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Abstract

We analyze a non-standard isoperimetric problem in the plane associated with a
metric having degenerate conformal factor at two points. Under certain assump-
tions on the conformal factor, we establish the existence of curves of least length
under a constraint associated with enclosed Euclidean area. As a motivation
for and application of this isoperimetric problem, we identify these isoperimet-
ric curves, appropriately parametrized, as traveling wave solutions to a bi-stable
Hamiltonian system of PDE’s. We also determine the existence of a maximal
propagation speed for these traveling waves through an explicit upper bound de-
pending on the conformal factor. (©) 2000 Wiley Periodicals, Inc.

1 Introduction

We examine here a non-standard type of isoperimetric problem. Given a contin-
uous function F : R? — [0,0) vanishing at two points, p -+ and p_ in the plane, we
seek a curve 7: [0, 1] — R? that minimizes the distance between these two points in
the metric having F as its conformal factor, subject to a constraint associated with
Euclidean area. That is, we seek a solution to the variational problem

1
(1.1 ir;fE(y) with  E(y) ::/0 F(y)|Y] ar,
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where competitors ¥ : [0, 1] — R? must satisfy 7(0) =p_, y(1) = p.. as well as the
constraint

(1.2) /a)o = const. with @y given by the 1-form wy = —prdp;.
Y

Since day is just the standard Euclidean area form dp; dp,, the isoperimetric na-
ture of the minimizing curve becomes evident—that is, fixing any reference curve,
say 7, joining p_ to p4, an application of Stokes’ theorem to the closed curve
Y — Y% reveals that altering the value of the constant in the constraint j}, Wy = const
simply amounts to varying the Euclidean area trapped between a competing curve
7Y and the fixed reference curve Y.

What makes this particular isoperimetric problem non-standard is both the de-
generacy of the conformal factor at the two “wells” p_ and p. and the fact that
length is measured with respect to a metric given by F’ while area is measured with
respect to the Euclidean metric. There is a vast literature on isoperimetric prob-
lems with assorted assumptions on the conformal factor or “density,” though to our
knowledge none address this combination of degeneracy and mixture of metrics.
We mention, for example, [7, 8, 11, 14, 18] but of course there are many, many
others.

One motivation for our investigation is the connection between such isoperi-
metric curves—should they exist—and the existence of traveling wave solutions to a
Hamiltonian system associated with the energy functional

H(u) = /; Vul+W() where W(u) = F2(u).

The theory of heteroclinic connections to bi-stable gradient-type reaction-diffusion
systems in the form of standing or traveling waves is by now very well-developed
in both the scalar and vector-valued settings, including for example, [3, 4, 5, 6, 12,
16, 17, 20] to name but a few studies. Here, however, rather than seeking traveling

wave solutions to a gradient flow u, = —8H (u), we pursue traveling wave solutions
to a Hamiltonian flow associated with H, namely,
(1.3)

Juy = Au—V,W(u) where J= (_01 (1)> and u = (u(])(x,t),u(z)(x,t)>,

which conserves the value of H over time. We generally find it more convenient
in this approach to view u as R2-valued but for u viewed as C-valued, we note that
the system would take the form

iu, = Au—V,W(u).

Such a traveling wave solution would follow the ansatz u = u(x,t) = U (x| — i)
for some wave speed v with U : R — R? then required to solve

(14)  —vIU' =U"—V,W(U) on(—oco,00) withU(zoeo)=p:.
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This problem is itself variational in nature. At least formally, solutions are critical
points of the constrained minimization problem

infH(«) among competitors u : R — R? satisfying:
u

U(=+eo) = p. and the constraint —/ u(z)(u(l))’ = const.,
R

with the wave speed arising as a Lagrange multiplier associated with the constraint.
It turns out that minimizers of this problem can be found if one identifies minimiz-
ers of the isoperimetric problem (1.1), very much in the spirit of [19, 20].

Our paper then is primarily devoted to the study of (1.1). Our main result
here, stated in Theorem 3.1, is the existence of a minimizing curve under certain
assumptions on the behavior of W near its minima p and p_. We deal with the
degeneracy of the conformal factor by first focusing on the problem of finding a
constrained minimizer of E joining a non-degenerate point in the plane to either
of the wells of W. This one-well isoperimetric problem is solved uniquely for W
taking the form of a non-negative quadratic vanishing at the well in Section 2.1, cf.
Theorem 2.5. Somewhat surprisingly, the optimal curves are spirals in many cases.

To illustrate how the spiral shape arises, we give a simple derivation of their
form for the one-well problem with a radial quadratic potential, W(z) = |z|?, in
the unit disk. Suppose we make the assumption that the optimal curve can be
parametrized by polar radius r € (0, 1) in the form z(r) = re’®""), and we normalize
0(1) = 0. Then the problem reduces to minimizing the length functional

1 1,2
E(z)= / ry/147r2[0'(r)]*dr  subject to the constraint %9’(r) dr=A,
0 0

for given A. By defining w = z%(r) = r2¢20(") = p¢®(P) p € (0, 1), the problem is

further reduced to minimizing

Lon)i= [ W)= [ 1+ple@)dp, win | [ po/(p)ap=a

By Jensen’s inequality (applied with the convex function i(x) = v/1+x?), we ob-
tain an isoperimetric inequality of the form,

L(w) > <1+ [/Olpd(p)dp]z)z (14 164%)%,

for any such w(p) = z2(r), with equality holding exactly when p¢’(p) = 4A. Inte-
grating and returning to the original parametrization, the optimal curve is the spiral

2(r) = re*A7 e (0,1).

The rigorous derivation of the minimizing curve without the assumption that 8 =
0(r) and for more general quadratics, done in Section 2.1, follows substantially
different methods, using calibrations.
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In Section 2.3 we broaden the one-well existence result to cover certain W that
are analytic near the well and whose Taylor development begins with the kind of
quadratic considered in Section 2.1. See Theorem 2.8 for a precise description of
the assumptions on W. The proofs of these results both come through a type of
calibration argument.

In Section 2.2 we present an argument to show that non-degeneracy of the Hes-
sian of W at its minima is a necessary condition for existence. Put another way, if
W is too flat at its minima, then the cost of accumulating length is too cheap in this
metric for a given amount of Euclidean area and no minimizer will exist.

We are optimistic that, aside from non-degeneracy of the Hessian of W at p
and p_, these assumptions on the conformal factor can be relaxed and in work
presently underway we hope to establish a more general existence result. How-
ever, the results obtained in the present article already reveal several important and
in some ways unexpected features of the problem. Most crucial to the employment
of these curves in the traveling wave context is that their Euclidean arclength is
bounded, cf. Propositions 2.7 and 2.13, a property not at all obvious to us at the
outset, given the degeneracy of the conformal factor F'. More unexpected is the spi-
raling nature of the isoperimetric curves when, for example, the conformal factor
is purely radial. (See the discussion leading up to Proposition 2.7.) Such spiraling
leads to the existence of spiraling traveling wave solutions to (1.3).

In the concluding Section 4 we make explicit the connection between the con-
strained isoperimetric problem (1.1) and the existence of traveling wave solutions
to (1.3) satisfying (1.4). Here the main result is Theorem 4.2. Finally, we establish
an upper bound for the wave speed associated to these traveling waves. Regarding
the traveling wave problem, many crucial questions remain open. For example,
can one make precise the connection between the area constraint value and the
wave speed, thereby establishing perhaps the exact interval of attainable v-values
in (1.4)? Also, given the variational nature of the method of solution, do these
traveling waves perhaps enjoy some stability property with respect to the Hamil-
tonian flow (1.3)? Are there other non-minimizing traveling waves? These and
other questions remain topics we intend to investigate in the future.

2 One-well isoperimetric curves via calibrations

In this section we establish the existence of isoperimetric curves for the case
where the degenerate metric vanishes at one point. The approach involves a type
of calibration argument and we first present it for the case where the conformal
factor is given by the square root of a positive definite quadratic. Then we gen-
eralize the argument to the case of certain analytic potentials having the positive
definite quadratic as the leading terms in a Taylor development about the well. We
will assume the well is located at the origin, which for one point of degeneracy
represents no loss of generality.
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2.1 The case of a quadratic potential

To begin, we suppose that F(p) = /W (p) where W : R> — R is given by the
quadratic of the form

@1 W(p) =p" Hyp.

Here Hy is a constant, real, symmetric, positive definite 2 X 2 matrix. We denote
by klz and 122 the two positive eigenvalues of the matrix Hy and express all points
in R? and all curves in the plane with respect to the orthonormal basis {v;,v,} of
eigenvectors of Hy . In particular, then F takes the form

F(p) = \/AIpi+A3p3
and we let

1
22) @)= [ POl

for any locally Lipschitz curve y: [0, 1] — R2.

The argument for existence of a curve minimizing E subject to an area con-
straint relies on a kind of calibration argument. Before presenting it, we illustrate
the technique on the simpler problem of finding minimizing geodesics connecting
the origin to an arbitrary point pg € R? in the metric associated with E; that is, we
consider the problem without any area constraint. Introducing the function

1
23) F(p) =5 pi+42p3)

and the vector field

we now establish:

Theorem 2.1. The unique solution to
inf{E(y): y:[0,1] = R? : ylocally Lipschitz, y(0) = po, 7(1) = 0},

is given by the integral curve associated with the vector field R. In other words, the
unique minimizer is the curve z : [0,L;] — R? solving 7 (¢) = —R(z), z(0) = po.

