Files

Abstract

Classical ergodic theory for integer-group actions uses entropy as a complete invariant for isomorphism of IID (independent, identically dis- tributed) processes (a.k.a. product measures). This theory holds for amenable groups as well. Despite recent spectacular progress of Bowen, the situation for non-amenable groups, including free groups, is still largely mysterious. We present some illustrative results and open questions on free groups, which are particularly interesting in combinatorics, statistical physics, and probability. Our results include bounds on minimum and maximum bisection for random cubic graphs that improve on all past bounds.

Details

PDF

Statistics

from
to
Export
Download Full History