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Abstract

We use the method of Γ-convergence to study the behavior of the Landau-de Gennes

model for a nematic liquid crystalline film attached to a general fixed surface in the limit of

vanishing thickness. This paper generalizes the approach in [1] where we considered a similar

problem for a planar surface. Since the anchoring energy dominates when the thickness of

the film is small, it is essential to understand its influence on the structure of the minimizers

of the limiting energy. In particular, the anchoring energy dictates the class of admissible
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competitors and the structure of the limiting problem. We assume general weak anchoring

conditions on the top and the bottom surfaces of the film and strong Dirichlet boundary

conditions on the lateral boundary of the film when the surface is not closed. We establish

a general convergence result to an energy defined on the surface that involves a somewhat

surprising remnant of the normal component of the tensor gradient. Then we exhibit one

effect of curvature through an analysis of the behavior of minimizers to the limiting problem

when the substrate is a frustum.

1 Introduction

In this paper we expand our analysis of thin nematic liquid crystalline films, initiated in [1] for

planar films, to include the setting of general smooth surfaces. The focus of the present work is

on rigorous dimensional reduction of the Landau-de Gennes Q-tensor model to its surface analog,

in particular, to justify asymptotic arguments in [2] (see also [3]). The Landau-de Gennes theory

is based on the Q-tensor order parameter field that is related to the second moment of the local

orientational probability distribution. The relevant variational model involves minimization of

an energy functional consisting of elastic, bulk and weak anchoring surface contributions. The

significance of weak anchoring energy terms within both Q-tensor and director theories has been

highlighted in numerous recent contributions, including for example, [4, 5, 6, 7, 8, 9].

Having already established in [1] the dimension reduction for a planar film, we now wish to

explore the possible influence of curvature on the limiting energy in the thin film limit. To achieve

this goal we use the theory of Γ-convergence that has proved successful in tackling problems of

dimension reduction in other settings, such as elasticity [10] and Ginzburg-Landau theory [11].

In Section 2 we define the full three-dimensional energy, perform non-dimensionalization, and

review some elementary facts from calculus on surfaces. In Section 3 we prove Γ-convergence to

a limiting energy F0, cf. Theorem 3.1. One feature of the Γ-limit derived in Section 3 is that it

includes within its definition a minimum of a certain scalar function defined over the set of traceless

symmetric tensors. This minimization arises as a sort of remnant of the normal component of the

Q-tensor gradient. In Section 4, we carry out this minimization thereby obtaining an explicit
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formula for the Γ-limit. The formula demonstrates that the limiting energy density contains a

number of previously unreported elastic “strange” terms coupling the surface gradient of the Q-

tensor to the normal to the surface. Next, as an example, in Section 5 we compute the expression

for the limiting energy in the geometry of a surface of revolution. Specializing further in Section

6, we analyze the case of a frustum. We discover a dichotomy between the behavior of minimizers

for broad and for narrow cones when the nematic coherence length is small. When the angle of

the frustum is small, the director field tends to follow the generators of the frustum. However, the

director deviates from such a path significantly when the angle broadens and eventually approaches

a constant state. As the result, we observe that the degree of the director along the boundary

components depends on the angle of the frustum.

2 Statement of the problem

2.1 The Q-tensor

In the three-dimensional setting, one describes a nematic liquid crystal by a 2-tensor Q which

takes the form of a 3 × 3 symmetric, traceless matrix. Here Q(x) models the second moment

of the orientational distribution of the rod-like molecules near x. The tensor Q has three real

eigenvalues satisfying λ1 +λ2 +λ3 = 0 and a mutually orthonormal eigenframe {l,m,n}. We refer

the reader to [12] for more details but below we summarize the key elements of this theory that

we will utilize.

Suppose that λ1 = λ2 = −λ3/2. Then the liquid crystal is in a uniaxial nematic state and

Q = −λ3

2
l⊗ l− λ3

2
m⊗m + λ3n⊗ n = S

(
n⊗ n− 1

3
I

)
, (1)

where S := 3λ3
2

is the uniaxial nematic order parameter and n ∈ S2 is the nematic director and

l⊗ l + m⊗m + n⊗ n = I.
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If there are no repeated eigenvalues, the liquid crystal is in a biaxial nematic state and

Q = λ1l⊗ l + λ3n⊗ n− (λ1 + λ3) (I− l⊗ l− n⊗ n)

= S1

(
l⊗ l− 1

3
I

)
+ S2

(
n⊗ n− 1

3
I

)
, (2)

where S1 := 2λ1 + λ3 and S2 = λ1 + 2λ3 are biaxial order parameters. Note that uniaxiality can

also be described in terms of S1 and S2, that is one of the following three cases occurs: S1 = 0 but

S2 6= 0, S2 = 0 but S1 6= 0 or S1 = S2 6= 0. When S1 = S2 = 0 so that Q = 0 the nematic liquid

crystal is said to be in an isotropic state associated, for instance, with a high temperature regime.

From the modeling perspective it turns out that the eigenvalues of Q must satisfy the con-

straints [9, 13]:

λi ∈ [−1/3, 2/3], for i = 1, 2, 3. (3)

2.2 Geometry of the Domain

We will use X to denote a point in R3. We letM denote a bounded, two-dimensional, C2 orientable

2h
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Figure 1: Geometry of the problem.

manifold embedded in R3, either closed or with smooth boundary, and we let x denote a point on

M. Fixing an orientation, we write ν(x) for the unit normal and due to the C2 smoothness of

M we have that the mapping x 7→ ν(x) is C1 on the compact set M. It follows from the inverse
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function theorem that for some sufficiently small positive number h0, the map (x, t) 7→ x+h0tν(x)

is one-to-one on M× (−1, 1).

With this observation in hand, for 0 < h < h0 we shall assume the nematic film occupies a

thin neighborhood of M given by

Ωh := {X ∈ R3 : X = x+ htν(x) for x ∈M, t ∈ (−1, 1)}

and we can unambiguously express each point X ∈ Ωh in the form

X = x+ htν(x) (4)

for some unique pair x ∈M and t ∈ (−1, 1).

We will also set

M±h := {x± hν(x) : x ∈M} . (5)

2.3 Landau-de Gennes model

We assume that the bulk elastic energy density of a nematic liquid crystal is given by

fe(∇Q) :=
L1

2
|∇Q|2 +

L2

2
Qij,jQik,k +

L3

2
Qik,jQij,k

=
3∑
j=1

{
L1

2
|∇Qj|2 +

L2

2
(divQj)

2 +
L3

2
∇Qj · ∇QT

j

}
, (6)

and that the bulk Landau-de Gennes energy density is

fLdG(Q) := a tr
(
Q2
)

+
2b

3
tr
(
Q3
)

+
c

2

(
tr
(
Q2
))2

, (7)

cf. [12]. Here Qj, j = 1, 2, 3 is the j-th column of the matrix Q and A · B = tr
(
BTA

)
is the

dot product of two matrices A,B ∈ M3×3. Further, the coefficient a is temperature-dependent

and in particular is negative for sufficiently low temperatures, and c > 0. One readily checks

that the form (7) of this potential implies that in fact fLdG depends only on the eigenvalues of
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Q, and due to the trace-free condition, therefore depends only on two eigenvalues. Equivalently,

one can view fLdG as a function of the two degrees of orientation S1 and S2 appearing in (2).