Remark 2.2. The scaling above corresponds to a parametrization by ‘degenerate
arclength’ in that F(z(¢))|Z/(¢)] = 1 and L, = E(z). Alternatively, one could fol-
low the integral curve of the linear vector field F(p)?R(p) = (A1p1,A2p2), so that

writing po = (p(()l),p(()z)) one has z(t) = <p(()l)e_’ll ’,p((f)e_’lz’) with 0 <7 < oo, Itis

clear from the exponential decay that the Euclidean arclength of such a geodesic is
bounded in terms of A; and A,.

Remark 2.3. Note that in the case where A; = A, that is in the case of a radial
potential, not surprisingly the vector field R is also radial and the geodesics are just
(straight) rays heading into the origin.
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Proof. The argument relies on using d7 in the role of a calibration.

Let the curve z be defined as in the statement of the theorem, so that 7/(¢) =
—R(z(¢)), with z(0) = po. We note that all integral curves of —R approach the
origin so one has z(L;) = (0,0). Then we begin by computing

L, L
24 —/dr:—/o zlzlz’lmzzzzgdez/o ldl =L, —E(z).
Zz

On the other hand, if y: [0,L,] — R? is any other locally Lipschitz curve starting
at po, ending at the origin and parametrized by ¢, then we have

Ly
—/dfz—/ Mnv+hpydl
b4 0
L L
= — [ umdem)- (B de = = [T POPRE)-¥ e

- [ rrey- Daes [Ty = [T1a=1, -5

with a strict inequality unless Y = —R(Y), i.e. unless y = z. Finally, we note that

(2.5)

/ di = / dF since both curves have the same endpoints.
z Y

The minimality of z follows. ]

Remark 2.4. One upshot of the argument above is that for any C > 0, all points p €
R? lying on the ellipse 7(p) = C are equidistant from the origin in the degenerate
metric associated with E and are (degenerate) distance C away from the origin, cf.
2.4).

We are now ready to move on to the one-well isoperimetric problem. To this
end, we fix any real number A and any point py # (0,0), and introduce the admis-
sible set of curves
(2.6)

Fapo i =1{7:[0,1] = R?: ylocally Lipschitz, y(0) = po, y(1) = (0,0), 2(y) = A},

where as before
1
P(y):= —/ Y2 (y1Y dt,  and where we write Y= (Y1), 7).
0

We then cast the one-well isoperimetric problem as

2.7) mg := inf E(y).

ZApo

Next, introducing two 1-forms

(2.8) wy:=—podp; and o :=

1
—Xapadpi + Mprdpa),
MJFM( 2p2dp1 + Aip1dpy)
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we observe that
2.9) P(y) = /a)o and that dwy=dw; =dpidp>.
Y

We let ¥ denote the minimizing geodesic starting at (0,0) and ending at po, as
guaranteed by Theorem 2.1. Then for any curve y € .74 p, we conclude from (2.9)

that
| (@m=o)=0
W

and consequently,

(2.10) P(y)=A if and only if /a)l =A—C(Ww,po) =:A
Y

where C(%,Po) := [, (0 — ). We note that the geodesic ¥ is simply a conve-
nient choice of reference curve; any curve joining the origin to pp would do here.
To state the main result of this section we also need to introduce the vector field

(—Aapa2, Mip1)
F(p)?

which in the case of equal eigenvalues reduces to simply the 8-direction in standard
polar coordinates.

@.11) 0(p) :=

We will prove:

Theorem 2.5. The unique solution to the minimization (2.7) within the class /5 p,
is the curve Yg defined as the integral curve of the vector field

2.12) Vi (p) = (cos B) ©(p) — (sin B) R(p)
that joins pg to the origin. Here [ is selected so that
7(po) 7
2.13 cotff =A.
13 M+A P

We now present the proof of Theorem 2.5.

Proof. First we note that if we multiply the vector field Vg by F 2 then the corre-

sponding flow, i.e. ¥ =F 2(}/)Vﬁ (7), is in fact linear and constant coefficient and
takes the form

TN —hisinf —2 7Y
_ 1) (2)) .: 1sin B 2cos B
219 (%”) Ap ()/( 1) ( AMcosB —Aasinf ) \y¥ )"
One readily checks that the 2 x 2 matrix on the right has positive determinant and
negative trace so either both eigenvalues are real and negative or they are complex
conjugates with negative real part. Either way, all flow lines head into the origin. Of

course division by the non-negative factor of F2 simply affects the parametrization
so the same can be said of the integral curves of Vg.
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Next we observe that Vs satisfies the conditions
(2.15)
cosf3

V(p)-0(p) =cos !®(p)\2=W and Vg(p)-R(p)=—sinf R(p)[2 = —SinP

F(p)?
and so since R-® = 0 one has
1
Ve(p)| = 77—
‘ B ‘ F(p)
This implies that the integral curve ¥ is parametrized by the degenerate arclength
/,1.e.

2.16) Flp(0) [1(0)| = 1.

We will denote the degenerate length of g by Lg, so we have y5(Lg) = (0,0) and
Lg = E(¥p)-

Now we check that for 8 chosen as in (2.13), Yp satisfies the area constraint. To
this end, we compute that

1 Lp 2 4 1)
Yﬁwl _M—I-M/O (_M}/ﬁ g >.N/ﬁd£

1 Lp
=—M+/12/ (=215 M) - Vi (1) at

(1Y . !
Al—i-lzCOSB/ A’Z,}/ﬁ 7)’1’}/[)' > ®(Yﬁ) A« +)~ LﬁCOSB

But since
~ - Ly 2 Lp .
F(po) = — = —/0 (2»17(”,/127,(3 )> Ypdl= —/0 F2(y5)R(1)-Vp(vp) =sinB Lg,
B
we see that indeed () = A in light of (2.10) and (2.13). Thus, Y5 € -4 p,-
Now let wg be the 1-form defined by

(2.17) wg = cos B (A + A2) @ —sin B dF,

cf. (2.8). The 1-form g will play the role of a calibration in the same manner that
dF did for the unconstrained problem in the proof of Theorem 2.1. Let y € 74 p, be
any competitor in (2.7). We take y: [0,Ly] — R? to be parametrized by degenerate
length, i.e. F(y(¢))|Y (¢)| =1 and denote the angle made between the vector field

©(y) and ¥ by B,(£).

We observe that

/Yﬁa)ﬁ_/ywﬁ:COSﬁ(ll-i-lz) </yﬁa)1—/ya)1>—sinﬁ (/yﬁdf_/ydf)

= cos B (A1 +42) (A —A) —sinB ((F(0) — F(po)) — (7(0) — F(po))) = 0.
(2.18)
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Then computing the integral of wg over Y5 we find using (2.15) that

2 : 2 Lp 2 .2
wﬁzcos;s/ F (yﬁ)@(yﬁ).vﬁ(yﬁ)—smp/ F (yB)R(yB).vﬁ(yB)z/ (cos? B +sin? B) dl = Lg.
/i /i b/ 0
2.19)
1

Next using that |®(p)| = |R(p)| = () We calculate

/ywﬁ — cos B /OLY (~2a7® ") Y dt —sinp /0” (27,2272 -/ at
Ly Ly
=cosp [P0 Ydi—sinp [ FPW)R()-7dt
—cosp [P [007) |7 [cosB(e)at —sinp [ FX0) IR [Y |cos (B(0) + 7/2) e

—/OLyF(Y)WHCOSﬁ cos () +sin sinﬁ(ﬁ))dﬂ—/oLycos(B—[S(e))dggLy
(2.20)

with equality holding if and only if 3(¢) = B for all , that is, if and only if y = 5.
Combining (2.18), (2.19) and (2.20), we have established that yg is the unique
minimizer. |

Remark 2.6. If there is no constraint then we are back in the previously solved
case of a geodesic which corresponds here to 8 = /2. In the other extreme, as we
choose a larger and larger constraint value A (or equivalently, as we let A — oo),
then we have 8 approaching 0.

Given the explicit nature of the system (2.14), one can explore the question of
how the isoperimetric curve approaches the origin. We have already noted that the
eigenvalues of the constant matrix in that system are either real and negative or
complex with negative real part. Examining this point more closely, one calculates
that the eigenvalues, say U1, are given by

— (A1 +2)sinB £ \/ (A1 +22)?sin? B — 41

(2.21) Pt = >

From this we see that the eigenvalues will be complex if and only if
_ 2(MAn)'/?

222 sinp| < ———.

(222) sinp| < =71

Referring to (2.13), a small value of sin § means a large value of cot  and therefore
a large value of the area constraint value A, hence of A itself. We conclude that in
general, a spiraling isoperimetric curve solving (2.7) will occur only when the area
constraint is sufficiently large. An important exception to this claim, however,
corresponds to the case of a purely radial conformal factor F in which A; = 4. In
this case the condition (2.22) always holds since the right-hand side equals one. In
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a similar vein, if |A; — A,| is small then the area constraint threshold beyond which
spiraling occurs is small as well.

Pursuing the radial case a bit further, we observe that the system (2.14) ex-
pressed in polar coordinates takes the simple form

¥ =—2A(sinB)r, 6 =Aicosf

so that in view of (2.3) and (2.13) one finds the isoperimetric curve is given by the
spiral
0(r) :C—iglnr, 0<r<|pol
[po
for some constant C determined by the argument of pg.
We conclude with a general bound on Euclidean arclength that will be crucial

in what follows.

Proposition 2.7. There exists a positive constant Ly depending on A, 7(po), M1
and Ay such that the Euclidean arclength of the minimizing geodesic 'yg for (2.7)
guaranteed by Theorem 2.5 is bounded by Ly.

