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Abstract 

A central understanding in mathematics is knowledge of math equivalence, the relation 

indicating that two quantities are equal and interchangeable. Decades of research have 

documented elementary-school (ages 7-11) children’s (mis)understanding of math equivalence, 

and recent work has developed a construct map and comprehensive assessments of this 

understanding. The goal of the current research was to extend this work by assessing whether the 

construct map of math equivalence knowledge was applicable to middle school students and to 

document differences in formal math equivalence knowledge between students in pre-algebra 

and algebra. We also examined whether knowledge of math equivalence was related to students’ 

reasoning about an algebraic expression. In the study, 229 middle school students (ages 12-16) 

completed two forms of the math equivalence assessment. The results suggested that the 

construct map and associated assessments were appropriate for charting middle school students’ 

knowledge and provided additional empirical support for the link between understanding of math 

equivalence and formal algebraic reasoning.  

 

Keywords: algebra, mathematical equivalence, measurement development, mathematics 

 

Educational Impact and Implications Statement 

One of the bedrocks of algebraic thinking is formal knowledge of math equivalence, which is the 

idea that two sides of an equation are equal and interchangeable. In the present study, we sought 

to validate a measure of this knowledge in middle school students. Students in pre-algebra and 

algebra classes were successful on some items, but still struggled with others (such as explicitly 

defining the equal sign or reasoning about operations on both sides of the equal sign [e.g., 
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explaining why 89 + 44 = 87 + 46 is true]). We also found that performance on the measure was 

related to students’ formal understanding of algebraic expressions. Our results highlight the 

importance of measuring formal knowledge of math equivalence beyond elementary school, 

particularly given its critical link to algebra. 
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Assessing formal knowledge of math equivalence among algebra and pre-algebra students 

 One of the bedrocks of early algebraic thinking is knowledge of math equivalence, the 

relation indicating that two quantities are equal and interchangeable (e.g., Baroody & Ginsburg, 

1983; Carpenter et al. 2003; Kieran, 1981; MacGregor & Stacey, 1997). Unfortunately, much 

research has documented students’ (mis)understanding of math equivalence in symbolic form 

(e.g., Behr, Erlwanger, & Nichols, 1980; Knuth et al., 2005; Li et al., 2008; Lindvall & Ibarra, 

1980; Powell & Fuchs, 2010; Weaver, 1973). This research underscores the need for assessments 

that can both track students’ formal knowledge of math equivalence and serve as valid and 

reliable outcome measures for intervention work. Recent research has developed comprehensive 

assessments of this understanding among elementary school children, ages 7-11 (Matthews, 

Rittle-Johnson, McEldoon, & Taylor, 2012; Rittle-Johnson, Matthews, Taylor & McEldoon, 

2011). The primary goal of the current study was to investigate whether the assessments could 

reliably and validly measure formal knowledge of math equivalence among an older cohort of 

students, ages 12-16, and to report differences in math equivalence knowledge between students 

in pre-algebra and algebra classes. We also examined how performance on the equivalence 

measure was related to formal reasoning about a specific algebraic expression. 

Knowledge of Math Equivalence 

Math equivalence is a broad construct and a formal understanding of it encompasses a 

number of related components (e.g., Falkner et al., 1999; Charles, 2005; Kieran, 1981; McNeil, 

2014). One component is a relational understanding of the equal sign (i.e., knowing that values 

on either side of the equal sign need to be the same amount). However, other key components 

include correctly identifying the sides of an equation, noticing relations within equations, 

encoding equations in their entirety (e.g., noticing the location and order of operators, quantities, 
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and the equal sign), generating a strategy for equalizing the two sides of an equation (e.g., 

solving for an unknown), and knowing that a quantity can be represented in many equal and 

interchangeable ways (e.g., knowing that 7 can be represented as 3 + 4, 8 – 1, 2 + 1 + 4, 7 x 1, 

14/2, etc.). Of course, children can have an informal understanding of math equivalence without 

mapping that understanding to the formal symbols (e.g., Mix, 1999; Sherman & Bisanz, 2009). 

In the current study, we were specifically interested in student’s formal understanding of math 

equivalence – though we use the term “math equivalence” for conciseness. 

Math equivalence is considered a “Big Idea” in mathematics because it is both critical to 

learning mathematics and because it facilitates an understanding of mathematics as a coherent 

whole, rather than as a set of unrelated concepts and procedures (Charles, 2005; National 

Council of Teachers of Mathematics [NCTM], 2000). Further, math equivalence is considered a 

critical pre-requisite to formal algebraic understanding (e.g., Jacobs, Franke, Carpenter, Levi, & 

Battey, 2007; Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006; MacGregor & Stacey, 

1997). Accordingly, the Common Core State Standards recognize the importance of math 

equivalence and prescribe that children as early as first grade should be able to understand the 

relational meaning of the equal sign, to determine unknown numbers in equations (e.g., 12 = 5 + 

__), and to judge equations as true or false (e.g., 6 = 6, 5 + 2 = 2 + 5; National Governors 

Association Center for Best Practices and the Council of Chief State School Officers, 2010).  