Furthermore, its form guarantees that the isotropic state Q ≡ 0 (or equivalently S1 = S2 = 0)

yields a global minimum at high temperatures while a uniaxial state of the form (1) where either

S1 = 0, S2 = 0 or S1 = S2 gives the minimum when temperature (i.e. the parameter a) is reduced

below a certain critical value, cf. [4, 12]. In this paper we fix the temperature to be low enough

so that the minimizers of fLdG are uniaxial. We also remark for future use that fLdG is bounded

from below and can be made nonnegative by adding an appropriate constant. In light of this, we

will henceforth assume a minimum value of zero for fLdG.

We now turn to the behavior of the nematic on the boundary of the sample. Here two al-

ternatives are possible. First, the Dirichlet boundary conditions on Q are referred to as strong

anchoring conditions in the physics literature: they impose specific preferred orientations on ne-

matic molecules on surfaces bounding the liquid crystal. In the sequel we impose these conditions

on the lateral part of the film ∂M× (−h, h) whenever M is not closed. An alternative is to

specify the anchoring energy on the boundary of the sample; then orientations of the molecules on

the boundary are determined as a part of the minimization procedure. We adopt this approach,

referred to as weak anchoring, on the top and the bottom surfaces of the film. Following the

discussion in Section 3 of [1], we assume that, up to an additive constant, the anchoring energy

has the form

fs(Q, ν) = α [(Qν · ν)− β]2 + γ|(I− ν ⊗ ν)Qν|2, (8)

for any ν ∈ S1 and Q ∈ A, where α, γ > 0, β ∈ R, and

A :=
{
Q ∈M3×3

sym : trQ = 0
}
. (9)

This form of the anchoring energy requires that a minimizer of fs has ν as an eigenvector with

corresponding eigenvalue equal to β. From (3) it follows that β ∈
[
−1

3
, 2

3

]
. An alternative approach

would be to extend the anchoring energy by including quartic terms [14] and even surface derivative

terms [15].
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Putting the three energy densities fe, fLdG and fs together, cf. (6), (7) and (8), we arrive at a

Landau-de Gennes type model to be analyzed in this study, given by

Eh[Q] :=

∫
Ωh

{fe(∇Q) + fLdG(Q)} dV +

∫
M−h∪Mh

fs(Q, ν) dH2(x). (10)

Here dH2 represents surface measure, i.e. two-dimensional Hausdorff measure.

Again, we will consider surfaces M that are either closed or have a smooth boundary. In the

case when the boundary is nonempty, we set Ωlat
h := ∂Ωh\{M−h ∪Mh} and for given uniaxial

data g ∈ H1/2(Ωlat
h ;A) we prescribe the lateral boundary condition of the form

Q(X) = g(x) for X ∈ Ωlat
h . (11)

Note that we assume that the boundary data g does not vary in the direction normal to the surface

M. Some additional conditions on g will be imposed later on in the text, cf. (32).

The admissible class of tensor-valued functions is then Q lying in the Sobolev space H1 (Ωh;A)

with Q|Ωlat
h

= g, where A is the set of three-by-three symmetric traceless matrices defined in (9).

Throughout this work we assume that g is uniaxial and is taken so that this set of admissible

tensors is nonempty.

2.4 Non-dimensionalization

We non-dimensionalize the problem by scaling the spatial coordinates

X̃ =
X

D
, x̃ =

x

D

where D := diam(M). Set M2 = L2

L1
and M3 = L3

L1
and introduce the small non-dimensional

parameter ε = h
D

representing the aspect ratio between the film thickness and the diameter of

the closed surface. Then we define the non-dimensionalized elastic energy density and Landau-de
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Gennes potential by setting

f̃e(∇X̃Q) :=
D2

L1

fe(∇XQ) =
1

2

3∑
j=1

{
|∇X̃Qj|2 +M2 (divX̃Qj)

2 +M3∇X̃Qj · ∇X̃Q
T
j

}
(12)

and

f̃LdG(Q) := δ2D
2

L1

fLdG(Q) = 2A tr
(
Q2
)

+
4

3
B tr

(
Q3
)

+
(
tr
(
Q2
))2

, (13)

respectively. Here the parameters A := a
c
, B := b

c
, and δ :=

√
2L1

cD2 are all non-dimensional.

Finally, turning to the surface energy we let α̃ := αD
L1
, γ̃ := γD

L1
, and setting

f̃s(Q, ν) :=
D

L1

fs(Q, ν),

we obtain an expression for the non-dimensionalized surface energy of the form

f̃s(Q, ν) = α̃ [(Qν · ν)− β]2 + γ̃|(I− ν ⊗ ν)Qν|2. (14)

Now for convenience we drop all of the tildes and conclude that the total dimensionless energy is

Eε[Q] :=
1

L1D
Eh[Q] =

∫
Ωε

(
fe(∇Q) +

1

δ2
fLdG(Q)

)
dV +

∫
M−ε∪Mε

fs(Q, ν) dA. (15)

Here the rescaled domain, denoted by Ωε, is given by

Ωε := {X ∈ R3 : X = x+ εtν(x) for x ∈M, t ∈ (−1, 1)} for ε < ε0 :=
h0

D

and

M±ε := {x± εν(x) : x ∈M} ,

where M now denotes the rescaled surface of diameter one.

Lastly, we divide by ε, letting Fε[Q] := 1
ε
Eε[Q], so as to obtain an energy that is O(1) for small
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ε. Hence,

Fε[Q] :=
1

ε

∫
Ωε

(
fe(∇Q) +

1

δ2
fLdG(Q)

)
dV +

1

ε

∫
M−ε∪Mε

fs(Q, ν) dH2(x), (16)

where fe, fLdG and fs are given by (12), (13) and (14), and now Fε is defined over the set of

Q-tensors

Cεg :=
{
Q ∈ H1 (Ωε;A) : Q|Ωlat

ε
= g
}
. (17)

2.5 Q-tensors on a fixed domain; Surface gradients and divergences

With an eye towards eventually passing to the ε → 0 limit via Γ-convergence, we now find it

convenient to re-express the Q-tensors, their gradients and their divergences in terms of tensors

defined on the fixed domain M × (−1, 1) rather than Ωε. To this end, we first recall some

basic identities for the surface gradient and surface divergence, for which a good reference is [16],

Chapter 2. For any scalar-valued function f defined on Ωε we henceforth associate to it a function

f̂ = f̂(x, t) defined on M× (−1, 1) via the formula

f̂(x, t) := f
(
x+ εtν(x)

)
. (18)

Then, for points X ∈ Ωε and x ∈M related via X = x+ tεν(x) we readily compute that

f̂t(x, t) = ε∇Xf · ν(x) (19)

and for τ = τ(x) any unit tangent vector toM at x we can calculate the directional derivative as

∂τ f̂ = ∇Xf ·
(
τ + εt∂τν

)
.