Proof. This follows immediately from the explicit solution to the linear system
(2.14). One observes that for finite A (hence finite A) and fixed po the value of
the angle B satisfying (2.13) is nonzero. Hence the real part of the eigenvalues p+
given above are negative and bounded away from zero by a constant depending on
A, po, A1 and 4. This means yg approaches the zero of F at an exponential rate
and the Euclidean arclength bound follows. Regarding the dependence of Ly on
Po, we note that in view of (2.13), it comes through 7(po). Since 7(pg) is bounded
above and below by a multiple of |p0]2, as follows from (2.3), one concludes that
in terms of pg, a bound on Ly comes from a bound on the Euclidean distance from
Po to the well. O

2.2 Nonexistence for more degenerate potentials

In the previous section we established existence of an isoperimetric curve solv-
ing (2.7) under the assumption that the square of the conformal factor is a non-
degenerate quadratic. In this section we illustrate that an assumption of non-
degeneracy is necessary for existence of such an area-constrained minimizer. This,
more importantly, also shows this assumption is essential for the existence of min-
imizers of our main problem (1.1). We will demonstrate this through the example
of a purely radial potential but it should be clear that non-radial examples can be
similarly constructed.

To this end, we take W : R — R to be given by W(p) = |p|? for any ¢ > 2.

With the conformal factor F given by /W this leads us to the following version of
22.7):

1
(2.23) inf E(y) where E(y):/o 177|Y| dt

A,pg
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for some g > 1 where .7} p, is again given by (2.6) for some A € R. For the sake
of concreteness, let us also fix pp = (1,0). In this radial setting it is easy to see
that without the constraint #(y) = A, the geodesic as in Theorem 2.1 is simply
given by the line segment along the p;-axis joining the point (1,0) to the origin,
ie. ¥(r):=1—rfor 0<r<1.In this unconstrained setting we compute that the

minimal degenerate length is given by E(7) = 117 +q

Now consider the following sequence of competitors in .4 p, for the con-
strained problem. For each positive integer j, let ¥; consist of the union of the
geodesic ¥ along with j circles centered at the origin of radius r; parametrized by
0j(0) =rj(cosB,%sin0) for 0 < 6 < 27j. Noting that &(¥) = 0, we choose the
number ; so as to satisfy the constraint &?(o;) = A with the & sign determined by
the sign of A. Thus we have

P (o)) = :|:j7'l:r]2- =A.

Consequently, one finds that
_ 1 27j q
E(r) =E@)+E(0) = o+ [ rirao

1 q+1 1 q—1
1+ +2mj 1+q+2|A\rj .
Since g > 1, the last term approaches zero as j — oo, and we see that the infimum
of the area-constrained problem is the same as that of the unconstrained problem.
However, it is clear that the line segment ¥ is the only admissible curve yielding
an E-value of ﬁ. Indeed it is the unique geodesic joining (1,0) to (0,0)-and
since this curve fails to satisfy the constraint, we conclude that no solution exists
for (2.7) in this setting. The flatness of the conformal factor allows for area to be
accumulated “too cheaply” in terms of the degenerate length.

2.3 Analytic potentials

The assumption that W is quadratic is obviously a very strong restriction. In this
section we illustrate one generalization, still based on a calibration argument, for
the case of certain analytic potentials to be described below. To this end, we now
suppose that F in (2.2) is given by F = /W where W : R — R is real analytic
in p = (p1,p2) in some neighborhood of the origin. In light of the necessity of
nondegeneracy revealed in Section 2.2, we must assume that in a coordinate system
relative to the orthonormal basis of eigenvectors of D*W (0,0) one has the Taylor
development

@24)  Wipp2) = Apt+ 2303+ 0 (1P +1pal’)  for A7, 23 >0,

In what follows we invoke multi-index notation so that for a = (a;, o) with
oy and o non-negative integers we write p% = p‘f‘l pg‘z and |a| ;= a; + 0.
We will prove
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Theorem 2.8. Assume W : R? — [0, ) is real analytic in a ball B centered at the
origin and for every B € (0, 1) suppose W can be expressed as

(2.25) W(p) =|Ves(p)+Ap(p)|> forallpeB

where Ag is given in (2.14), and gg : B — R is analytic in B with a Taylor series of
the form

Let ¥y be the (unique) minimizing geodesic joining po to 0 and again let 7y p,
denote the admissible set given by (2.6). Then there exists an R > 0 with Bg(0) C B
such that for every pg € Bg(0) there exists a solution to

(2.26) mo ;= inf E(y)

Apg

for every A in an open interval 1(py) containing 2 ()

Remark 2.9. One class of potentials W where condition (2.25) is always solvable
is the case where W is analytic and radial. For example, if W(p) = |p|> + f(|p|)
where f(r) = ajr* +axr® + ... then a straight-forward calculation goes to show

that the choice
gp(r) = /Or{(sin[i)s— \/sinzﬁsz—i—f(s)} ds

yields a (local) solution to (2.25). We emphasize, however, that in this general
radial case, letting B range between 0 to 7 may not always yield a corresponding
interval of allowable constraint values /(pg) consisting of all of R.

Remark 2.10. Note that in the case where gg = 0, since |Ag(p) ‘2 = A2p}+A3p3,
Theorem 2.8 reduces to the quadratic case of Theorem 2.5.

Remark 2.11. We observe that if one expands the right-hand side of (2.25), then
this condition relating W to gg can be phrased as an eikonal-type equation for gg
of the form

2.27) W(p) — A2} —A2p3 = L(Vgp) +|Vep|*

where L is given by the linear operator L(Vgg) := 2(Ag,Vgg). We suspect that
for W analytic, non-negative and having a non-degenerate minimum of zero at the
origin, (2.25) can always be locally solved for gg for every 8 between 0 and 7 but
this is not clear to us. What we can say at this point is that for every 3 between 0
and 7 one can generate a formal power series for gg; that is, one can determine the
Taylor coefficients ay, in terms of the Taylor coefficients of W, but the convergence
of the series remains undetermined. To describe the algorithm for determining the
coefficients, suppose we write

W(p1,p2) = A pi+ 24305+ Y, bap®

|at|>3
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for given coefficients b, and for each integer n > 3, let P, be the homogeneous
polynomial of degree n given by ¥4/, da p% and let Q,, be the homogeneous poly-
nomial of degree n given by ¥ 4|—, bep®. Then starting from (2.27) we find
(2.28) L(VP)=0u— Y. (VP,VPR).
Jtk=n+2

Note that L is invertible for P, = homogeneous polynomial since the condition
L(VP,) = 0 says P, is constant along the integral curves of the vector field A used
to solve the quadratic case. Since these curves all emanate from the origin and
P,(0,0) = 0 this forces P, = 0.

In this way we can formally recursively generate all of the a s, in particular
showing that (up to an additive constant), gg—if it exists in the analytic setting—is
unique.

Remark 2.12. Even if one could prove that such an analytic function gg satisfy-
ing (2.27) always exists, the assumption of analyticity on W still seems much too
strong. For this reason we have not pursued the question of convergence of this
formal series solution very strenuously. In work in progress we are pursuing a
completely different approach aimed at asserting an existence result such as Theo-
rem 2.8 under much milder assumptions on W.

Proof. Fix pg with norm sufficiently small so that pg lies inside the ball, say, %B.
Then for any fixed B € (0,7) define the vector field Vg : B — R?-a generalization
of Vg given in (2.12)- via

o1
(2.29) V=1 (Vg +Ap).

We note that since Vgﬁ is of quadratic order while Aﬁ is linear, it is still the case,
as it was for Vg, that in a neighborhood of the origin all integral curves of \7[3 lead
into the origin. Now let y3 : [O,Lyﬁ] — R? denote the unique solution to

(2.30) (0 =Vs(1(0)),  7(0) =po.
In light of (2.25) we see that
F(ys(¢)) )}/ﬁ(ﬁ)‘ dt=1 foralll€ (0,Ly) andsoLy =E(y).
We claim that yg solves (2.26) for the value A = Z(y3).
To this end, define the 1-form @ via the formula
(Z)ﬁ = wp +dglg,
with g given as before by (2.17).

Let 7 : [0,L;] — R? be any other competitor in .%j p,, also parametrized by ,
so that L; = E(¥;). Then an easy calculation gives

/yﬁ @p :/OLYB (Vep(1p) +Ap (1)) -ﬁ;dg:/OLyﬁ F(yp) M;) dl =Ly,
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while a similar calculation gives

Ly Ly
/71(7)[3:/0 (Vgﬁ(}’l)+/\ﬁ(71))'7/1d€</0 F(n)|n|dt=L,

with equality holding iff y| = Vﬁ (1), i.e. iff 1 = 3. Furthermore, since y3 and ¥
share the same endpoints one has that fyﬁ dgpg = [,, dgp and since Z(y5) = (1)
we conclude that fYB @p = [,, @p by the same reasoning as that which led to (2.18).

It follows that Yz uniquely solves (2.26) among competitors sharing its constraint
value.

Finally, we note that the minimizing (unconstrained) geodesic }y corresponds
to the integral curve of the vector field Vﬂ for B = m/2 in the same manner as
was shown in Theorem 2.1 for the purely quadratic case. Hence, letting 8 range
between 0 and 7, and noting the continuous dependence of the solution ¥ to (2.30)
on f3, we generate an interval I(po) of constraint values A containing &?(}p) for
which (2.26) is solvable. |

Since the linear part of the vector field F 2Vﬁ is Ag, one still has exponential
approach of the minimizing isoperimetric curve to the well. Consequently, one
obtains the analog of Proposition 2.7 in this more general setting:

Proposition 2.13. There exists a positive constant Ly depending on A, po, A and
Ay such that the Euclidean arclength of the minimizing geodesic for (2.26) guaran-
teed by Theorem 2.8 is bounded by L.