Unfortunately, decades of research in psychology and mathematics education indicate 

that many elementary-school children (ages 7-11) in the U.S. struggle to understand math 

equivalence in symbolic form (Behr et al., 1980; Falkner, Levi, & Carpenter, 1999; Fyfe, 

McNeil, & Borjas, 2015; Fyfe, Rittle-Johnson, & DeCaro, 2012; McNeil & Alibali, 2005; Perry, 

1991; Powell & Fuchs, 2010; Renwick, 1932; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 
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1999; Seo & Ginsburg, 2003; Weaver, 1973). The broad issue is one of a “cognitive gap” 

between arithmetic and algebra (Herscovics & Linchevski, 1994; van Amerom, 2003). Students’ 

experiences with arithmetic often lead them to view equations operationally as computational 

processes to be carried out, rather than structurally as arguments whose truths can be evaluated 

by the products of those processes (e.g., Kieran, 1981; Linchevski & Herscovics, 1996; Sfard & 

Linchevski, 1994). For example, children often view a problem like 3 + 4 = 5 + __ as a signal to 

carry out a procedure rather than as two related sides or “objects,” (3 + 4) and (5 + __), whose 

substitutability is expressed by the equal sign. This “gap” leads to specific errors on a variety of 

problems assessing knowledge of math equivalence. For example, children often provide an 

operational definition of the equal sign – inferring that it means “get the answer” or “the total” 

(e.g., Baroody & Ginsburg, 1983; Behr et al., 1980; McNeil & Alibali, 2005). When solving 

problems with operations on both sides of the equal sign (e.g., 3 + 4 = 5 + __), children often fall 

into entrenched patterns of calculation and add up all the numbers (12) to write the total in the 

blank (e.g., Alibali, 1999; Falkner et al., 1999; Li et al., 2008). Children also tend to reject 

problems that are not in standard operations-equals-answer format, claiming that problems such 

as 8 = 5 + 3 are backwards or false (e.g., Behr et al., 1980; Falkner et al., 1999; Li et al., 2008; 

Molina & Ambrose, 2006; Rittle-Johnson & Alibali, 1999; Seo & Ginsburg, 2003). 

The Construct Map for Math Equivalence 

Recent work (e.g. Matthews et al., 2012; Rittle-Johnson et al., 2011) has made strides in 

elucidating math equivalence knowledge as a construct and creating assessments that pool items 

and tasks from previous research in both psychology and math education (e.g., Baroody & 

Ginsburg, 1983; Behr et al., 1980; Carpenter, Franke & Levi, 2003; Jacobs et al, 2007; Li et al., 

2008; McNeil & Alibali, 2005; Perry, 1991; Rittle-Johnson & Alibali, 1999; Sherman & Bisanz, 
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2009; Sternberg et al., 1991; Weaver, 1973). This type of work is critical in order to document 

the relative difficulties of all the different types of items used in the literature to measure the 

same construct and to better understand the order in which children’s knowledge is constructed. 

The construct map put forth by Rittle-Johnson et al. (2011) is shown in Table 1. It was derived 

after an extensive review of the literature on children’s math equivalence knowledge.  

The construct map contains four levels of increasing sophistication of knowledge. 

Although the map breaks it into levels to aid in visualization, the underlying knowledge is 

conceived of as continuous. The levels differ primarily in terms of the types of equation 

structures with which children are successful. At Level 1, children succeed with the traditional 

operations-equals-answer structure (e.g., 8 + 4 = __) and view the equal sign as an operator 

signal to calculate an answer. At Level 2, children succeed on a wider variety of equation 

structures, including problems with operations on the right side of the equal sign (e.g., __ = 8 + 

4) and problems with no operations (e.g., 3 = 3). At Level 3, children succeed on problems with 

operations on both sides of the equal sign and recognize a relational view of the equal sign as 

valid. Finally, at Level 4, children succeed on problems regardless of structure and generate a 

flexible, relational view of the equal sign. A hallmark of Level 4 understanding is recognizing 

transformations that maintain the equality of an equation (e.g., adding the same number to both 

sides of the equal sign) without engaging in full computation strategies (e.g., Alibali et al., 2007; 

Carpenter et al., 2003; Jacobs et al., 2007; Steinberg et al., 1991).  

In two previous studies, researchers documented the construction and validation of 

comprehensive assessments intended to measure math equivalence knowledge in terms of this 

construct map (Matthews et al., 2012; Rittle-Johnson et al., 2011). The assessment items varied 

in type (e.g., equation-solving, equation-structure, equal-sign) and in structural arrangement 
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(e.g., operations-equals-answer, operations on both sides). The researchers used Rasch modeling 

procedures to measure item difficulties on a continuous scale. The result was two forms of an 

assessment that were reliable and valid. Further, the order of the empirically-derived item 

difficulties supported the hypothesized construct map in two samples. Thus, this measurement 

work emerged from and was well aligned with the larger literature on math equivalence, and it 

resulted in a psychometrically-sound assessment tool for elementary school children (ages 7-11).  

The Current Study 

The goal of the present study was to extend this work to an older cohort of middle school 

students. Below we outline our three specific aims and the motivation for each. 