Hence, denoting by {τ1, τ2} an orthonormal basis for the local tangent plane to M at x and

invoking (19) and the summation convention on repeated indices we find that the surface gradient
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∇Mf̂ is given by

∇Mf̂ := ∂τj f̂ τj =
(
∇Xf · τj

)
τj + εt

(
∇Xf∂τjν

)
τj

= ∇Xf −
(
∇Xf · ν

)
ν + εt∇Xf

(
∂τjν τj

)
= ∇Xf −

1

ε
f̂tν + εt∇Xf∇Mν, (20)

where we recognize ∇Mν as the shape operator. Consequently, if we introduce the matrix-valued

mapping Φ = Φ(x, t; ε) via the formula

Φ(x, t; ε) := (I + εt∇Mν(x))−1 , (21)

then the previous calculation yields

∇Xf =

(
∇Mf̂ +

1

ε
f̂t ν

)
Φ. (22)

In the case where f is vector-valued, the identities (20) and (22) still hold but with the vector

quantity f̂tν replaced by the matrix f̂t ⊗ ν. Thus, in particular for Qj = the jth column of a

Q-tensor, we find

∇XQj =

(
∇MQ̂j +

1

ε
Q̂jt ⊗ ν

)
Φ. (23)

Further, if we expand Φ in ε as

Φ(x, t; ε) ∼ I − εt∇Mν(x) +O(ε2), (24)

and we use the properties ν · ∇Mν = 0 = ∇Mν · ν resulting from the condition |ν| = 1 one sees

that

∇XQj ∼
1

ε
Q̂jt ⊗ ν +∇MQ̂j − εt∇MQ̂j∇Mν +O(ε2). (25)
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We then obtain a corresponding formula for the divergence of Qj in terms of x and t derivatives:

divXQj = ∇XQij · ei =

(
∇MQ̂ij +

1

ε
(Q̂ij)tν

)
Φ · ei, (26)

where {ei}3
i=1 is an orthonormal basis in R3. Defining the surface divergence of a vector field F

by divMF := ∇MF (i) · ei, we again expand Φ using (24) to find

divXQj ∼ 1

ε
(Q̂ij)tν · ei +∇MQ̂ij · ei − εt∇MQ̂ij∇Mν ei +O(ε2)

=
1

ε
(Q̂ij)tν

i + divMQ̂j − εt∇MQ̂ij∇Mν ei +O(ε2). (27)

3 Γ-convergence to a surface energy defined on M

In this section we pass to the limit ε → 0 in the energy Fε given by (16). For convenience, we

assume that an appropriate constant has been added to the Landau-de Gennes energy to guarantee

that Fε[Q] ≥ 0. Here we are assuming that the elastic constants satisfy the conditions stated in

Theorem 3.1 that ensure the coercivity of Fε. We wish to consider a range of asymptotic regimes

corresponding to different magnitudes of α and γ in the surface energy density given by (14). To

this end, we will assume that α = α0 + εα1 and γ = γ0 + εγ1 for some nonnegative constants

α0, α1, γ0, γ1. Then (14) can be written as

fs(Q, ν) = f (0)
s (Q, ν) + εf (1)

s (Q, ν), (28)

where

f (0)
s := α0 [(Qν · ν)− β]2 + γ0|(I− ν ⊗ ν)Qν|2, (29)

and

f (1)
s := α1 [(Qν · ν)− β]2 + γ1|(I− ν ⊗ ν)Qν|2. (30)

Here, we can assume that α0α1 = γ0γ1 = 0. Indeed, as will become evident later on, f
(0)
s

asymptotically vanishes at leading order in the thin film limit. Thus, if for instance, α0 6= 0, the
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first term in f
(1)
s is not present and we may take α1 = 0.

Note that we would like to capture the asymptotic behavior of Fε for the range of parame-

ter values, even when some of the material constants have magnitudes comparable to thickness.

Mathematically, it then appears that these constants vary with thickness, even though this is not

the case physically.

Next we define the spaces

Cg :=
{
Q ∈ H1(M× (−1, 1);A) : Q|∂M×(−1,1) = g

}
(31)

and

Hg :=
{
Q ∈ Cg : Qt ≡ 0 a.e., f (0)

s (Q(x), ν(x)) = 0 for a.e. x ∈M
}

(32)

for some uniaxial boundary data g ∈ H1/2 (∂M;A) such that the set Hg is nonempty. In the case

where ∂M = ∅, this boundary condition is not present in these two definitions.

Now we are ready to define our candidate for the Γ-limit of the sequence {Fε}. We let F0 :

Cg → R be given by

F0[Q] :=


∫
M

{
f 0
e (∇MQ, ν) + 1

δ2
fLdG(Q) + 2f

(1)
s (Q, ν)

}
dH2(x) if Q ∈ Hg,

+∞ otherwise,
(33)

where, recalling (12) we define

f 0
e (∇MQ, ν) := min

G∈A
fe(G⊗ ν +∇MQ)

=
1

2

3∑
i=1

{
|∇MQi|2 +M2(divMQi)

2 +M3

(
∇MQi · (∇MQi)

T
)}

+ min
G∈A

[
3∑
i=1

{(
M2 (divMQi) ν +M3(∇MQi)

Tν
)
·Gi +

1

2
|Gi|2 +

1

2
(M2 +M3)(Gi · ν)2

}]
. (34)

Here, as will become apparent later on, G arises as a remnant of the normal component of the

gradient of Q.

Remark 3.1. We wish to point out an omission in Theorem 5.1 of [1] where the Γ-limit should

12



have also been defined using (34). When M2 = M3 = 0 this theorem is true as stated. Otherwise,

the statement and the proof should be modified as in this paper. We note that the parameter studies

in Section 6 of [1] are unaffected as they are conducted in the regime M2 = M3 = 0.

In order to phrase our Γ-convergence result we must deal with the issue that Fε and F0 are

defined on very different spaces, a situation common to dimension-reduction analyses involving

Γ-convergence. To address this, we recall the association introduced earlier between any mapping,

say f , defined on Ωε and the mapping f̂ defined onM× (−1, 1), cf. (18). Then we will define the

topology of the Γ-convergence as weak H1-convergence in the following sense:

We write Qε
∧
⇀ Q if Q̂ε ⇀ Q weakly in H1(M× (−1, 1);A) (35)

for any sequence {Qε} ⊂ Cεg (cf. (17)) and any limit Q ∈ Cg

We now state our main theorem on dimension reduction via Γ-convergence. For those unfa-

miliar with the notion, we refer, for example, to [17].

Theorem 3.1. Fix g ∈ H1/2 (∂M;A) such that the set Hg is nonempty. Assume that −1 < M3 <

2, and −3
5
− 1

10
M3 < M2. Let Fε be given by (16), with fe, fLdG and fs given by (12), (13) and

(28) respectively. Then Γ-limε Fε = F0 in the weak H1 topology defined in (35). Furthermore, if a

sequence {Qε}ε>0 ⊂ Cεg satisfies a uniform energy bound Fε[Qε] < C0 then there is a subsequence

{Q̂εj} such that Q̂εj
∧
⇀ Q as εj → 0 for some Q ∈ H1

g .

Proof. Given any Q ∈ Cg we recall the association between Q and Q̂ ∈ H1(M× (0, 1)) that is

given by (18). Using (25), (27) and the easily checked properties

dV = dV (X) ∼ ε
(
1 +O(ε)

)
dH2
M(x) dt, dH2

Mε
∼
(
1 +O(ε)

)
dH2
M

13



we find that the energy Fε(Q) can be written in terms of Q̂ as follows:

Fε[Q] ∼
1

2

3∑
j=1

∫ 1

−1

∫
M

{∣∣∣∣1εQ̂jt ⊗ ν +∇MQ̂j − εt∇MQ̂j∇Mν
∣∣∣∣2

+M2

(
1

ε
(Q̂ij)tν

i + divMQ̂j − εt∇MQ̂ij∇Mν ei
)2

+M3

(
1

ε
Q̂jt ⊗ ν +∇MQ̂j − εt∇MQ̂j∇Mν

)
·
(

1

ε
Q̂jt ⊗ ν +∇MQ̂j − εt∇MQ̂j∇Mν

)T}
(
1 +O(ε)

)
dH2(x) dt

+

1

δ2

∫ 1

−1

∫
M

{
2A tr

(
Q̂2
)

+
4

3
B tr

(
Q̂3
)

+
(

tr
(
Q̂2
))2

}(
1 +O(ε)

)
dH2(x) dt

+

1

ε

∫
M

{
f (0)
s (Q̂(x, 1), ν) + εf (1)

s (Q̂(x, 1), ν) + f (0)
s (Q̂(x,−1), ν) + εf (1)

s (Q̂(x,−1), ν)
}

(
1 +O(ε)

)
dH2(x). (36)

First, we demonstrate how one can choose a recovery sequence. If Q0 ∈ Cg \Hg, so that either

(Q0)t 6≡ 0 or else f
(0)
s (Q0(x), ν(x)) > 0 on a set of positive measure on M, then choosing Qε such

that Q̂ε ≡ Q0, from (36) we readily check that

lim
ε→0

Fε[Qε] = +∞ = F0[Q0].