3 The two-well isoperimetric problem

3.1 Existence of a minimizing curve

The analysis in the previous section allows us to find an optimal curve for the
area constrained problem joining a non-degenerate point to a zero of the conformal
factor under various circumstances. It remains to use this to prove the existence
of a geodesic to our main problem, namely (1.1). In this section we show how to
establish the existence of a minimizing isoperimetric curve joining two points of
degeneracy for the conformal factor via a direct method, provided one is able to
solve the one-well problem of the previous section for all constraint values.

To this end, we make the following assumptions on W := F2. We assume
W : R? — [0,00) is continuous and vanishes at precisely two distinct points p
and p_. We assume the existence of two disjoint balls B and B_ centered at p+
and p_ respectively, such that within each ball W is smooth with a positive definite
Hessian at p; and p_. Most crucially, we assume:
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Assumption A. For every point pg in either B, \ {p+} or B_\ {p-} and for every
real number A, there exists a minimizer to the one-well problem:

infE(y) where as before E(y) := /01 F(y|7| dr,

and the infimum is taken over all Lipschitz continuous curves 7y : [0, 1] — B (resp.
B_) such that y(0) = po, Y(1) = p+ (resp. p—) and such that & (y) = A. Further-
more, we assume the Euclidean arclength of this minimizer can be bounded by a
constant depending on W, pg and A.

We point out that the above assumption has been verified for the case of W
given by a non-degenerate quadratic in B and B_ through Theorems 2.5 and 2.7,
and it holds for W analytic in the balls that satisfy the condition (2.25) through
Theorem 2.8 and 2.13, provided the interval I(py) arising in Theorem 2.8 consists
of all of R for all po € B\ {p+} and all pp € B_\ {p_}.

Finally, we make the following assumption about the continuous function F
outside the two balls: we assume that for some number mg > 0 one has the lower
bound

(3.1) F(p)=mg forallpcR*\ (B UB_).

We observe that under the nondegeneracy assumptions made above on W near its
minima, it also follows that

(3.2) F(p)>co|lp—p+| forallpe By

for some ¢y > 0.
Now for any real number Ag, we let
(3.3)
Fao :={y:10,1] = R?: ylocally Lipschitz, y(0) =p_, y(1) = p4, Z(y) =Ao},

where again

P = [ @, wit =),

Theorem 3.1. Under the assumptions above, for any Ay € R there exists a mini-
mizer Y, € /4, to the problem
(3.4) m, := inf E(7).

Sy
Proof. Let {y;} C .4, denote a minimizing sequence so that E(;) — m, as j — co.
We will argue that we can replace this sequence by a modified sequence that is
still a minimizing sequence in .%4, but which has uniformly bounded Euclidean
arclength. Once this is achieved it will follow fairly easily that the direct method
yields the existence of a minimizer.

1. Uniform bound on Euclidean arclength of a minimizing sequence.
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To this end, we denote by tj(-l) the smallest time such that j/j(t](-l)) € dB_ so that,

in particular, y;(t) € B_ for all t € [O,t](.l)). Writing p_ = (p(,l),p(,z)) we appeal to
(3.2) to see that

‘9(%'([ :‘ / YJ Y]
/ij
1

—E(y) +|p-|R-< C—;‘+ Ip_|R_+1=:K_
(3.5)

(1)
| [ (=)ol ya o [

=l o2 [ =)

N

We then perform our first modification on {7;} by replacing the initial part of the
curve ¥;, namely ¥;(]0, t](.l)]), by the solution to the one-well problem (2.7) with the

constraint value A given by & (yj ([0, tj(l)] )) and the role of py taken up by y,-(tj(.l) )
We then perform a similar modification on the final portion of ¥; to enter the ball
B, solving the one-well isoperimetric problem in B subject to a constraint value
bounded by say K, in analogy with (3.5). By this procedure we create a new
curve that still lies in .4, and this modification only reduces the value of E so the
modified sequence is still a minimizing sequence.

Now if each element of the minimizing sequence only enters the ball B_ during
this first time interval and only enters B during one time interval at the end (i.e.
with right endpoint 1), then we easily obtain a uniform arclength bound on the
modified minimizing sequence as follows. For the time interval during which y;
resides inside B_ or inside B we are assuming via Assumption A that the one-well
solution satisfies a uniform bound on Euclidean arclength—again, an assumption
that is verified in Proposition 2.7 for quadratic potentials or Proposition 2.13 for
appropriate analytic potentials. For the (one) time interval during which ¥; lies in
the complement of B_ U B, we use assumption (3.1) on F to conclude that
(3.6)

Yl di< - () |1 dt < - B() < (. + 1)

/{r:mzw_um " mo /{r:y,-<z>¢8_u3+}

Combining these uniform bounds in B_, B, and R?\ (B_UB..), we obtain a bound
on the total Euclidean arclength of y; that is independent of ;.

It certainly could happen, however, that y; re-enters B_ (resp. B, ) other than
during the initial (resp. final) time interval. In this case, further modifications are
required. Note that besides the initial arc, any parts of the curve y; that enter B_
(1)

must consist of a union of curves both starting and ending on dB_. Let I’ i
the curves in this union that never get closer than Euclidean distance 1/2 to p_.

denote
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Then let F§.2) denote the rest, namely those curves in B_ with endpoints on dB_
that do get closer than distance R_ /2.

51) do not need to be modified since a bound on their Euclidean
arclength comes in a manner similar to (3.6), utilizing (3.2) to see that F(y;) > C"f =
for these curves:

(3.7) /r§.‘> 7| dr <

The curves in I

2

2 2

Regarding the curves in I 5-2), we first note that the number of curves in this
union is bounded independent of j. This is because for each curve in this union,
say 7: [a,b] — B_, one has a lower bound on its contribution to the total energy,

namely

/abF(y)yi/{dt >

R_ R?
> 0 }i/\dt>co =
2 Jiabn{r:R-/2<7()—p-|<R}

€0

/ ~ F(9)|7| d
la,b]0 {:R_/2</7(t) ~p_|<R_}

(3.8)

2
curves in ng).

. .2
Now we introduce a number r; to denote the closest any curve in F(,-

p-,ie.

2(my+1)
C()R%

Thus, since say E(Y;) < m. + 1, there can be at most

) gets to

rji= mig) (mtinh/(t) —p_|> .
el
If limsup;_,,rj =:7 > 0 then again no further modifications are needed, since then

we can obtain a uniform upper bound on the total Euclidean arclength of all curves
in FE.Z) as in (3.7) with the factor of R% replaced by say a factor of %

If, however, r; — 0, we will modify the element of FE-Z) that passes closest to

p_ as follows: First we view this element, say ¥ : [a,b] — B_ as the union of two
curves, say 7, starting on dB_ and ending at a point r; distance from p_ and p»
starting at this closest point and ending (presumably) somewhere else on dB_. If
for any j, r; = O then the ‘offending’ curve y must pass through p_ itself and we
simply replace 7 by a minimizing isoperimetric curve guaranteed by Assumption
A starting at y(a) € dB_, ending at p_ with constraint value A = & (y;). Similarly,
we replace 9» by the isoperimetric curve starting at p_, ending at y(b) € dB_,
subject to area constraint A = Z(7,). This replacement can only lessen the value
of E while preserving the global condition & = Aq so we still have a minimizing
sequence lying in .%,. Furthermore, the total Euclidean arclength of the two new
curves is bounded by a constant independent of j.

The replacement procedure in the case where r; — 0 but a given r; is positive
is slightly different. In this case, denote by q; a point on ¥ closest to p_ (so that
‘q j —p,| =r;) and as above split y into 7; (coming into q; from dB_) and
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(going out of q; to dB_). Then augment y; by the (directed) line segment joining
q; to p_ and augment }» by the directed line segment joining p_ to q;. Call these
two curves with added line segments % and . Note that

PN+ 2(h)=2n)+2(n)=21),

due to the cancellation of the ‘areas’ of the two oppositely directed line segments.
Then, as in the previous case, we replace 7 and % by isoperimetric minimizers
joining y(a) to p— and p_ to y(b) respectively and enclosing ‘areas’ Z(¥;) and
Z(%). These two curves must have E-values less than or equal to 7 and %, re-
spectively and as always have uniformly bounded Euclidean arclength, but due to
the added line segments, their E-values may exceed E(7;) and/or E(7,). However,
since by (2.1) or (2.25), F Zis quadratic to leading order we have

.
E(line segment) < C/ Crdr — 0(r§)'
0

Thus, since r; — 0, the extra energy of the modified sequence approaches zero.
Hence, after this modification we still have a minimizing sequence in .%j,.

Having replaced this curve in ng) that passed closest to p_ by a pair of one-well

isoperimetric curves through p_ (for which we have a Euclidean arclength bound),
(2)

we remove this curve from the collection I';” and now check again whether we still
have 7 := limsup e hj = 0. If now 7 > 0, we have our uniform Euclidean bound

as in (3.7) with the factor of % replaced by say a factor of % If 7 is still zero,

2(my+1) (2)
coR2 J

we repeat this procedure, at most times for every element of I";” until, if

(2)

necessary, every offending element of I';

minimizers.

has been replaced by a pair of one-well

We perform the same modification procedure, as necessary, in a neighborhood
of B;. In light of (3.6), (3.7) and the above discussion, the result is a minimizing
sequence in .7, that satisfies a uniform bound on its Euclidean arclength.