Our first aim was to investigate whether the construct map and associated assessments 

could reliably measure knowledge of math equivalence among an older cohort of students (ages 

12-16). Previous research indicates that difficulties with math equivalence persist well past 

elementary school (e.g., Alibali et al., 2007; Jones, Inglis, Gilmore, & Dowens, 2012; Knuth et 

al., 2006; Li et al., 2008; McNeil et al., 2006; Renwick, 1932). For example, Knuth et al. (2005) 

found that nearly half of the middle school students in the study provided an operational 

definition of the equal sign. Similarly, Booth and Davenport (2013) found the average percent 

correct on a measure of equal sign understanding was close to 50% for a sample of middle 

school students. Alibali et al. (2007) also demonstrated that fewer than 60% of students at the 

end of eighth grade provided a relational definition of the equal sign. More importantly, middle 

school students, high school students and adults sometimes exhibit operational views of 

equations even after they are taught about the equal sign or equivalence more generally (e.g., 

Herscovics & Kieran, 1980; Sfard & Linchevski, 1994). For example, educated adults still 

sometimes solve standard equivalence problems (e.g., 6 + 8 + 4 = 7 + __) using operational 
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strategies, giving the answers 18 or 25 – particularly under speeded conditions (e.g., Chesney et 

al., 2013; McNeil & Alibali, 2005; McNeil et al., 2010). 

This body of research suggests that valid measures of math equivalence knowledge that 

function beyond elementary school are clearly needed. However, no studies to date have used a 

discriminating assessment based on a construct map to unpack the structure of math equivalence 

knowledge in students beyond age 11. We sought to fill this gap by validating the construct map 

and associated assessments in an older sample of middle school students. 

Our second aim was to report quantitative and qualitative differences in math equivalence 

knowledge between students in pre-algebra and algebra classes. Many studies have considered 

middle school students as a homogenous population and have not focused on differences as a 

function of experience. However, a formal understanding of math equivalence is widely regarded 

as a necessary component of success in algebra (e.g., Carpenter et al., 2003; Jacobs et al., 2007; 

Knuth et al., 2006; NCTM, 2000; Steinberg et al., 1991), and students in formal algebra courses 

are more likely to have experiences that explicitly attempt to bridge the “cognitive gap” between 

arithmetic and algebra. That is, they are more likely to have experiences that rely on explicit 

recognition of the arithmetic properties of algebra (e.g., performing the same operation on both 

sides of the equation). A key question is whether these experiences in algebra support shifts in 

students’ understanding of equivalence. We expect they do and that students in algebra classes 

will provide more relational responses on the equivalence assessment than pre-algebra students. 

Our third aim was to examine the relation between knowledge of math equivalence and 

students’ formal reasoning about algebraic expressions. Prior work suggests that knowledge of 

math equivalence is related to performance on algebraic equations with variables (e.g., Alibali et 

al., 2007; Booth & Davenport, 2013; Knuth et al., 2005). For example, middle school students 
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who provided a relational definition of the equal sign were almost twice as likely to solve algebra 

equations correctly (e.g., 4m + 10 = 70) than students who did not (Knuth et al., 2006). But, if 

math equivalence is truly foundational for algebraic thinking, it should predict performance on a 

variety of tasks – including tasks with algebraic expressions that do not include the equal sign.  

Again, the notion of a “cognitive gap” between arithmetic and algebra is relevant 

(Linchevski & Herscovics, 1996; van Ameron, 2002). As noted, experiences with arithmetic can 

give rise to misconceptions about the equal sign and equivalence more generally (e.g., the idea 

that the equal sign is unidirectional and operational). In a similar way, experiences with 

arithmetic can also give rise to misconceptions about variables and expressions with variables 

(e.g., Kinzel, 1999; Lucariello et al., 2014; MacGregor & Stacey, 1997; McNeil, Weinberg, et 

al., 2010). For example, consider a 12-year-olds’ difficulty assigning meaning to expressions 

such as 3a, a + 3, and 3a + 5a because, “there is no equal sign with a number after it” (Kieran, 

1981, p. 324), or consider a 13-year-olds’ difficulty subtracting 8x from both sides of an equation 

because “I don’t know how much is 8x” (Sfard & Linchevski, 1994, p. 107). Both cases 

exemplify an operational viewpoint in which students treat expressions in terms of processes – 

signals to fill in a missing value – rather than objects that can be manipulated. Thus, in broader 

terms, students’ concept of equation and all that it encompasses progresses from an operational 

view to a relational or structural view (Kieran, 1981; Sfard & Linchevski, 1994), and depending 

on where students are in this development, we would expect similar kinds of errors in thinking 

across both the math equivalence assessment and their reasoning about algebraic expressions.  

Method 

Participants 
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 Participants represented a convenience sample of 229 students (106 female) from two 

public schools in a small city in the American West. One school served grades 7 through 9 (n = 

165) and had a student population that was 50% Caucasian, 48% Hispanic, and 86% qualified for 

free or reduced-price lunch. The other school (n = 64) served grades 7 through 12 and had a 

student population that was 81% Caucasian, 13% Hispanic, 3% African-American, and 29% 

qualified for free or reduced-price lunch. All students from six different teachers were invited to 

participate with no exclusion criteria. The majority of participants in this study (94%) were 

seventh- and eighth-grade students between 12 and 14 years old (M age = 13.1 years, SD = 0.8, 

min = 12.0, max = 16.0). Because one school spanned grades 7-12, some students in the sample 

were in higher grades and somewhat older than the typical middle school sample. The majority 

of students (62%) were in pre-algebra classes. The remaining students were in Algebra I (34%) 

or an advanced secondary mathematics course (3%) that included a mix of algebra and geometry. 

Because our focus was on class experience (i.e., pre-algebra vs. algebra) rather than grade level, 

we refer to all students in our sample as “middle school” students. For conciseness, we also refer 

to both Algebra I students and advanced secondary math students as “algebra” students as these 

courses included algebra instruction. No records were collected regarding whether students 

required an individualize education plan (IEP) or testing accommodations. 