Notice in particular that t-derivatives enter at O( 1
ε2

) and f
(0)
s contributes at O(1

ε
) in the energy.

If, on the other hand, Q0 ∈ Hg, then of course all t-derivatives drop in (36), as do the 1/ε terms

from f
(0)
s in the last integral and in the ε→ 0 limit, one immediately arrives at F0(Q0).

Now given any Q0 ∈ Hg, we set

Q̂ε(x, t) = Q0(x) + εtḠ(x), (37)

where Ḡ(x) solves (34) with Q0 playing the role of Q. One technicality we must confront with this
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proposed recovery sequence, however, is that since ∇MQ̂ε = ∇MQ0 + εt∇MḠ and since from (34)

we see that Ḡ depends on ∇MQ0 (cf. (93)), we are in the position of taking second derivatives of

the H1 tensor Q0. Let us first establish the success of this recovery sequence under the additional

assumption that Q0 is smoother than H1, say H2, and then we will treat the more general case

at the end of the argument through a mollification procedure.

Note also that when the surface M is not closed, this proposed recovery sequence must be

modified via multiplication by a cutoff function so as to maintain g-valued boundary data. As

long as the width of the boundary layer associated with the cutoff function is of order lower than

ε, say
√
ε, the contribution to the energy of that layer will be negligible. We will leave out the

details of this alteration.

Now consider the expression (36), evaluated using (37) as the proposed recovery sequence.

Clearly, the Landau-de Gennes contribution to Fε trivially converges to its limiting value and we

only need to establish convergence of elastic and surface contributions. Next we observe that the

elastic energy along the recovery sequence approaches

1

2

3∑
j=1

∫
M

{∣∣∣Ḡj ⊗ ν +∇M (Q0)j

∣∣∣2 +M2

(
Ḡj · ν + divM (Q0)j

)2

+M3

(
Ḡj ⊗ ν +∇M (Q0)j

)
·
(
Ḡj ⊗ ν +∇M (Q0)j

)T}
dH2(x), (38)

when ε→ 0. In light of (34), we conclude that (38) is exactly the integral overM of f 0
e (∇MQ0, ν).

Turning our attention to the surface energy term, we have from (36) that the energy contribu-

tion due to f
(0)
s is given by

1

ε

∫
M

{
f (0)
s (Q̂ε(x, 1), ν(x)) + f (0)

s (Q̂ε(x,−1),−ν(x))
}
dH2(x)

=
1

ε

∫
M

{
f (0)
s (Q0(x) + εḠ(x), ν(x)) + f (0)

s (Q0(x)− εḠ(x),−ν(x))
}
dH2(x). (39)
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Since

f (0)
s (Q0(x) + εḠ(x), ν(x)) + f (0)

s (Q0(x)− εḠ(x),−ν(x))

= 2α0ε
2
[
Ḡ(x)ν(x) · ν(x)

]2
+ 2γ0ε

2
∣∣(I− ν(x)⊗ ν(x)) Ḡ(x)ν(x)

∣∣2
on M, the integral in (39) approaches zero. Thus the limiting contribution to the surface energy

is simply

2

∫
M
f (1)
s (Q0(x), ν) dH2(x).

We conclude that the energy of the recovery sequence given by (37) approaches the Γ-limit F0[Q0].

It remains for us to construct a recovery sequence in the general case where Q0 is in H1 but

no smoother. An obvious approach is to mollify Q0 but this mollification must be done with some

care. Recall that in addition to satisfying the boundary data g, the tensor Q0 is required to satisfy

the condition f
(0)
s (Q0(x)) ≡ 0 on M. Simply convolving Q0 with a standard mollifier will clearly

violate both of these requirements. Maintaining the boundary condition can be handled simply

enough through the straight-forward use of a smooth interpolation in a boundary layer, just as

we described above for adjusting the tensor Ḡ near the boundary. However, obtaining a smoother

version of Q0 that still gives zero contribution to the leading order surface density f
(0)
s is not as

immediate. Recall, for example, that if the constants α0 and γ0 in the definition of f
(0)
s are both

positive then admissible tensors Q0 must maintain the normal vector ν(x) toM as an eigenvector

with corresponding eigenvalue β at each x on the curved surface M.

To this end, we partitionM into finitely many smooth pieces, so that say,M =M1∪ . . .∪Mn

and on each piece we introduce a smoothly varying orthonormal frame {T,N, ν} where {T, N} is

an orthonormal frame in a plane tangent toM at a given point. Such a smooth frame will not exist

globally on M if for instance M is a topological sphere, hence the need for the decomposition.

Then in the case α0γ0 6= 0, for example, we can introduce the scalar quantities p
(j)
1 and p

(j)
2 on

each Mj by expressing Q0 as

Q0 = p
(j)
1 (T⊗T−N⊗N) + p

(j)
2 (T⊗N + N⊗T) +

3β

2

(
ν ⊗ ν − 1

3
I

)
(40)
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so that relative to this orthonormal basis one has a representation of Q0 on Mj given by

Q0(x) =


p

(j)
1 (x)− β

2
p

(j)
2 (x) 0

p
(j)
2 (x) −p(j)

1 (x)− β
2

0

0 0 β

 . (41)

This is a change of variables invoked, for example, in [18], motivated by simulations in [19]. In this

way, the tensor Q0 is characterized by just p
(j)
1 and p

(j)
2 and by mollifying these two quantities on

each patch we obtain a smooth approximation to the original Q0 on that patch, maintaining the

desired conditions that ν is always an eigenvector with corresponding eigenvalue β. Now using the

partition of unity to glue together the smooth approximation on individual patches and employing

the fact that all of these approximations have the common eigenpair ν, β, we arrive at a global

smooth approximation of Q0 in Hg.

If, to describe another possibility, one is working in the case where α0 = 0 but γ0 > 0 so

that ν must be an eigenvector but the corresponding eigenvalue is free, one can again use the

representation (40)-(41) but the constant β is replaced by a third scalar unknown, say r(j)(x).

Again mollification of p
(j)
1 , p

(j)
2 and r(j) produces a smooth approximation to Q0 on eachMj that

preserves the condition f
(0)
s (Q0) = 0.

Denoting the mollification of the original tensor Q0 ∈ Hg by the smooth sequence {Q0,δ} ⊂ Hg

with δ > 0 denoting the mollification parameter, the previously presented argument goes to show

that the sequence {Qε,δ} of tensors defined on Ωε characterized by

Q̂ε,δ(x, t) := Q0,δ + εtḠδ(x)

satisfies the required property of a recovery sequence, namely

lim
ε→0

Fε[Qε,δ] = F0[Q0,δ].

Here Gδ minimizes (34) for Q = Q0,δ. Since the proposed Γ-limit F0 is clearly continuous under

H1-convergence and since Q0,δ → Q0 in H1, we have that F0[Q0,δ]→ F0[Q0], and so the existence

17



of a recovery sequence for Q0 follows by a standard diagonalization argument applied to {Qε,δ}.