2. Existence via direct method.

Having established the existence of a minimizing sequence (still denoted by
{7;}) satisfying a uniform bound

1
(3.9) /M(r)\dt::Lj where L; <L,
0

for some constant L, independent of j, we now reparametrize these curves to have
constant speed L;. Thus, denoting the new parameter by 7 (but still using the
notation y;) we now have

(3.10) y:[0,1] > R* satisfying |yj(7)| =L;forae. 7€ (0,1).
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Integrating this condition, note that we also have a uniform bound on the modulus
of y; of the form
[7;(7)| <|p—|+L. forallze0,1].
Putting these two bounds together, we obtain, in particular, the uniform bound

H Yi HW Les((0,1):R2) < (p for some constant Cy independent of j.

This provides us with enough compactness to proceed with the direct method. Af-
ter passing to subsequences (not denoted here), one has the existence of a Lipschitz
map which in particular satisfies ¥, € H'((0,1);R?) such that

(3.11) ¥ — % uniformly on [0,1], ¥, — 7, weakly in L*((0,1);R?).

In light of (3.11), it is immediate that ¥,(0) = p_ and ¥.(1) = p+ and the product
of strongly and weakly convergent sequences also readily yields that

tim [P @0 @az= [ @0 @)z

J—reo,

s0 Z(¥) = limj_ . Z(Y;) = Ao. Hence ¥, € Ay,.
It remains to check the lower-semi-continuity of £ under these convergences.
For this let us write

B = [ (PG~ PO [ de+ [ P ae

Clearly, (3.9), (3.10) and (3.11) imply that

tim | [ (F )~ ) |7 5| < L. tim [ |F() - Fiv) [ a=0

since F' is continuous, so we have

1
liminfE (y;) = liminf/ F(v.) || dr.
J= JO

J—reo

Then for any fixed o € L?>((0,1);R?) such that |c| < 1 the weak convergence of
derivatives implies that

1 1 1
liminf A F(}/*)|}/j}df>lijnl>glf/0 F(y*)(j/j.c)') d‘L':/O F(%.)(Y.-0)dr.

jeo

Taking the supremum over all such ¢ we arrive at the desired inequality,

1
m*:liminfE(}/j)>/ F(y)|Y.|dt=E(%)
J—roo 0

SO 7, solves the problem (3.4). O
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3.2 A parameter regime without bubbling

Our proof of Theorem 3.1 does not rule out the possibility that the minimizer
% : [0,1] — R? passes through either p; or p_ at various instances ¢ € (0,1). De-
pending on the‘topography’ of the graph of W away from the wells and the size
of the constraint value Ay, it seems quite possible that one or more such ‘bubbles’
looping from one of the wells back to itself does indeed occur for the minimizer.
In this section, however, we identify a setting where this cannot occur. This will
in particular allow us in the next section to make the connection between such
isoperimetric curves and traveling wave solutions to the Hamiltonian system (1.3)
mentioned in the introduction.

We will show that no bubbling occurs provided the constraint value & only
differs from that of length-minimizing geodesic by a small amount:

Theorem 3.2. Assume that W satisfies the conditions that held in Theorem 3.1.
Let Yy be an unconstrained minimizer of E(7y) among locally Lipschitz curves 7 :
[0,1] — R? satisfying y(0) = p_ and y(1) = p.. Then there exists a number & > 0
such that for any € with 0 < |€| < &), any solution ¥, to

inf{E(y): y:[0,1] = R? locally Lipschitz, y(0) =p_, (1) =p, 2(y) = Z(n) +e}
(3.12)
satisfies V. (t) ¢ {p—,p+} forallt € (0,1). That is, Y. has no bubbles.

Proof. Recall from the proof of Theorem 2.8 that within the balls B_ and B of
radius R_ and R, about p_ and p. respectively, the minimizer ¥, follows the
integral curves of a vector field. Since there is one vector field associated with
each of the two wells we can write Vi (p) = Vgi + Ay, where Ay is the linear
vector field depending on the positive eigenvalues of D’W at p4 as in (2.29) and
g+ are analytic functions starting at cubic order in a Taylor series about p+. In
the quadratic case where g+ = 0, these integral curves are explicit and one can
check that for some positive radii — < R_ and r < Ry such integral curves must
exit the balls B, (p-) and B,, (p4). Since Vg4 represents a small perturbation
of the quadratic setting, the same must be true (in perhaps smaller balls) for the
more general case. That is, there cannot be any homoclinic orbits of these vector
fields lying entirely in small balls about the wells. Alternatively, one can draw this
conclusion by appealing to the Hartman-Grobman Theorem, based on the the fact
that the eigenvalues of the linearization of the system ¥ = V,.(y) given in (2.21)
have negative real parts.

As a consequence, the only possible bubble around, for instance, p_ would
consist of a curve, say 7: [0, T] — R? with 7(0) = (T) = p_ and |}(t;) —p_| =7r_
for some #; € (0,7). Invoking (3.2) such a curve must satisfy the lower energy

bound
(3.13)

lld 5

—|¥—p_|"dt

/Odtw p-|

B 1 ey 1 _ y co
E(Y)?/O F('}’)h"di?q)/o "}/—p_“'}/‘d[>5

Coi’%
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In addition to the bubble, any competitor in (3.12) must also include one curve

joining p_ to p4 and so the total energy of any competitor must have an energy of
at least E(1) + 5.
On the other hand, under these assumptions on W, the conformal factor F' =

VW also satisfies an upper bound of the form

(3.14) F(p)<ci|p—p-| inB_ for some positive constant c;.

We will now build a competitor in the variational problem (3.12) of the form ¥ U B¢
where fB¢ is designed so as to satisfy the constraint Z () = €. Specifically we
take B¢ to consist of the closed semi-circle centered at p_ of radius re < R_ with
vertical diameter. That is, B¢ is the union of the two parametric curves 6 — p_ +
re(cos,sin@) for —w/2 <O <m/2and t — p_+1(0,1) for —re <t <re. We
determine r, through the calculation (made for € > 0) that

2
e

e— 2(Be)=— [ BBV a0 =2 [ sin*0d6 = e
= e)=—) BB _rgosm =T

We note that the vertical diameter of the semi-circle B¢ does not contribute to the
constraint since ﬁs(l) "= 0 there. If € < 0, we reverse the orientation of fB.
Then we use (3.14) to compute the upper bound

2
(315) E(Be) <cr [ 1BellBil < crre [ B = care (mre +2re) = (m+2) e,

leading to an upper bound on the energy of the minimizer of (3.12) of E(y) +
c1(m+2)2¢e. Choosing
(o)) T 2
&= —
0 1 <2 + ) =

we see in light of (3.13) that for |€| < & any bubble would lead to a total energy
exceeding our upper bound in (3.15) and so is precluded. O

4 Application to bi-stable Hamiltonian traveling waves

Now we return to one of our motivations for considering the degenerate isoperi-
metric problem: the construction of traveling wave solutions to the bi-stable Hamil-
tonian system

4.1) Ju, = Au— VW, (u)

where J denotes the symplectic matrix given by

0 1
=(00)

W :R? — [0,00) vanishes at two points and u : R” — R?, n > 1. As mentioned in
the introduction, (4.1) is the Hamiltonian flow associated with

(4.2) /; \Vul* + W (u) dx.
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In order to view our isoperimetric curves, appropriately reparametrized, as clas-
sical traveling wave solutions to (4.1), we will assume in this section that in addi-
tion to satisfying the conditions of Theorem 3.1, W is a sufficiently smooth function
throughout R?. One could certainly assume less and then make the connection in
the context of weak solutions but we choose not to do so here. Here we seek a
traveling wave solution to (4.1) that joins the two minima of W taking the form

u(x,t) =U(x; —vt)=U(y) forsomeveR
where U(=£e0) = p.. Such a U : R — R? would have to satisfy the ODE
(4.3) —vIU'=U"-V,W(U) for —oo<y<oo, U(teo)=p.

As noted previously, in the case of a standing wave where v =0 in (4.3), a solution,
the so-called heteroclinic connection, is already known to exist cf. [3, 4, 5, 20]. Our
aim is to establish solutions with non-zero wave speed V.

4.1 Traveling wave existence under a generic assumption on hetero-
clinics

We begin with the observation that (4.3) has a variational formulation. To see
this, fix any A € R, and consider the constrained minimization problem given by

|
(4.4) Wy i= i{ng(u) where H(u) := / 3 W + W (u)dy
TA —o0
and where the admissible set ¢ is defined by
Gy:={u:R—>R*: u—geH' (R;R?), P(u) =A}.

In the above definition, g : R — R? is any smooth function such that g(y) = p. for
y sufficiently large and g(y) = p— for y sufficiently negative, and

P(u) = —/ u® @MY dy whereu= (uV,u®).
Then one has

Proposition 4.1. Any minimizer of (4.4)—in fact any critical point—satisfies (4.3)
for some v € R,

Proof. Invoking the theory of Lagrange multipliers we can assert the existence of
a number A such that any critical point u satisfies the condition

O0H(u) =A82(u)
where & refers to the first variation. Since

5H(u;ﬁ):/u’ﬂ’—l—VWu(u)-ﬁdy and SQ(M;IZ):—/JM’-IZdy for any ii € H'(R),

the result follows with A playing the role of the wave speed v. O



A DEGENERATE ISOPERIMETRIC PROBLEM 23

Now we recall our degenerate isoperimetric problem:
4.5 « = InfE
4.5) m. :=infE(y)

where again E(y) = [ /W(y)|Y| dt and
4= {y:(0,1] — R?: ylocally Lipschitz, y(0) =p_, (1) =p., Z(y) =A}

Note that the value of both E and & are invariant under reparametrization.