Materials 

 Math Equivalence Assessment. We administered two forms of the assessment from 

Matthews et al. (2012; see also Rittle-Johnson et al., 2011) with a few changes detailed below. 

Note that Rittle-Johnson et al. (2011) originally constructed two different, but comparable forms 

in order to facilitate pre-post testing in intervention studies. We continued using two comparable 

forms in the current design instead of settling on one for similar practical purposes.  
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There were three problem types. Open-equation-solving items assessed students’ abilities 

to solve equations of varying difficulty. For example, an easy item included an operation on the 

right side of the equal sign (e.g., 8 = 6 + __), and more difficult items included operations on the 

left and/or on both sides of the equal sign (e.g., 7 + 6 + 4 = 7 + __). Several open-equation-

solving items also included letter variables (e.g., c + c + 4 = 16). Equation-structure items 

assessed students’ understanding of valid equation structures as well as their abilities to reason 

about both sides of an equation without computation. For example, one easier item had students 

evaluate whether 31 + 16 = 16 + 31 was true or false, and a more difficult item had students 

explain why 67 + 86 = 68 + 85 was true without adding the numbers together. Equal-sign items 

assessed students’ explicit understanding of the symbolic equal sign. A core item asked students 

to define the equal sign, and another item had students rate different definitions of the equal sign 

as good or not good. A full list of the items used on both forms is included in the Appendix. 

 Each form of the assessment had 31 items (12 open-equation-solving, 13 equation-

structure, and 6 equal-sign). Each item was classified a priori as tapping knowledge at Levels 1, 

2, 3, or 4 of the construct map (see Table 1). We began with the forms from Matthews et al. 

(2012), which used a step-by-step item matching procedure to ensure similarity of content and 

difficulty across forms. However, we introduced a change to ensure that all parameters could be 

easily placed on the same measurement scale. One form of the assessment we used was identical 

to Form 1 from Matthews et al. (2012). The other was nearly identical to Form 2, with the key 

exception that we replaced a number of Form 2 items with those from Form 1 so that we would 

have 10 anchor items (denoted with the superscript A in the Appendix and in Table 4). We chose 

anchor items to span the range of item difficulties specified a priori by the construct map and 

distributed across different item types. We oversampled items hypothesized to be more difficult 
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because we expected pre-algebra and algebra students to have higher ability than past samples, 

which only included elementary school children. The result was that 10 of the 31 items on each 

assessment were identical across forms, serving as anchors to aid in equating scores across 

forms. We applied a concurrent calibration procedure (Kolen & Brennan, 2004) to yield item and 

person parameters that were on a common metric. Due to experimenter error, one item on Form 

1 was misprinted. It was originally intended to be an open-equation-solving item at Level 3 with 

operations on both sides of the equal sign. However, it was misprinted as __ = 8 + 5 + 9. Since 

this only contains operations on the right side of the equal sign, the misprint led us to designate it 

as a Level 2 item rather than a Level 3 item. This is marked in the Appendix (Form 1, Item 25). 

 Each item was scored dichotomously as correct (1) or incorrect (0). As in prior work, 

equation-solving answers within one of the correct answer were scored as correct to account for 

minor calculation errors (e.g., Perry, 1991; Rittle-Johnson, 2006). Ten items required students to 

provide a written definition or explanation, and responses were coded based on the system from 

Matthews et al. (2012). Specifically, responses were coded as correct if the student mentioned 

the equality relation between values on the two sides of the equal sign. For example, for defining 

the equal sign, responses of “it means the same as” or “the same amount” were coded as correct 

and responses of “the answer” or “the sum” were not. A second rater independently scored 

responses for 35% of the sample, and inter-rater agreement was high, with an average agreement 

of .95 on both Form 1 (range = .89 – 1.00) and Form 2 (range = .88 – 1.00). 

 Algebraic Expression. In addition to the equivalence assessments, we administered an 

item that has been used to assess conceptual understanding of algebraic expressions (see McNeil, 

Weinberg, et al., 2010, see also Küchemann, 1978): “Cakes cost c dollars each and brownies cost 

b dollars each. Suppose I buy 4 cakes and 3 brownies. What does 4c + 3b stand for?” For 
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students who completed Form 1 of the assessment, the specific symbols used were mnemonic in 

that the price of a cake was represented by c and the price of a brownie was represented by b. For 

students who completed Form 2 of the assessment, the specific symbols used were traditional in 

that the c and b were replaced by the traditional letters x and y. This contrast has been of interest 

to researchers because use of mnemonic symbols may strengthen students’ naïve conceptions 

that variables in algebraic expressions stand for labels instead of quantities (McNeil et al, 2010; 

see also Küchemann, 1978, MacGregor & Stacey, 1997; Rosnick, 1981). 

 This problem differed in key ways from the items on the assessment that contained letter 

variables (i.e., 10 = z + 6, c + c + 4 = 16, m + m + m = m + 12 on Form 1). First, the problems on 

the assessment contained the equal sign, but the algebraic expression did not. Second, the 

problems on the assessment required students to solve for the value of the variable, but the 

algebraic expression required students to conceptually interpret the symbols without any 

calculation. Third, none of the problems on the assessment featured products symbolized by the 

juxtaposition of a variable and a coefficient (e.g., 3x), which is a more difficult symbolic form to 

understand relative to a stand-alone variable. Thus, this problem tapped students’ formal 

understanding of symbolic letter variables and their interpretation within an algebraic expression. 