For the lower semicontinuity part of Γ-convergence, consider an arbitrary sequence {Qε}ε>0 ⊂

Cgε such that Q̂ε ⇀ Q0 in H1(M× (−1, 1);A) for some Q0 ∈ Cg. Clearly we may assume

lim inf
ε→0

Fε[Qε] < +∞

and so from (36), collecting the leading order O (ε−2) terms, it is apparent that necessarily

∥∥∥(Q̂ε)t

∥∥∥
L2
≤ Cε. (42)

Thus, Q0 = Q0(x) only. Similarly, from the strong convergence of traces under weak H1-

convergence, the last integral in (36) will only stay finite in the ε→ 0 limit if f
(0)
s (Q0(x), ν(x)) = 0

as well. Hence, we may assume that Q0 ∈ Hg. Furthermore, by (42) we also have that up to a sub-

sequence, 1
ε
(Q̂ε)t ⇀ q̄ as ε→ 0 for some q̄ in L2(M× (−1, 1);A). It follows from the assumption

Q̂ε ⇀ Q0 in H1(M× (−1, 1);A) that

1

ε
(Q̂ε)t ⊗ ν +∇MQ̂ε ⇀ q̄ ⊗ ν +∇MQ̂0 weakly in L2.

It has been established in ([20], Lemma 4.2) and [15] that when the elastic constants satisfy the

conditions −1 < M3 < 2, and −3
5
− 1

10
M3 < M2, then the elastic energy density fe is convex and

consequently weakly lower semicontinuous in H1(M× (−1, 1);A). Hence, using (34) and (36), we

obtain

lim inf
ε→0

1

ε

∫
Ωε

fe (∇XQε) dX = lim inf
ε→0

∫
M×(−1,1)

fe

(
1

ε
(Q̂ε)t ⊗ ν +∇MQ̂ε

)
dH2(x)dt

≥
∫
M×(−1,1)

fe

(
q̄ ⊗ ν +∇MQ̂0

)
dH2(x)dt ≥

∫
M
f 0
e

(
∇MQ̂0, ν

)
dH2(x).

In addition to convexity, it is also shown in [20] that under these assumptions on the elastic

coefficients one has

fe(∇Q) ≥ C|∇Q|2 (43)
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pointwise for all admissible Q, where C > 0 does not depend on M or ε. Thus using Sobolev

embedding and convergence of traces to handle the limits of the second and third integrals in (36),

one finds

lim inf
ε→0

Fε[Qε] ≥ F0[Q0].

This proves the second part of Γ-convergence.

Note that when M2 = M3 = 0, the quadratic form arising in the definition of the elastic energy

density is diagonal. This significantly simplifies the proof of Γ-convergence. In this case, one

can always choose a trivial recovery sequence and for the lower semicontinuity the minimizer Ḡ

vanishes.

Finally, since the uniform energy bound implies a uniform H1-bound with an L2-bound on

t-derivatives that is of order ε, there exists a subsequence {Q̂εj} weakly convergent in H1(M×

(−1, 1);A) to a limit Q0 that is independent of t. Further, strong convergence of traces in L2

implies through the boundedness of the third integral in (36) that Q0 ∈ Hg.

Remark 3.2. The ”remnant” terms of the limiting elastic energy density f 0
e (∇MQ0, ν) constitut-

ing the last line of (34) are an indication that for thin elastic shells the behavior of the minimizer

in the direction normal to the surface of the film is slaved to variations along the manifold M.

Recall that a standard implication of Γ-convergence along with compactness is that if {Qε} is a

sequence of minimizers to Fε then there exists a subsequence {Qεj} such that Q̂εj ⇀ Q0 where Q0

is a minimizer of the Γ-limit F0. Consequently, to first order in ε, it is not the case that minimizers

of Fε[Q] are obtained by trivially extending the minimizers of F0[Q] to be constant along the

normals to M. Indeed, with the usual association X = x+ htν(x), we rather have that

Qε(X) ∼ Q0(x) + htḠ(x),

for x ∈M, t ∈ (−1, 1), and h > 0 small.

Remark 3.3. When M2 = M3 = 0, one can easily argue that the convergence of the subsequence

is, in fact, strong. Indeed, one has Fε[Q]→ F0[Q] for every Q ∈ Hg viewed as an element of H1(Ωε)
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that is constant along normals toM. Hence lim supε→0 Fε[Qε] ≤ lim supε→0 Fε[Q0] = F0[Q0]. Since

∫
M×(−1,1)

fLdG(Q̂ε) dH2(x) dt+

∫
M×{−1,1}

f (1)
s (Q̂ε, ν) dH2(x)

→
∫
M

(
fLdG(Q0) + 2f (1)

s (Q0, ν)
)
dH2(x) as ε→ 0,

we have

lim sup
ε→0

∫
M×(−1,1)

(
|∇MQ̂ε|2 +

1

ε2
|(Q̂ε)t|

2
)
dH2(x) dt ≤

∫
M
|∇MQ0|2 dH2(x).

Combining this with the lower semicontinuity of the L2-norm of the derivative due to the convexity

of fe, strong convergence in Cg along a subsequence follows.

4 Expression for the limiting energy f 0
e

In the Section 3, we observed that the proof of Γ-convergence is significantly simpler when M2 =

M3 = 0 because the corresponding quadratic form is diagonal and one can choose a trivial recovery

sequence. In this case, the Dirichlet integral over the three-dimensional domain reduces to its

analog over the manifold and the “thin” dimension decouples from dimensions that survive in the

limiting problem. The following two lemmas demonstrate that when M2 or M3 are present this

will not be the case and there are remnants of the disappearing dimension that survive in the

expression for the limiting functional. For simplicity of presentation, we will derive an explicit

expression for f 0
e when M3 = 0 and then state the general formula for f 0

e without proof. The

general expression can be found in the same way as in Lemma 4.1, albeit using significantly more

cumbersome computations.

Lemma 4.1. Suppose that M3 = 0 and M2 > −3
5
. Then

f 0
e (∇MQ, ν) =

1

2

{
|∇MQ|2 +

2M2

M2 + 2
|divMQ|2 −

M2
2

(M2 + 2)(2M2 + 3)
(ν · divMQ)2

}
. (44)

Proof. First, note that the lower bound on M2 corresponds to the assumption of the Theorem 3.1.
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When M3 = 0, a glance at (34) shows that we need to minimize the function

φ(G) := M2(ν ⊗ divMQ) ·G+
1

2
|G|2 +

M2

2
|Gν|2 (45)

over the set A of symmetric matrices with the zero trace. Assuming that G is symmetric and

enforcing the tracelessness of G via a Lagrange multiplier λ, we seek minimizers of

φλ(G) := M2(ν ⊗ divMQ) ·G+
1

2

(
|G|2 +M2|Gν|2 + λtr (G)

)
(46)

among all symmetric matrices in G ∈ M3×3, subject to the constraint tr (G) = 0. Thus, we need

to find a pair (Ḡ, λ) that solves the problem

 2Ḡ+M2(ν ⊗ divMQ+ divMQ⊗ ν) +M2(Ḡν ⊗ ν + ν ⊗ Ḡν) + λI = 0,

tr (Ḡ) = 0,
(47)

where the first equation is obtained by finding the derivative of φλ with respect to a symmetric

G. Taking the trace of the first equation gives

2M2

(
ν · divMQ+ Ḡν · ν

)
+ 3λ = 0. (48)

Multiplying the first equation respectively from the right and from the left by ν ⊗ ν and adding

the results, gives

(M2 + 2)(Ḡν ⊗ ν + ν ⊗ Ḡν) = −M2(ν ⊗ divMQ+ divMQ⊗ ν)

−
(
2M2

(
ν · divMQ+ Ḡν · ν

)
+ 2λ

)
(ν ⊗ ν). (49)

Combining (48) and (49) allows us to conclude that

Ḡν ⊗ ν + ν ⊗ Ḡν =
λ

M2 + 2
(ν ⊗ ν)− M2

M2 + 2
(ν ⊗ divMQ+ divMQ⊗ ν).
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Substituting this expression back into (47) and taking trace allows us to find that

λ = −2M2 (ν · divMQ)

2M2 + 3
,

hence

Ḡ = − M2

M2 + 2
(ν ⊗ divMQ+ divMQ⊗ ν) +

M2 (ν · divMQ)

(2M2 + 3)

(
M2

M2 + 2
(ν ⊗ ν) + I

)
. (50)

Finally, evaluating (45) at this Ḡ and following a sequence of trivial, but tedious calculations

proves (44).