We would like to reparametrize the solution %, to (4.5) guaranteed by Theorem
3.1 and then identify it as a traveling solution to (4.1). However, in the event
that 7. possesses bubbles, we would need to work only with a truncation of ¥,
consisting of the one piece joining p_ to p.. Such a truncation procedure has the
disadvantage of a loss of information: we have no control on how much, if any, of
the constraint value Ay is taken up by the truncation. In particular, it is conceivable
that the Lagrange multiplier associated with this truncation vanishes. Then, after
the reparametrization described below, one would only have a heteroclinic orbit,
that is a standing wave solution to (4.3) in which v = 0.

Instead, in the theorem below, we place ourselves in the context of Theorem
3.2, where bubbling is precluded. Before stating it, we introduce what will be
a convenient reparametrization of any Lipschitz curve 7 : [0,1] — R? satisfying
¥(0)=p_, y(1) =p; and ¥(r) ¢ {p_,p } fort € (0, 1) and originally parametrized
with constant speed L:

Welety: (0,1) — R be defined through

Lo (ol L1
(4.6) y(t) == —/ PN = —/ S b
V25 W(v(r) V25 W(v(r)
Then we define say U = U(y) mapping R to R? via U(y) = y(¢(y)) so that U will
satisfy the condition

@.7) U'(y)] = V2/W(U(y)).

Theorem 4.2. For g given by Theorem 3.2 and for any non-zero € € (—&y, &), let
Y = Y:(t) be any minimizer of (3.12), which by Theorem 3.1 must exist and by The-
orem 3.2 possesses no bubbles. We take this curve to be parametrized by constant
velocity |Y.(t)| = L, where L is its Euclidean arc length so that ¥, : [0,1] — R.
Let U, : R — R? given by U.(y) := 1. (t(y)) be the reparametrization of ¥, given by
(4.6). Then we have:

(i) The function U, lies in 9y with A = 2 (Y) + € and minimizes H within this
class, i.e. H(U,) = L.

(ii) Let € denote the set of all heteroclinic connections between p_ and p... Then
for all non-zero € € (—&, &) such that

(4.8) P(y)+ P (w)+e€ forallye ¥,

the function U, solves (4.3) with non-zero speed v.
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Proof of (i). Given any u € 94 with A = 2() + & we use 2ab < a* + b* to note

that
H(u) > ﬁ[m VW) i ()| dy = VIE(w).

Since E is invariant under reparametrization, we have

infE (1) = infE
infE (u) = infE(u)

and consequently g, > /2m,. On the other hand, reparametrizing the minimizer
¥%. of (4.5) as in (4.6), we obtain U, € ¥, satisfying (4.7), and so

so it follows that w, = V2m, and H(U,) = Wy.

Proof of (ii). By Proposition 4.1, U, solves (4.3) as well. Furthermore, v cannot be
zero since this would make U, a heteroclinic orbit satisfying &2 (U,) = 2() + &€,
violating condition (4.8). O

The condition providing for a non-zero wave speed given by condition (4.8) is
clearly generic, in that for it to fail for all non-zero € in the interval (—&, &), there
would, in particular, have to exist a continuum of heteroclinic orbits connecting p_
to p+. However, verifying (4.8) in practice may not be so easy. In the next section,
we present an alternative set of sufficient conditions that guarantee the existence of
a traveling wave solution to (4.3) having non-zero speed.

4.2 Sufficient conditions for existence of a traveling wave

The goal of this section is to present a set of sufficient conditions under which
there are traveling wave solutions with speed v # 0. We will conclude this section
with an explicit example of a potential W meeting these criteria.

For this purpose, we begin with the following hypotheses on W € C*(R?;R),
the first two of which have been operable throughout this article:

(W1) W(p)>0and W(p) =0iff p = p-.
(W2) p. are non-degenerate global minima of W, ie, D*W (£p) > A > 0.
(W3) There exist constants Ry, co > 0 such that

VW (p)-p>co|p|* forall p€R* with |p| > Ry.
We should remark that conditions (W1) and (W3) in particular imply the lower
bound (3.1) on F := vW.
An important role in what follows will be played by heteroclinic connections,
that is, solutions to (4.3) for which v = 0. We recall the notation of Theorem 4.2

where we denote the set of all such solutions by 4. We also wish to distinguish
those heteroclinic connections that minimize the functional H within the set

S ={U € H. (R;R?): U(x) — p= as x — Foo}.
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We will denote this subset of € by %p. The existence of minimizing heteroclinic
connections under hypotheses (W1)—(W3) is well-known (see [4] for existence
under the most general hypotheses).

In order to find traveling waves with nonzero speed, we will look nearby the
minimizing heteroclinic connections. To do this, we must consider the linearized
system, or the second variation of the energy H, at a minimizing heteroclinic Uy €
%0, given by

8*H(Up)[®] := /:, [|®']> + @ D*W (Up) @] dy.

This is well defined for ® € H'(R;R?). Since any Uy € %) is an (unconstrained)
minimizer of H, then clearly 6°H (Up)[®] > 0 as a quadratic form on H'(R;R?).
We note that by the translation invariance of this problem on (—eo,0), zero is an
eigenvalue of this operator, with L? eigenfunction Uj(y). (See Lemma 4.7 below.)
If, however, zero is an isolated simple eigenvalue, then the minimizer Uy will be
suitably isolated from the other heteroclinics, and we may show that curves mini-
mizing H in ¥, with A near #(U)) have non-zero wave speed.

Theorem 4.3. Assume (WI)—(W3), and in addition:

(W4) There exist neighborhoods By (p+) in which W is either purely quadratic
or real analytic and satisfying (2.25);
(W5) For every Uy € 6y, zero is an isolated simple eigenvalue of §*H (Up).

Then, there exists €, > 0 so that for every A € (P (Up) — &, Z(Up) + €.) with
A+ P (Uy), there exists a traveling wave solution Us with wave speed v = V4 # 0.

Making sure €, < & from Theorem 3.2, the hypotheses (W1)-(W4) allow us to
apply Theorem 4.2(i) to assert existence of a minimizer U, of H within the class ¥4
for A € (2(Uy) — &, Z(Up) + &) with A # Z(Up). Hence, by Proposition 4.1,
U, solves the differential equation (4.3) as well. The new assertion here, however,
is that with the additional assumption (W5), the wave speed is non-zero.

Later in this section, we will present an explicit example of a double-well po-
tential W meeting all the criteria (W1)-(W5).

Noting that the strong assumption (W4) is only used to establish the existence
of a minimizer, we can separate the issue of non-zero wave speed from that of
existence by proving:

Proposition 4.4. Assume (W1)—(W3) and (W5). Then, for any U, € 6y, there exists
€ > 0 such that if A € (2 (U.) — €1, Z(Us) + &) with A + Z(U,) and if Uy :
R — R? attains the minimum of H in ¢4, then Uy solves (4.3) with wave speed
v=v4#0.

Once we establish Proposition 4.4, this will then complete the proof of Theorem
4.3 by choosing &, = min{&, € }.
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In order to prove Proposition 4.4 we require the following lemmas involving
the minimization problem for H in .. The first is a restatement of Lemma 2.4 of
[2], on the H' compactness of minimizing sequences:

Lemma 4.5. Assume (W1)—(W3). Let {V,} C .# be a minimizing sequence for H.
Then there exist translations T, € R, a function Uy € 6y, and a subsequence of {1, }
along which

[Va(- = Tu) = Ul g1 (r) — 0 as n — oo.

We remark that while [2] concerns symmetric potentials W, the proof of Lemma
2.4 in [2] does not use the symmetry assumption and so applies to any of the W
considered in this article.

Next, we prove a simple a priori estimate for all heteroclinic solutions V € ¥
(not only the energy minimizers constituting 4p).

Lemma 4.6. Assume (W1) and (W3). There exists a constant K > 0, depending
only on W, such that for any heteroclinic V € € one has

(@.9) V=) < K.

Proof. From hypothesis (W3), we may easily obtain the global bound,

(4.10) VW(p)-p = colpl® —c1,

valid for all p € R?. Define ¢(x) := |V (x)|> — K2, for any constant K> > max{ g, [p+[}.

We calculate

¢"(x) =|V'[*+VW(V)-V

> co (\V\z - 2)
> 0.

Since by the choice of K one has lim,_,., ¢(x) < 0, the positive part ¢, (x) =
max{¢(x),0} has compact support in R. Multiplying the inequality above by ¢,
and integrating, we have:

1
2

1
/R [2(@;)2 +co<pi] dx <0,

and hence ¢(x) <0onR. O

The third lemma contains the spectral properties of the linearized operator at
any Uy € 6o,
L® := §H(Up)® = —@" + D*W (Up)®,
with ® = (@1, @) € H'(R;R?). Denote by (U, V) the L?(R;R?) scalar product.
Lemma 4.7. Assume W satisfies (W1)—(W3). Then:

(a) L is a positive semi-definite linear operator, (L®,®) > 0 for all ® €
H'(R;R?).
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(b) Zero is an eigenvalue of L, with eigenfunction U} € L*(R;R?).
(c) The essential spectrum G,ss(L) C [A,0), with A as in (W2).