 Responses were coded based on a system developed in previous research (McNeil, 

Weinberg, et al., 2010). A response was scored as correct (1) if the student indicated that the 

letters stood for the cost or price of the cakes and brownies (see Table 2 for examples). A second 

rater scored responses for 35% of the sample, and inter-rater agreement was high for coding 

responses as correct or incorrect (.95). 

Procedure 
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 Assessments were administered to whole classes using an alternating procedure (i.e., we 

alternated handing out Form 1 and Form 2 so the first student got Form 1, the second student got 

Form 2, the third student got Form 1, the fourth student got Form 2, etc.). This ensured that about 

the same number of each form was distributed in each class (nV1 = 114, nV2 = 115) and that the 

distribution would result in randomly equivalent groups taking the two forms (Kolen & Brennan, 

2004). The algebraic expression problem was printed as the final problem on a separate page of 

the assessment. The sessions lasted about 45 minutes. The groups assigned to different test forms 

were similar in terms of mean age (Form 1 = 13.0, Form 2 = 13.1), percent female (Form 1 = 

46%, Form 2 = 47%), and percent in pre-algebra (Form 1 = 63%, Form 2 = 62%). 

Data Analysis 

 We used a Rasch model to examine performance on the assessment. Rasch modeling is a 

one-parameter member of the item response theory (IRT) family (Bond & Fox, 2007). The Rasch 

model estimates item difficulty and student ability levels simultaneously, yielding the probability 

that a particular respondent will answer a particular item correctly (Rasch, 1993; Wright, 1977). 

We used Winsteps software (3.80.1; Linacre, 2013) to perform all IRT estimation procedures 

using default settings. Given our use of a common-item design, we applied a concurrent 

calibration procedure to ensure that the parameter estimates for each form were calibrated to the 

same scale (e.g., Kolen & Brennan, 2004). Because this approach assumes the common items 

function equivalently across groups (i.e., invariance), we conducted a check on this assumption 

by performing separate calibrations of each form and examining the relationship between 

difficulty estimates for common items across forms. The presence of invariance would be 

supported by a strong linear relationship between estimates. Specifically, we inspected a 

scatterplot and found the best fitting linear estimate comparing the estimates from Form 1 and 
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Form 2. As can be seen in Figure 1, the best-fitting line had a slope of 1.02, an intercept of .05, 

and all items were close to the regression line. This supports the invariance assumption and 

suggests that concurrent estimation of all items from both forms is warranted (Kolen & Brennan, 

2004; Linacre, 2016). Thus, all estimates discussed below are from the concurrent estimation (of 

53 total items, if anchors are not double counted) and can be interpreted against a common scale.  

Results 

 First, we examine the psychometric properties of the math equivalence assessment to 

determine whether it functions well for students in middle school. Second, we compare 

performance as a function of students’ current math course (pre-algebra vs. algebra). Finally, we 

describe performance on the algebraic expression item, and test whether students’ knowledge of 

math equivalence is correlated with their interpretation of the algebraic expression. 

Math Equivalence Assessment 

 Rasch model fit information supported the unidimensionality of the assessment, 

indicating that it largely tapped a single construct. Unidimensionality in Rasch modeling is often 

assessed by principal components analysis (PCA, e.g., Bond & Fox, 2007; Hattie, 1985; Smith, 

1996). Specifically, the model accounted for 45.6% of the variance in our data set (eigenvalue of 

43.6). The largest secondary factor accounted for 2.6% of the variance (eigenvalue of 2.5). The 

Rasch model can also be evaluated using infit and outfit statistics, which indicate different types 

of problematic items (Bond & Fox, 2007). Infit statistics detect unexpected responses to items 

with difficulty estimates close to respondents’ ability estimates. In contrast, outfit statistics tend 

to reflect the influence of unexpected responses to items that are far from participant’s ability 

level. All items on the assessment had good infit values within the range of 0.5 and 1.5 (Linacre, 

2016; Wright & Linacre, 1994). By contrast, 19 items had outfit statistics outside the .5 to 1.5 
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range, and 17 of those items were easy items with near-ceiling performance (M accuracy = 96.2 %, 

SD = 2.6%). These outfit results were perhaps to be expected given that the assessment was 

originally intended for elementary-school aged children and, as such, included several lower-

level items that 7th-9th grade students should complete easily. We followed the advice of Bond 

and Fox (2007) and Linacre (2016) and focused more on infit than on outfit measures. See Table 

3 for item difficulty estimates and fit measures. 

The PCA results along with infit indices support the use of Rasch analysis. As a 

supplementary analysis, we also conducted two sets of confirmatory factor analysis (CFAs) 

using MPlus software (Muthén & Muthén, 1998-2017) for each assessment version: (a) a 1-

factor model that included all items as loading on a single factor, and (b) a 3-factor model that 

separated items according to each of the three question types (structure, equal sign, and solve), 

while allowing each of the three factors to co-vary with the others. The results are summarized in 

Table 4. For both versions of the assessment, RMSEA for the 1-factor model was ≤.067 and 

essentially equivalent to the RMSEA for the 3-factor model (as indicated by nearly identical 

confidence intervals). Moreover, the ratio of chi-square to degrees of freedom was relatively low 

for the 1-factor model. Although the CFI for both the 1- and 3-factor models was low compared 

to a desired benchmark of about .9, this was probably due in part to the lower level of statistical 

dependence observed across items and in part due to the large number of items on each form. 