We now give the general expression for f 0
e .

Lemma 4.2. Suppose that M2 and M3 are defined as in Theorem 3.1. Then

f 0
e (∇MQ, ν) =

1

2
|∇MQ|2 +

M2(M3 + 2)

2(M2 +M3 + 2)
|divMQ|2

+
(M2

3 + 2M3 − 1)M2
2 + (2M2

3 + 5M3 + 4)M2M3 + (M2
3 + 3M3 + 2)M2

3

2(M2 +M3 + 2)(2M2 + 2M3 + 3)
(ν · divMQ)2

+
1

2

3∑
i=1

{
M3

(
∇MQi · (∇MQi)

T
)
− 2M2M3

M2 +M3 + 2
ν · (νi∇MQidivMQ)

}

− M2
3

8

∣∣∣∣∣
3∑
i=1

νi
(
∇MQi +∇MQT

i

)∣∣∣∣∣
2

+
M2

3

4

M2 +M3

M2 +M3 + 2

∣∣∣∣∣
3∑
i=1

νi∇MQT
i ν

∣∣∣∣∣
2

.

The outline of the proof of Lemma 4.2 is given in Appendix B.

5 Limiting functional when M is a surface of revolution

In this section we examine the special case where M is a surface revolution. We will appeal to a

description of the Γ-limit F0 when the surface is presented parametrically. The relevant formulas

can be found in the appendix. To this end, we suppose thatM is specified by the map Ψ : R2 → R3
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where

Ψ(s, θ) =


a1(s) cos θ

a1(s) sin θ

a2(s)

 , (51)

with θ ∈ [0, 2π] and r(s) := (a1(s), a2(s)) a smooth curve in R2 parametrized with respect to

arclength s ∈ [0, L] for some L > 0. Then r′ is a unit vector field that we will express in terms of

an angle φ(s) via r′(s) = (cosφ(s), sinφ(s)). The orthonormal frame

{T(s, θ),N(s, θ), ν(s, θ)}

associated with the (s, θ)-parametrization of M is

T(s, θ) =


cosφ(s) cos θ

cosφ(s) sin θ

sinφ(s)

 , N(s, θ) =


− sin θ

cos θ

0

 ,

ν(s, θ) =


− sinφ(s) cos θ

− sinφ(s) sin θ

cosφ(s)

 ,

so that (suppressing the variables s and θ) we have

Ψ,s = T, Ψ,θ = a1N, Ψ,ss = T,s = φ′ν, Ψ,sθ = (cosφ)N, Ψ,θθ = (a1 sinφ)ν − (a1 cosφ)T.

and we also compute that

N,s = 0, ν,s = −φ′T, T,θ = (cosφ)N, N,θ = (sinφ)ν − (cosφ)T, ν,θ = −(sinφ)N. (52)
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Then the first and the second fundamental forms for M are given by

I =

 Ψ,s ·Ψ,s Ψ,s ·Ψ,θ

Ψ,s ·Ψ,θ Ψ,θ ·Ψ,s

 =

 1 0

0 a2
1

 (53)

and

II =

 Ψ,ss · ν Ψ,sθ · ν

Ψ,sθ · ν Ψ,θθ · ν

 =

 φ′ 0

0 a1 sinφ

 , (54)

respectively. It follows that T and N correspond to principal directions with the associated

principal curvatures given, up to a sign, by

κT = φ′ and κN =
sinφ

a1

, (55)

cf. (77) and (78) in the appendix. Further, the area element of M is given by

dA =
√

det I ds dθ = a1 ds dθ

and the square of the magnitude of the surface gradient of a field u on M can be written as

|∇Mu|2 = |u,s|2 +
1

a2
1

|u,θ|2

in terms of the coordinates s and θ.

Suppose that M2 = M3 = α1 = γ1 = 0 so that we are in the case of equal elastic constants

and all surface energy appears at leading order. Then the tensors in the admissible class Hg for

the energy F0[Q] satisfy

Q(s, θ)ν(s, θ) = βν(s, θ) (56)

for every (s, θ) ∈ Ω = [0, L]× [0, 2π], where

F0[Q] =

∫
Ω

{
|Q,s|2 + a1(s)−2|Q,θ|2 +

1

δ2
fLdG(Q)

}
a1(s) ds dθ. (57)
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Since the admissible Q satisfy (56), we find it preferable from this point on to use the repre-

sentation (41) of Q(s, θ) relative to the frame {T(s, θ),N(s, θ), ν(s, θ)}, so that we have

Q(s, θ) =


p1(s, θ)− β

2
p2(s, θ) 0

p2(s, θ) −p1(s, θ)− β
2

0

0 0 β

 . (58)

With this stipulation, the energy is seen to depend only on the vector p = (p1, p2) and as in (40),

Q can be expressed in the form

Q = p1(T⊗T−N⊗N) + p2(T⊗N + N⊗T) +
3β

2

(
ν ⊗ ν − 1

3
I

)
. (59)

Remark 5.1. We can also choose to express Q in terms of its eigenframe (n,n⊥, ν) where n⊥ :=

ν × n, that is

Q = ρ
(
n⊗ n− n⊥ ⊗ n⊥

)
+

3β

2

(
ν ⊗ ν − 1

3
I

)
, (60)

where n is one of the nematic directors of Q and ρ − β
2

is its eigenvalue. If we represent n in

terms of its local angle with T, so that

n = cosψT + sinψN and n⊥ = − sinψT + cosψN, (61)

then

Q = ρ cos 2ψ (T⊗T−N⊗N) + ρ sin 2ψ (T⊗N + N⊗T) +
3β

2

(
ν ⊗ ν − 1

3
I

)
.

Comparing this to (59), we conclude that

p = ρ(cos 2ψ, sin 2ψ). (62)

Hence, the vector p ∈ R2 is related to the director n in that the angle p makes with the x-axis is

always twice that made by n with T and the magnitude of p differs from the eigenvalue of Q with
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respect to n by −β/2.