Proof. Since Uy is a global minimizer of H, it follows that L = §°H(Up) > 0. By
translation invariance, U} solves the ODE LU/(x) = 0 on R. By hypothesis (W2)
and the Stable/Unstable Manifold Theorem, Ujj(x) has exponential decay to zero as
x — oo, and thus U} € L?(R;R?), so zero is an eigenvalue. Finally, the essential
spectrum of L is determined by Weyl’s Theorem on locally compact perturbations
of linear operators (see [13]). Indeed, the essential spectrum of L is the union of
the spectra of the constant coefficient operators given by the asymptotic behavior
of the potential D*W (Up(x)) as x — do0, L_ & := —®" + D*W(p_)P and L, P :=
—@" + D*W(p, )®. These are constant coefficient second order ODEs, and the
spectrum of each is bounded below by A, by (W2). O

We next show that hypothesis (W5) ensures that minimizing heteroclinics in %
are suitably isolated from heteroclinics with near-minimal energy values.

For simplicity (and without loss of generality) in the following we will choose
the wells p+ of W to be symmetrically placed on the p;-axis. This can be achieved
through a rigid motion of the coordinate system.

Lemma 4.8. Assume W satisfies (W1)~(W3) and (W5), and let Uy € 6o. Then there
exists & > 0 so that if {V,,} is any sequence in € with

(@) Vu(:) #Uo(- — 1) for all T, € R; and
(b) H(V,) = H(Up) = minge H(U),

then

@.11) inf{||U0—v,,(- ~T)lpg  TER nE N} > &.

Proof. This lemma is an adaptation of Proposition 5.1 of [1]. For completeness we
provide some details of how to modify the argument for our setting. Recall that
(without loss of generality) we are assuming

ps = (£1,0).

First, let V € € be geometrically distinct from Up; that is, V(x — 7) # Up(x)
holds for every T € R. Then, there exists ¢ € R which attains the minimum value
of

inf [U6() =V (- = )l = [U0() = V(- = 0)llie:

and moreover this translate V° (x) := V (x— o) satisfies the orthogonality condition,

4.12) /R VO (x) - Ul(x) dx = 0.
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The existence of a minimizing ¢ follows from the asymptotic conditions on Uy, V,
and the relation (4.12) follows by differentiating [|Uo(-) — V(- — 7)||2(r) with re-
spect to T, noting that Uj itself satisfies the same orthogonality condition,

1

| Uo-Updx = 5 (1p+*~Ip- ) =0,

in light of the assumed symmetric positioning of p_ ad p..

Let® =V° —Uy € H'(R;R?). Then, (®,U});>» =0, i.e., ® € Z:=span{U}}*.
Furthermore, by Lemma 4.7 and (W5), the linearization L is invertible on the closed
subspace Z. In particular, its quadratic form is bounded below away from zero:
there exists ¢y > 0 for which

(4.13) (P,L¥);> > co||¥]|7. forall ¥ € Z.

Assume {V, } C € with H(V,,) — H(Up), where we may also assume that each V,,
is translated such that

Vs = Uolligy = inf [Va-+ )~ U ()2 e

Thus, each V, satisfies the orthogonality relation (V,,U));2 = 0. Define &, :=
V, — Up, and suppose that ||®,||;» — 0, contrary to the statement of Lemma 4.8.

Next we apply a Taylor’s expansion to the function s — DW (U + s®,,): for
each n there exists s, € (0, 1) such that

0=—092V,+DW(V,) = —d2Uy — 9>®, + DW (Uy + ®,) =
1 d°

— 92Uy + DW (Up) — 9>®,, + D*W (Up) D, + ~

3 @ |S:SV,DW(UO +Sq)n)

1 53
= L@y + 5 D*W (Uo + 5:Pu) (@1, -
To this end, set t,, := ||®,||,2 — 0 and &, := &, /t, € Z. Then, ®, solves,
- 1 . o~
(4.14) Ld, = _Ean3W(Uo + 5,D,) [@,, D]

By Lemma 4.6, since V,, € ¢ we have a uniform bounds ||V, ||z=, |||l < C)
for constant C; independent of n. Using hypothesis (W1), we may conclude that
D3W is uniformly bounded on bounded sets, and thus we may obtain the uniform
estimate:

- - 1 -~
(4.15) (B0, L)1z =~ /R Y 0 W (U + 5,@,) @1 iy 1Pk
i7.j7k

< Co| Dy || DI72 < C3.

From this we conclude the uniform bound on the derivatives,

/R|ci>;12dx — (B, 1D,),2 — /IRD2W(U0)[<§n7§>n]dx <G+ G| B, = G5+ G
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By the Sobolev embedding we conclude that ||®, ||~ < Cs is uniformly bounded,
and we may improve the estimate (4.15),

- - 1 o~ o~
(q)nvLcI)n)Lz = _Etn/R Z aijk‘/V(UO +an)n)q)n,iq)n7jq)n,k
i7j7k

< Cty||®s 72| Pl = — 0.

Since &, € Z and ||®,||;2 = 1 for all n, we arrive at a contradiction, as the quadratic
form (®,L®);> is strictly positive definite for ® € Z, cf. (4.13). In conclusion,
(4.11) must hold. O

Corollary 4.9. Assume (WI1)—-(W3) and (W5). Then there are only finitely many
V € 6o which are geometrically distinct (not translations of each other).

The corollary follows from Lemma 4.8, together with the compactness provided
by Lemma 4.5.

We are now ready to prove Proposition 4.4 which will complete the proof of
Theorem 4.3 as well:

Proof of Proposition 4.4. Let & > 0 be as in Theorem 3.2, |¢| < &), and U, € %p.
We argue by contradiction, and assume that there exist sequences {g,} — 0 and
{U,}, minimizers of H in ¥4, with

(4.16) Ay = P(U,) = 2(U,) + €,

whose wave speed v,, = 0 for every n € N. That is, U, € € for each n. We note that
by (4.16) and the translation invariance of &, each U, and U, are geometrically
distinct elements of %, that is U, (- — 7) # U, for any 7 € R.

The construction in the proof of Theorem 3.2 provides an upper bound on the
energies,

H(V,) = V2E(V,) < V2[E(U,)+E(B:)] < V2 E(U*)+c1(7r+2)%sn =H(U,)+c28,,

where f3;, is the bubble whose energy is estimated in (3.15). Thus, {U,},cn is a
sequence of heteroclinic connections with H(U, ) — H(U,), and thus it is a mini-
mizing sequence (without area constraint) for H in .. Applying Lemma 4.5, there
exists Uy € 6 and translations 7, € R, so that (along a subsequence)

(4.17) Us(-—1,) = Uy in H'(R;R?).
But U, satisfies the hypotheses of Lemma 4.8, and this contradicts (4.11), so there
must exist € as claimed in the statement of the Proposition. O

The simplicity of the ground state eigenvalue of 82H(Up) is generic, but it
is possible to identify a class of specific examples for which it must hold. For
instance, we may impose an additional condition on W':

(W6) p_ and p; lie on the pj-axis and W(py,p2) > W(p;,0), for all p =
(p1,p2) €R®.
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A simple example which satisfies all of the conditions (W1)—(W6) may be con-
structed in the form W(p) = w(p1) + p3, with w(p;) an even C? function with
w(p1) = (p1 — 1)? for p; > %, and w(py) > % for [p1] < %

Proposition 4.10. If W satisfies (W1)—(W3) and (W6), and Uy is any minimizer of
H in ., then zero is a simple eigenvalue of §*H(Uy).

Proof. For any U = (uy,up) € H'(R;R?), H(U) > H(u;,0), and so the minimizer
must have the form Uy = (u,0). By (W6), W,,, (Up(x)) = 0 and W,,,,, (Up(x)) >0
for all x € R. Moreover, the Euler-Lagrange equations are

() - Wi (16(),0) = 0, Wy (1tg(x),0) = 0.

From the second equation, W), ,, (uo(x),0) = 0 (almost everywhere) along the het-
eroclinic.

From Lemma 4.7, the second variation of the energy about Uy is non-negative,
8%H (Uy)[®,®] > 0 for all ® € H'(R,R?). In fact, by the choice of potential,

§2H (Uy) [, D] — / (192 + @' D*W (Up) @] dx

— [ 10+ Wy, (10,0003 i+ [ [(93) + Wi (10,0) 3] i
= (@1,L191) + (92, L2gn),

defining the linear operators with respect to the L? scalar product. Now, both L; >0
and L, > 0, as we may consider variations of Uy with only one coordinate nonzero.
By Lemma 4.7 the essential spectra of L;,L; are bounded away from zero. For
Li, ¢ = u is an L? eigenfunction. Moreover, it is the lowest eigenvalue and
thus has a sign u, > 0, and is therefore simple. For Ly, W,,,,(Us(x)) > 0, so
(¢2,L2¢2) = 0 if and only if ¢, is constant, hence zero, and thus the operator L,
is invertible. Since (by Lemma 4.7) the essential spectrum is bounded away from
zero (and zero cannot be an eigenvalue), there exists a constant (> 0 with o(L,) C
[1L,0). In conclusion, 82H(Up) > 0 and has an isolated simple zero eigenvalue,
with eigenfunction Uj;. O

4.3 Non-existence of traveling waves with large wave speeds

Finally, we investigate the question of whether there is some restriction on the
possible wave speeds v for traveling wave solutions of (4.3). It is typical for trav-
eling waves of Hamiltonian systems to have some speed limit: for example, the
cubic defocussing Nonlinear Schrodinger (NLS) equation has nonconstant travel-
ing waves (“dark solitons”) with speeds |v| < V2. (See [9] for a discussion of
traveling waves in the 1D NLS equation.) As in the NLS case, we expect trav-
eling waves to exist only for v in an interval around zero, and that the critical
speed should be determined by the linearized equations at the two wells of W. A
complete determination of the possible wave speeds, as well as the relationships
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between the speed Vv (the Lagrange multiplier in the variational problem (4.4)) and
the area constraint & (U ), remain interesting open questions.