The low CFI can be interpreted as a sign that the single underlying dimension is not particularly 

strong, although that does not preclude the unidimensionality assumption being appropriate 

(indeed, CFI is not high for the 3-factor model either).  

On balance, our analyses suggest that the unidimensionality assumption proved adequate 

with the caveat that a number of items demonstrate some degree of misfit – primarily indicated 
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by outfit measures – due to items with low difficulty levels. This issue seems to be an inherent 

difficulty of using an assessment that includes measures for the lowest levels of our construct 

map with middle school students (e.g., solve _ + 5 = 9). Generally speaking, items with 

difficulties that are very low for the sample in question simply yield low information and can be 

prone to some sort of misfit. We briefly return to this issue when addressing limitations of our 

method in the discussion section. 

Beyond demonstrating adequate evidence for the unidimensionality assumption, the 

assessments were consistent and showed adequate capacity to resolve person ability and item 

difficulty estimates. Item reliability as assessed by the Rasch model was generally good (RI = 

.98), indicting that sample size was large enough to estimate item difficulty well (Linacre, 2016). 

Person reliability was (RP = .78) was just short of the normative cutoff of .80, indicating that 

while adequate, more items may be needed to adequately distinguish between high and low 

performers. Given that the measures were designed using a younger sample, it is noteworthy that 

the item and person reliabilities remained adequate with the current sample.  

 We also evaluated whether our hypothesized levels of difficulty matched the empirical 

estimates. Recall that we selected items to tap four different levels of knowledge, as outlined in 

the construct map (Table 1). The hypothesized level of difficulty for each item (1, 2, 3, or 4; see 

Appendix) correlated highly with the empirically-derived item difficulty estimates, Spearman’s 

r(52) = .88, p < .001. We further used a Wright map (Wilson, 2005) to visually inspect the 

difficulty of the items (see Figure 2). A Wright map has two columns, one for respondents and 

one for items. Respondents with higher ability estimates are near the top of the map and those 

with lower ability estimates are near the bottom. Similarly, items with higher difficulty estimates 

are near the top of the map and items with lower difficulty estimates are near the bottom. The 
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vertical line indicates the scale for the ability and difficulty estimates measured in logits (i.e., 

log-odds unit). Average difficulty was set to 0 logits. We added horizontal lines to visually 

highlight the clustering of items by hypothesized level. However, it should be explicitly noted 

that the construct is a continuous measure and that the link between student ability estimates and 

item difficulty estimates is a probabilistic one. Thus, the lines we added for clarity should not be 

interpreted as discrete stages.  

As shown on the Wright map and in Table 3, the items we had a priori categorized as 

Level 4 items proved to be the most difficult (i.e., clustered near the top of the Wright map). All 

of the Level 4 items had higher difficulty estimates than any of the Level 1, 2, or 3 items. The 

items we a priori categorized as Levels 1, 2, and 3 were somewhat less distinct, but tended to 

cluster in the expected order. Most Level 3 items had difficulty estimates near -1, Level 2 items 

had difficulty estimates near -2, and Level 1 items had difficult estimates near -2.5.  

There was a small set of items (9 out of 62, 14.5%) that did not function according to our 

hypothesized levels. Five were open-equation-solving items that were easier than expected. Two 

Level 2 items (8 = 6 + __, 7 = __ + 3) functioned more like Level 1 items. This occurred in prior 

work as well (Matthews et al., 2012; Rittle-Johnson et al., 2011), suggesting we need to re-

evaluate where these items fall on the construct map. Three Level 3 items (3 + 6 = 8 + __, __ + 2 

= 6 + 4, 5 + __ = 6 + 2) functioned more like Level 2 items, which could be due to error/noise or 

to these items functioning differently among this older, more experienced sample.  

There were four items that were harder than expected. Three were Level 1 items (pick a 

pair equal to 6 + 3 and judge 8 = 5 + 10 as true/false on both forms). However, these items’ 

difficulty estimates were rank ordered similarly to that reported in previous research (Matthews 

et al., 2012; Rittle-Johnson et al., 2011). The last was a Level 2 item, the misprinted solve item 
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on Form 1 (__ = 8 + 5 + 9), perhaps more difficult because it contained three addends instead of 

two. However, only four students missed this item suggesting it was still relatively easy. 

Overall, the assessment performed well, and the construct map seemed to apply to this 

older sample. Specifically, different item types with varying levels of difficulty were measured 

on a single scale and functioned in a way that matched the hypothesized construct map. We 

acknowledge a caveat to this point: The sample studied here is different from the sample in 

earlier studies (Matthews et al., 2012; Rittle-Johnson et al., 2011), so we cannot directly compare 

item difficulty estimates. Thus, to evaluate similarity of the construct map’s performance and 

applicability across studies with different age groups, we relied on the similarity of the rank 

orderings (i.e., rankings from low difficulty to high difficulty estimates) across samples. 