Now we let

Q1 = T⊗T−N⊗N, Q2 = T⊗N + N⊗T,

Q3 = ν ⊗N + N⊗ ν, Q4 = ν ⊗T + T⊗ ν.
(63)

We observe that

Qi ·Qj = tr
(
QT
j Qi

)
= 2δij, (64)

for i, j = 1, . . . , 4 with the understanding that from now on we abandon the convention that, for

tensors, subscripts refer to their columns. Using (52), we find

Q1,s = φ′Q4, Q1,θ = 2(cosφ)Q2 − (sinφ)Q3,

Q2,s = φ′Q3, Q2,θ = (sinφ)Q4 − 2(cosφ)Q1,

(ν ⊗ ν),s = −φ′Q4, (ν ⊗ ν),θ = −(sinφ)Q3,

(65)

so that from (59) we have

Q,s = p1,sQ1 + p2,sQ2 + p2φ
′Q3 +

(
p1 −

3β

2

)
φ′Q4 (66)

and

Q,θ = (p1,θ − 2p2 cosφ)Q1 + (p2,θ + 2p1 cosφ)Q2 −
(
p1 +

3β

2

)
(sinφ)Q3 + p2(sinφ)Q4. (67)

With the help of (64) we conclude that

1

2
|Q,s|2 = |p,s|2 +

(
|p|2 − 3βp1

)
(φ′)

2
+

9β2

4
(φ′)

2
(68)

and

1

2
|Q,θ|2 = |p,θ|2 + 4 cosφ (p1p2,θ − p2p1,θ) + |p|2

(
4− 3 sin2 φ

)
+ 3βp1 sin2 φ+

9β2

4
sin2 φ, (69)

where p = (p1, p2). Therefore, neglecting terms that depend onM only that would lead to additive
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constants after integration, we have for the elastic energy density

1

2
|∇MQ|2 = |p,s|2 +

1

a2
1

|p,θ|2 +
4 cosφ

a2
1

(p1p2,θ − p2p1,θ)

+

(
4

a2
1

− 3κ2
N + κ2

T

)
|p|2 + 3βp1

(
κ2
N − κ2

T

)
. (70)

It is also easy to check that the Landau-de Gennes potential fLdG is a function of the magnitude

of p only., cf. for example [18].

To gain some insight into (70), let us assume for simplicity that a is strictly positive so that

M is a surface with boundary. Then let β = −1
3

in the expression above to model the case when

all molecules in the nematic are parallel to the surface of the film, cf. [2]. Further, suppose that

the field Q minimizes the Landau-de Gennes energy density fLdG everywhere on M so that, in

particular, |p| = const on M. Then the next to last term in (70) is purely geometric. Therefore,

neglecting this term that would lead to an additive constant after integration, we have

1

2
|∇MQ|2 = |p,s|2 +

1

a2
1

|p,θ|2 +
4 cosφ

a2
1

(p1p2,θ − p2p1,θ) + p1

(
κ2
T − κ2

N

)
. (71)

Following Remark 5.1, we can write p = ρ(cos 2ψ, sin 2ψ) with ψ perhaps not single-valued

and ρ constant. Then this expression becomes

1

2
|∇MQ|2 = 4ρ2 |∇Mψ|2 +

8ρ2 cosφ

a2
1

ψ,θ + ρ
(
κ2
T − κ2

N

)
cos 2ψ. (72)

We observe from this formula that contributions to the degree of p can come from both the first

term on the right due to winding of p itself and from the second term related to the rotation of the

frame (T, N, ν). Further, the sign of κ2
T −κ2

N in the last term on the right determines whether the

director is oriented along T or N. Similar conclusions from a more general differential geometric

viewpoint can be found in [2] and [3].
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Figure 2: Minimizing configurations of n for a narrow (left) and a wide (right) cones. Note that
in these figures, the cones have been inverted.

6 Analysis of a nematic film on a frustum

We conclude with an example where the surface of revolution M is taken to be a truncated

cone or frustum. This corresponds to r(s) = (a1(s), a2(s)) = (s cosφ0, s sinφ0) in (51), where

s ∈ [s0, s0 + L] for some positive s0 and L. Since we are interested in highlighting effects due to

curvature alone, we will not impose a Dirichlet condition g as we had before and instead assume

natural boundary conditions on p on each orifice of the frustum.

Figure 2 shows the results of a numerical simulation of solving the Euler-Lagrange system

associated with (57) on the frustum subject to homogeneous Neumann boundary conditions when

1
δ2

is large. It reveals a dichotomy in the director behavior depending on the complement, φ0, of

the angle of the opening. When φ0 is near π/2 and the cone is narrow, the vector field n follows

the generators of the cone and carries no degree with respect to geodesic circles given by the

upper and lower boundaries. On the other hand, when φ0 is near zero and the cone flattens to a

nearly planar domain, the field n approaches a state which carries a nonzero degree with respect

to geodesics along the upper and lower boundaries.

To provide some analytical basis for these numerical observations, we consider the limit 1
δ2
→∞

in (57) so that we can formally assume |p| is constant so as to kill the term fLdG(Q); without loss
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of generality set |p| = 1. Then, referring to (62) we have

p = (cos 2ψ(s, θ), sin 2ψ(s, θ)).

We observe from (55) that κT = 0 while κN = sinφ0
a1

. Thus, computing F0[Q] using (72) we have

up to a constant that

F0[Q] = E0[ψ] :=

∫ s0+L

s0

∫ 2π

0

[
4ψ2

,s +
1

a2
1(s)

(
4ψ2

,θ + 8 cosφ0ψ,θ − sin2 φ0 cos 2ψ
)]
a1(s)dθ ds.

≥
∫ s0+L

s0

ds

a1(s)

∫ 2π

0

(
4ψ2

,θ + 8 cosφ0ψ,θ − sin2 φ0 cos 2ψ
)
dθ

≥
∫ s0+L

s0

1

a1(s)
min
ψ∈Dk

F [ψ] ds,

where

F [ψ] :=

∫ 2π

0

(
4ψ2

,θ + 8 cosφ0ψ,θ − sin2 φ0 cos 2ψ
)
dθ

and Dk := {ψ ∈ H1([0, 2π]) : ψ(2π) = ψ(0) + πk} for any k ∈ Z. Hence, the minimizer of E0 for

a given k is independent of s.

Examining the expression for E0 we see that any minimizer will necessarily satisfy ψ,s ≡ 0,

which leaves us to study, with a slight abuse of notation,

E0[ψ] =

∫ 2π

0

(
4ψ2

,θ + 8 cosφ0ψ,θ − sin2 φ0 cos 2ψ
)
dθ,

= 8π k cosφ0 +

∫ 2π

0

(
4ψ2

,θ − sin2 φ0 cos 2ψ
)
dθ, (73)

where k is the winding number of the p relative to geodesic circles on the cone. Hence k is twice

the winding number of n along geodesic circles on the frustum, so that ψ(2π) = ψ(0) + πk for

some k ∈ Z. Focusing on the last term in (73), we observe that it corresponds to the difference in

curvature squared terms in (71). If we only sought to optimize this term, it would force the angle

ψ to be zero aligning the director n with the generators T of the cone, cf. Figure 2(a). Setting

ψ ≡ 0 the remaining terms in (73) would vanish, so that the total energy would be −2π sin2 φ0.
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Figure 3: Comparison between the energies of minimizers of E0 for k = 0, k = −1, k = −2, and
k = −3.

In this case n carries no degree relative to geodesic circles.

Suppose on the other hand that k 6= 0, say k = −1. Then ψ cannot be constant so this

incurs some additional elastic energy given by the first term in the integrand and this positive

gain competes with the negative contribution from both of the remaining terms. In Figure 3

we compare the energy of the numerically computed solution to the Euler-Lagrange O.D.E. for

(73) for the case k = −1 to E0[0] as functions of φ0. We see that below some critical φ0, it is

energetically preferable to have k = −1, in which case n does carry degree relative to geodesics.

What is more, smaller φ0 corresponds to a gradual flattening of the frustum and convergence of

minimizers to the constant state which clearly is optimal in the planar case.