First, we consider the case that for [p —p+| < ro with r» >0, W : R? = R is
given by a quadratic of the form

(4.18) W(p)=(p—ps) Hi(p—ps),

where Hy are a pair constant, real, symmetric, positive definite 2 X 2 matrices.
Finding a necessary condition for the speed v of a traveling wave is a local com-
putation, and so we restrict our attention to one well, which we place at the origin,
p+ = 0. We denote by 112 and 222 the two positive eigenvalues of the matrix H and
express all points in R? and all curves in a neighborhood of that well with respect
to the orthonormal basis {v;, v, } of eigenvectors of H., so that we may assume W
takes the form

W(p)=Aipi+Aip3,  |pl <

Proposition 4.11. Under the above hypothesis on W, if there exists a heteroclinic
traveling wave solution to (4.3), then v> < 2(A1 + Ay)>.

Proof. A heteroclinic traveling wave solution to (4.3) must remain inside the ball
of radius r centered at p for a semi-infinite time interval, which we may take to
be x € (0,0). Thus, for x > 0, we have a solution of

(4.19) —vIU'=U"-2H, U for limU(x) =0.
X—yo0
This is a constant-coefficient linear system, which may be solved explicitly. By

converting (4.19) for U = (uy,u;) to an equivalent first-order system of four equa-
tions, Z' = MZ,

21 up—py 0 0O 1 0
) 0 0 0 1

2= 4 | oM 222 0 0 —v|’
2 ) 0 222 v 0

any solution is a linear combination of vectors of the form Z(x) = e**Z, with
u an eigenvalue of M with eigenvector Zy. A simple calculation reveals that the
eigenvalues u of M satisfy

wel [_ﬁi m] B =V =202 +23),

which leads us to the following parameter regimes in Vv:

(1) [0 < v? <2(A —2A2)?| Then, 0 < 44,15 < 2(A% +A3) — v2, and hence

B < 0and B2 — 164223 > 0. Thus all eigenvalues y are real and nonzero,
and at least one is negative. Traveling waves can exist for such v, and if
they exist they do not spiral.
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(2) [2(M —2A2)? < v? <2(A1 +42)?| In the case of strict inequality, B2 <

16A223, and thus pu? = %[ﬁ +iy| has a nonzero imaginary part y > 0. For
such v, we have two pairs of complex conjugate eigenvalues u, two of
which must have negative real part, and thus correspond to exponentially
decaying spiral trajectories. In this regime, traveling waves can exist.

(3) |v*> 2(M + lg)z . For these v, we have B > 4A;A; > 0, and hence u? <
0 yields purely imaginary eigenvalues. When the inequality is strict, this
would imply that while the traveling wave resides inside the ball of radius
r around the well the solutions are purely oscillatory, which contradicts
the condition U(x) — 0 as x — oo. In the case of equality, we have a
pair of pure imaginary, multiplicity-two eigenvalues, and again there are
no solutions which decay as x — o. Thus, there can be no heteroclinic
traveling wave solutions for v which are this large.

O

When the potential W (p) is not exactly a quadratic we nevertheless expect that
the permissible wave speeds will be determined by the quadratic part of W, as
in Proposition 4.11. However, in the parameter regime v> > 2(A; 4+ A,)? the lin-
earized traveling wave equations produce a center around the well, correspond-
ing to distinct purely imaginary eigenvalues of the matrix M. As is well known
(see[10]) centers are not structurally stable, and nonlinear perturbations of a center
can produce spirals. One approach to rule out solutions which decay to the wells
as x — oo is to require the nonlinear perturbation of the quadratic in W to be very
small.

Proposition 4.12. Assume that in neighborhoods By, (p+) of the wells p-., we have
in local coordinates centered at p+:

(4.20) W(p)=Al+pi+2A5.05+G(p),

where V,G(p) = g(p) with |g(p)| < C|p|4, and q > 3.
Then, if v* > min{2(A;" + A,)%,2(A; + A, )?}, then there is no heteroclinic
traveling wave with finite energy H(U) < oo and speed v.

Remark 4.13. The hypothesis g(p) < C|p|? can be integrated to obtain a corre-
sponding bound on G(p), with V,G(p) = g(p) and G(0) = 0. Indeed,

L g 1 1 C
Glp)| =| [ 5 Gupydr| < [ lgplIplar < Clple! [ et = = |pjret,
0 dt 0 0 q+1

Thus, the residual term in the potential must be of at least fourth order in p for
Proposition 4.12 to apply.

Proof. Assume there is a solution U of (4.3) of finite energy H(U) < oo. We restrict
our attention to the neighborhoods of the wells; take p; = 0, and assume U (x) €
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B, (0) for all x € [xg,0). Without loss, we assume xy = 0. By the boundedness of
the energy and the hypothesis on W, this implies the H' ([0, %)) norm of U is finite.
Note that we can represent the nonlinear term g(U) in the form,

L1 [Wes)] Ut g)]] ()
W)= e [[U* W) [U-5U)] ](z) = HUW

with two-by-two real matrix 4(U), which satisfies |h(U)| < C|U|9~!. Hence,

(4.21) /|h \dx<c/ x)[7 dx < Cpd” /W|U(x)|2dx<oo.
1

Using the notation from Proposition 4.11 we write (4.3) as a first order system,
of the form,

ron -~ 10 0

(4.22) Z'(x)=(M—H(x))Z(x), H(x):=C= { 0AT ) |’

with H (x) composed of 2x2 blocks. Since v> > 2(4;" + A;")?, by Proposition 4.11
the eigenvalues of M are distinct and purely imaginary. By Levinson’s Theorem
(see Theorem 8.1 and problem 8.29 of [10],) for each eigenvalue p; and associated
eigenvector é./" j=1,2,3,4 of M, there exists a (complex vector-valued) solution
Zj(x) of (4.22) with lim, .. Zj(x)e ** =§;, j=1,2,3,4. In particular, each Z;(x)
is purely oscillatory, and each is bounded away from zero for x € [0, o0). The solu-
tion Z(x) corresponding to the traveling wave U (x) must be a linear combination
of these, so there exist constants c¢; with

ch x) =0 asx— oo

Since the Z;(x) form a basis for the solution space on [0,c), and none of the Z;(x)
vanishes for x — oo, each ¢; = 0 and thus Z(x) = 0 is the only possible solution of
(4.22), and hence U (x) = 0 is the only solution to (4.3) when v? > 2(A," +A,7)?
A similar argument applies in a neighborhood B, (p_) when v? > 2(4; +
A57)?, and thus the proposition is proven. |

Remark 4.14. The above approach to nonexistence via the Levinson Theorem re-
quires some integrability assumption on the traveling wave U. In fact, if we re-
place the finite energy assumption on U by the stronger decay hypotheses U —
p+ € WH(0,00) and U — p_ € W1 (—o0,0), then we could admit more general
perturbations from the quadratic well of the form (4.20) but with g > 2, that is
G(p) = O(|p]®). (See Remark 4.13). On the other hand, it is not obvious how to
obtain solutions in W'+, either from the boundedness of energy and momentum &
or via a priori estimates on solutions, while the finite energy assumption made in
Proposition 4.12 is natural given our existence results.

There is another special class of potentials W for which a necessary bound on
the wave speed v may be derived, without assuming any specific rate of decay of
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U to the wells p-, only that U(x) — p+ and U’ (x) — 0 as x — +oo. Let us assume
that inside a ball of radius r around p; =0,

(4.23) WU)=9(U") =AU = p+[* +G(IU —p+ ),

with G : R — R a differentiable function with G'(¢) = o(1), G(t) = o(t) for t near
zero.

Proposition 4.15. Under the hypothesis (4.23) on W, if there exists a heteroclinic
traveling wave with speed v, then v* < 8.2,

Proof. Under the assumption (4.23), the equation (4.3) is of nonlinear Schrédinger
type, and the speed limit may be obtained following the method of Maris [15] (see
also Chiron [9].) The proof is based on various exact integrals of the ODE,

(4.24) —U"+2AU +g(|U*)U = vIU'’

where g(t) = 2G'(), and we are assuming that U(x), x € (0,00), lies in the ball
of radius r centered at the origin. Taking the scalar product of the equation (4.24)
with U’ we obtain the usual energy integral of the equation,

0=—U"-U+42AU-U +g(UPU-U' = % (—;|U’]2 + AU +G(\U!2)> .
Integrating, and evaluating the constant as x — oo, we obtain the identity,
(4.25) SV = AUP + G(UP).
Next, we take the dot product of (4.24) with JU, and integrate as above to obtain:
(4.26) U'IU = —§|Uyz.
Taking the dot product of (4.24) with U this time produces the relation,
~U"-U+2AUP +g(UP)WUI> = —vU'-TU

and so with (4.26) we have:
V2
4.27) U"- U= <2/l—2+g(|U|2)> U|?
Now we define 17(x) := |U(x)|? and derive an equation for 7,
1
5n// _ ’U"Z—I-U” .U
v 2 2 2
= (44 =5 +s(UF) ) U +26(|UT7)

- <4Af) n+R(),
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where R(1) = g(n)n +2G(n). This equation for N has an energy integral, ob-
tained by multiplying by " and integrating,

1 1
(4.28) JnP 5 (v =82)n? =2%(n),

where we have evaluated the constant of integration at x = 4o, and with Z'(n) =
R(n), %(0) = 0. By the hypotheses on g, G, Z(1n) = o(n?) for small . So if v> >
8A, this leads to a contradiction in case there exists U (x) with n(x) = |U(x)|> = 0
as x — oo. O
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