Math Equivalence Performance as a Function of Math Course 

Students performed well on the assessment (Macc = 79% [25 out of 31], SD = 14%), but 

only 2% of the sample scored at ceiling. An analysis based on percent correct revealed 

differences as a function of math course after controlling for age. Specifically, pre-algebra 

students scored significantly lower (M = 77%, SE = 1%) than algebra students (M = 83%, SE = 

2%), F(1, 226) = 4.45, p = .04, ηp
2 = .02. Analyses based on Rasch ability estimates supported 

these results. As shown on the Wright map, there was an approximately normal distribution of 

ability estimates. Further, ability estimates (M = 2.57, SD = 1.50, range = –1.56 to 6.66) were 

positively correlated with students’ self-reported expected grade in the class (A, B, C, D, or F), 

Spearman’s r(229) = .41, p < .001. Ability estimates also differed significantly by math course 

after controlling for age, F(1, 226) = 4.95, p = .03, ηp
2 = .02, such that pre-algebra students had 

lower ability estimates (M = 2.3, SE = 0.1) than algebra students (M = 2.9, SE = 0.2).  
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To further examine this group difference, we looked at the probability of success on 

items of different difficulty levels for students at different ability levels. The model allows us to 

calculate the probability of any participant’s success on any given item from log-odd units by 

using the following equation: 

!" #$%%&## = 1
1 +	&+(-+.)	, 

in which q is a participant’s ability estimate and d is the item difficulty estimate. First, we 

selected six items from Table 3: two items with the lowest and highest difficulty estimates and 

four items with difficulty estimates that represented each of the four levels on the construct map 

(e.g., items we a priori categorized as Level 1 had difficulty estimates near -2.5, so one item we 

selected had an empirically-derived difficulty estimate of -2.52). Second, we calculated the mean 

ability estimates for the pre-algebra group and the algebra group. Table 5 presents the probability 

of success for items at different difficulty levels for students at the mean ability level for each 

group. Importantly, the model predicts substantial differences in performance on typical Level 4 

items as a function of math course, but predicts few differences for lower level items, as the 

typical student in both groups is expected to have high probabilities of success.  

We qualitatively explored performance on three Level 4 items on which the differences 

between pre-algebra students and algebra students were particularly pronounced. The first item 

was a structure item: “17 + 12 = 29 is true. Without adding the 8, can you tell if 17 + 12 + 8 = 29 

+ 8 is true or false? How do you know?” Only 39% of pre-algebra students responded correctly 

compared to 64% of algebra students. A common correct response was to write, “You added the 

same amount to both sides so it’s still equal.” Students’ incorrect responses revealed key 

differences. Of the pre-algebra students who answered incorrectly, 47% selected false or don’t 

know (as opposed to true) indicating a conceptual misunderstanding. Their false/don’t know 
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selections were accompanied by explanations underscoring the fact that they thought adding the 

eights made the problem unequal (e.g., “if you add 8, it won’t equal the same,” “you’re adding 8 

so the answer will go up”). In contrast, of the algebra students who answered incorrectly, only 

30% were wrong because they selected false or don’t know. The other 70% indicated that the 

equation was still true, but they had difficulty explaining their selection without calculating each 

side (e.g., “both sides equal 37”). Thus, not only were algebra students more likely to solve the 

problem correctly than pre-algebra students, even their errors were more indicative of an 

emerging relational understanding of equivalence. 

The second item was an equal-sign item: “What does the equal sign mean in the 

statement: 1 quarter = 25 pennies?” Sixty-nine percent of pre-algebra students defined the equal 

sign relationally compared to 86% of algebra students. Common relational responses were to 

write, “the same as” or “the same amount of money.” The majority of non-relational responses 

did not necessarily reflect misconceptions, but were insufficient to convey that equality was 

understood rather than simply parroted back (e.g., “equal” “equal to” “they are equal”). 

However, some non-relational responses reflected a common, operational misconception of the 

equal sign, often prevalent among elementary school students (e.g., “it means the answer to the 

problem” “the total”). Indeed, of all the pre-algebra students’ incorrect responses, 17% of them 

were operational, compared to only 6% of algebra students’ incorrect responses. 

The third item with pronounced differences between groups was an open-equation-

solving item: “Solve for c in the following equation, c + c + 4 = 16.” Fifty-nine percent of pre-

algebra students solved this item correctly compared to 73% of algebra students. Most often, 

students did not show work and simply wrote 6 as their answer. However, some correct 

responses were accompanied by written work and indicated a formal algebraic strategy (e.g., 
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combining like terms to get 2c + 4 = 16, subtracting 4 on both sides, and dividing both sides by 

2). Twelve percent of pre-algebra students’ correct responses were solved using this algebraic 

strategy compared to 22% of algebra students’ correct responses. Incorrect responses were 

varied, but fell into one of four categories: blank/don’t know (33% of incorrect responses), 

answering 4 (30%), answering 12 (20%), or other (17%). The proportion of each type of 

incorrect response was similar for pre-algebra and algebra students. 

Overall, these results indicate that pre-algebra and algebra students did well on the math 

equivalence assessment. However, as expected, pre-algebra students had lower ability estimates 

than algebra students, and the Level 4 items were particularly key for capturing differences.  