Note that computationally, choosing k to be any integer other than 0 or −1 ends up being

more expensive, cf. Figure 3.
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A Appendix: Dimension reduction for parametric sur-

faces

As an alternative to the approach to the dimension reduction carried out in the Section 3 here

we formally outline a different argument leading to the same conclusion but using a parametric

representation of the manifoldM. In addition to giving a different take on the limiting procedure,

the parametric formulation was utilized in Sections 5 and 6.

Suppose that the geometry of the problem is as shown in Figure 1. We work in non-dimensional

coordinates as specified in Section 2.4. The smoothness of M ensures that, for a given x0 ∈ M,

there is an open set U ⊂ R2 and a smooth function φ : U →M that (a) maps U homeomorphically

onto an open neighborhood V ⊂ M of x0 and (b) has a Jacobian matrix of rank 2 on U . Since

the map φ−1 : V → U defines a local coordinate system on V , we can use the non-dimensional

analog of (4) to introduce the coordinate system on V × [−ε, ε] via the smooth invertible map

X = x(u) + εtν(x(u)), (74)

from U × [−1, 1] to R3. Note that at a given point x(u) ∈M, we have

Xt = εν, (75)

and

DuX = Dux (I + εtA) , (76)

where

A = −I−1II, (77)

is the matrix of the shape operator and I and II are the first and second fundamental forms for

M. The shape operator ∇Mν is a symmetric operator acting on the tangent space of M that

satisfies

(∇Mν) ν = 0, (∇Mν) d1 = κ1d1, (∇Mν) d2 = κ2d2, (78)
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with κi and di, i = 1, 2 being the principal curvatures and directions at x(u), respectively [21].

Given X ∈ Ωε, let x be the closest point of M to X. The gradient of a smooth vector field

a : V × [−ε, ε]→ R3 can be decomposed into orthogonal components along and perpendicular to

ν(x) by writing

∇a = ∇a(ν ⊗ ν) +∇a(I − ν ⊗ ν). (79)

Indeed,

∇a(ν ⊗ ν) · ∇a(I − ν ⊗ ν) = (ν ⊗ ν)∇a · (I − ν ⊗ ν)∇a

= tr {∇a(I − ν ⊗ ν)(ν ⊗ ν)∇a} = 0, (80)

so that

|∇a|2 = ∇a · ∇a = |∇a(ν ⊗ ν)|2 + |∇a(I − ν ⊗ ν)|2. (81)

The change of variables (74) then transforms the components of the gradient of a as follows

∇a(ν ⊗ ν) = Da J−1(ν ⊗ ν) =
1

h
Da (e3 ⊗ ν), (82)

∇a(I − ν ⊗ ν) = Da J−1(I − ν ⊗ ν) = Da (I − e3 ⊗ e3)J−1, (83)

where J = ∂(X1,X2,X3)
∂(u1,u2,t)

and Da is the gradient of a with respect to (u1, u2, t). Introducing the

projection matrix

PX = I − ν(x)⊗ ν(x), (84)

we conclude that

∇a (I − PX) =
1

ε
at ⊗ ν, (85)

∇aPX = Dua (I + εtA)−1(Dux)−1 = Dua Ψ(x, t; ε), (86)

where (Dux)−1 is a left inverse of Dux and

Ψ(x, t; ε) := (I + εtA)−1(Dux)−1. (87)
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Note that the matrix I + εtA is invertible when ε is sufficiently small and setting ε = 0 reduces

the right hand side of (86) to

Dua(Dux)−1 = ∇Ma, (88)

where ∇Ma is the surface gradient of a defined earlier in (20).

In non-dimensional coordinates, we can rewrite the expression for the elastic energy (12) as

follows

fe(∇Q) =
1

2

3∑
i=1

{
|∇QiPX +∇Qi(I − PX)|2 +M2 (tr (∇QiPX) + tr (∇Qi(I − PX)))2

+M3(∇QiPX +∇Qi(I − PX)) · (PX∇QT
i + (I − PX)∇QT

i )
}

=
1

2

3∑
i=1

{∣∣∣∣DuQi Ψ(x, t; ε) +
1

ε
Qi,t ⊗ ν

∣∣∣∣2 +M2

(
DuQi ·Ψ(x, t; ε)T +

1

ε
Qi,t · ν

)2

+ M3

(
DuQi Ψ(x, t; ε) +

1

ε
Qi,t ⊗ ν

)
·
(

Ψ(x, t; ε)TDuQi
T +

1

ε
ν ⊗Qi,t

)}
=

1

2

3∑
i=1

{∣∣∣∣DuQi (Dux)−1 +
1

ε
Qi,t ⊗ ν

∣∣∣∣2 +M2

(
DuQi · (Dux)−T +

1

ε
Qi,t · ν

)2

+ M3

(
DuQi (Dux)−1 +

1

ε
Qi,t ⊗ ν

)
·
(

(Dux)−TDuQi
T +

1

ε
ν ⊗Qi,t

)}
+O(ε), (89)

when ε is small. The same arguments that led to the proof of Threorem 3.1 demonstrate that the

limiting elastic energy density is given by (34), that is

f 0
e (∇MQ, ν) =

1

2
min
G∈A

[
3∑
i=1

{
|∇MQi +Gi ⊗ ν|2 +M2(divMQi +Gi · ν)2

+ M3 (∇MQi +Gi ⊗ ν) ·
(

(∇MQi)
T + ν ⊗Gi

)}]
, (90)

where ∇MQi = DuQi (Dux)−1 and divMQi = tr∇MQi = DuQi · (Dux)−T , respectively, for

i = 1, . . . , 3.
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B Appendix: Outline of the proof of Lemma 4.2

In order find the expression for f 0
e (∇MQ, ν) recall that in (34) we need to minimize

φ[G] :=
3∑
i=1

{(
M2 (divMQi) ν +M3(∇MQi)

Tν
)
·Gi +

1

2
|Gi|2 +

1

2
(M2 +M3)(Gi · ν)2

}
. (91)

among all G ∈ A. To this end, set ζ = M2 +M3 and let the columns of the matrix U ∈M3×3 be

given by

Ui = M2 (divMQi) ν +M3(∇MQi)
Tν,

where i = 1, . . . , 3. The equation (91) can now be written as

φ[G] = U ·G+
1

2
|G|2 +

ζ

2
|Gν|2. (92)

Using the same procedure as in Lemma 4.1, we obtain that

Ḡ = −D(U) +
ζ

ζ + 2
(ν ⊗D(U)ν +D(U)ν ⊗ ν)

− ζ (ζUν · ν + (ζ + 2) trU)

(ζ + 2)(2ζ + 3)
ν ⊗ ν − ζUν · ν − (ζ + 1) trU

2ζ + 3
I (93)

minimizes (92), where

D(U) =
1

2

(
U + UT

)
.

Next, substituting Ḡ into (93) and following a lengthy sequence of trivial calculations, the minimum

value of φ is given by

φ[Ḡ] = −1

2
|D(U)|2 +

ζ

ζ + 2
|D(U)ν|2 − ζ2

2(ζ + 2)(2ζ + 3)
(Uν · ν)2

− ζ

2ζ + 3
(Uν · ν) tr (U) +

ζ + 1

2(2ζ + 3)
tr 2(U). (94)
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The conclusion of Lemma 4.2 then follows from (94) with the help of the identities

D(U)ν =
M2

2
(divMQ+( divMQ · ν )ν) +

M3

2

3∑
i=1

νi∇MQT
i ν,

Uν · ν = M2 ν · divMQ,

tr (U) = (M2 +M3) ν · divMQ.
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