.32 67.83 40.87

1:4:4:4 600 0.00 0.00 33.33 0.38 69.11 79.05 65.23 66.72 67.69 39.04
700 0.00 0.00 28.57 0.75 69.71 78.99 65.93 68.33 68.25 38.93
800 0.00 0.00 11.11 0.38 69.51 78.73 65.41 67.74 67.86 36.61

Table 6. The effect of down-sampling feature sets for M-IG.

1-fork 2-fork 3-fork 4-fork

Method prec rec prec rec prec rec prec rec micro-F macro-F

M-IG 0 0 0 0 68.95 80.80 66.81 65.45 68.19 35.20

1-vs-NBS 0 0 30.00 2.26 69.01 75.97 62.89 67.74 66.47 38.38

union 0 0 28.57 2.26 69.00 76.39 63.15 67.32 66.56‡ 38.25

intersection 0 0 0 0 68.49 80.37 66.15 64.69 67.69‡ 34.91

Table 7. Combining multi-class IG and 1-vs-NBS for feature

selection. ‡ = significant on the 0.05 level as compared to M-IG.
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No. 1-fork 2-fork 3-fork 4-fork

Method feat. prec rec prec rec prec rec prec rec micro-F macro-F

1-vs-ALL 2.5 0 0 35.00 2.64 69.81 76.66 63.84 68.93 67.30 39.45

Remove>1 2.5 4.84 8.33 42.86 1.13 59.83 61.54 41.50 47.76 51.38 33.05

Remove>2 2.5 0 0 32.50 4.91 66.43 70.45 55.26 61.81 61.51 36.30

Keep>1 2.5 0 0 42.86 2.26 70.08 78.04 65.15 69.18 68.13‡ 40.63

Keep>2 2.5 0 0 0 0 68.34 79.47 65.19 64.86 67.24 34.68

1-vs-ALL 3.0 0 0 29.17 2.64 69.89 76.23 63.74 69.35 67.21 38.79

Remove>1 3.0 0 0 30.00 4.53 65.94 68.49 53.93 62.24 60.53 35.55

Remove>2 3.0 3.77 5.56 26.67 1.51 60.14 60.74 41.86 49.45 51.53 31.10

Keep>1 3.0 0 0 28.57 1.51 69.86 77.45 64.61 69.09 67.72† 38.80

Keep>2 3.0 0 0 0 0 68.78 79.36 65.44 66.05 67.60 34.90

1-vs-ALL 3.5 0 0 30.00 3.40 70.18 75.54 63.43 70.20 67.18 39.01

Remove>1 3.5 0 0 20.46 3.40 65.78 69.87 54.80 60.97 60.77 34.39

Remove>2 3.5 4.35 5.56 28.57 1.51 60.18 59.26 41.76 51.31 51.35 31.42

Keep>1 3.5 0 0 30.77 3.02 69.84 76.18 63.81 69.43 67.24† 39.03

Keep>2 3.5 0 0 0 0 69.33 78.41 65.02 67.99 67.75 35.03

Table 8. Analyzing the role of multiply occurring features. † = sig-

nificant on the 0.1 level as compared to 1-vs-ALL; ‡ = significant on

the 0.05 level as compared to 1-vs-ALL.
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Setting Total 1-fork 2-fork 3-fork 4-fork

1-vs-ALL 7 116 579 3 149 5 248 5 012

Remove> 1 2 251 173 251 1 240 1 063

Remove> 2 4 803 327 1 988 3 289 2 900

Keep> 1 4 865 406 2 898 4 008 3 949

Keep> 2 2 313 252 1 161 1 959 2 112

Table 9. The absolute size of features per class.