Interpreting Algebraic Expressions 

 Overall, 52% of the students interpreted the algebraic expression correctly by indicating 

that the variables stood for the costs of the cakes and brownies. We used logistic regression to 

examine whether the likelihood of interpreting the expression correctly depended on the type of 

variable used (x-and-y vs. c-and-b) and current math course (pre-algebra vs. algebra). For 

students in pre-algebra, those in the x-and-y condition were significantly more likely to interpret 

the expression correctly than those in the c-and-b condition (59% vs. 36%), B = 0.94, SE = 0.34, 

p = .006, OR = 2.56. For students in algebra, those in the x-and-y condition and those in the c-

and-b condition were equally likely to interpret the expression correctly (55% vs. 66%), B = -

0.51, SE = 0.45, p = .25, OR = 0.60. This difference was reflected by a significant variable type 

by math course interaction, B = 1.45, SE = 0.56, p = .01, OR = 4.27. Thus, for pre-algebra 

students, the use of mnemonic letters interfered with their ability to conceptually interpret the 

expression, whereas algebra students exhibited a deeper conceptual understanding of the 

expression that was not influenced by the specific letter variables used. 
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 We also descriptively examined students’ errors. The most common error was to use the 

letters as labels for the objects (e.g., three cakes and four brownies) rather than as the cost of the 

objects, accounting for 41% of all errors. Other errors included writing a literal translation of the 

expression (e.g., “3 multiplied by x plus 4 multiplied by y;” 23% of errors), responding in vague, 

uninterpretable ways (e.g., “it is the equation;” 20% of errors), adding unlike terms (e.g., “it must 

be 7xy;” 9% of errors), or stating an inability to solve the problem (e.g., “I don’t know;” 6% of 

errors). The letters as labels error was more common for students in the c-and-b condition (46% 

of errors) than for students in the x-and-y condition (35% of errors).   

 Finally, we tested whether students’ knowledge of math equivalence was predictive of 

their interpretation of the algebraic expression. We used logistic regression to examine whether 

the likelihood of interpreting the expression correctly depended on empirically-derived estimates 

of student ability on the math equivalence assessment. We included ability estimates as the 

primary predictor, as well as math course, assessment form, and students’ age as control 

variables. Ability estimates were significantly predictive of success interpreting the algebraic 

expression, B = 0.31, SE = 0.10, p = .001, OR = 1.37. The remaining predictors were not 

significant when controlling for the others: math course, B = 0.53, SE = 0.38, p = .16, assessment 

form, B = 0.39, SE = 0.28, p = .16, and age, B = –0.07, SE = 0.21, p = .75. These results were 

consistent with our hypothesis that knowledge of math equivalence would be related to students’ 

conceptual understanding of algebraic variables.  

Recall that several items on the math equivalence assessment contained literal variables 

(e.g., “Solve for c in c + c + 4 = 16.”). To ensure that the association between math equivalence 

knowledge and interpretation of the algebraic expression did not depend on the items involving 

literal variables, we ran a secondary analysis. Specifically, we obtained empirically-derived 
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ability estimates on the math equivalence assessment items that remained after excluding the five 

items with variables (out of 52). Ability estimates were still significantly predictive of success 

interpreting the algebraic expression, B = 0.30, SE = 0.10, p = .002, OR = 1.35, and the 

remaining predictors were not significant when controlling for the others: math course, B = 0.54, 

SE = 0.38, p = .16, assessment form, B = 0.34, SE = 0.28, p = .22, and age, B = –0.07, SE = 0.21, 

p = .75. Thus, students’ knowledge of math equivalence – even when assessed without items 

using literal variables – was related to their conceptual interpretation of algebraic notation. 

Discussion 

Math equivalence is considered a “Big Idea” in mathematics as it lays a foundation for 

algebraic reasoning and for understanding math more generally (Charles, 2005; Jacobs et al., 

2007; Kieran, 1981; Knuth et al., 2006; MacGregor & Stacey, 1997; NCTM, 2000). Thus, 

measuring knowledge of math equivalence is of clear importance. The current study extended the 

construct-modeling approach to measuring symbolic equivalence knowledge in three ways. First, 

we demonstrated that the equivalence assessment and construct map applied beyond elementary 

school, performing well with an older cohort of algebra and pre-algebra students. Second, we 

documented differences in math equivalence knowledge between students in pre-algebra and 

algebra classes, which were primarily captured by the difficult Level 4 items. Third, we 

confirmed that students’ understanding of math equivalence was related to their interpretation of 

an algebraic expression, even after controlling for age and math course and after excluding the 

items containing variables on the math equivalence assessment. Below we outline the theoretical, 

practical, and methodological contributions of this research as well as potential future directions. 

The results of the current study verified the validity of the math equivalence construct 

map explicated by Rittle-Johnson and colleagues (2011; see also Matthews et al., 2012) within 
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an older and more mathematically experienced sample of middle school students. The items on 

the math equivalence assessment functioned according to the construct map, with key factors 

predicting item difficulty as hypothesized. This suggests that the difficulty of the equivalence 

construct has a stable order, supporting a key assumption of the Rasch model (Rasch, 1993; 

Wright, 1977). Further, this is a good indication of a generalizable assessment that can be used 

vertically, at least from early elementary school to middle school algebra. This has important 

practical applications because previous work demonstrates that middle school students continue 

to struggle with understanding math equivalence (Alibali et al., 2007; Jones, Inglis, Gilmore, & 

Dowens, 2012; Knuth et al., 2006; Li et al., 2008; McNeil et al., 2006; Renwick, 1932) thus 

highlighting the need for assessments that can both track students’ formal knowledge of math 

equivalence and serve as valid and reliable outcomes measures for intervention work. 

As in prior work, the ordering of the item difficulties on the math equivalence assessment 

confirms that the structure of an equation is a key indicator of complexity and is therefore likely 

to influence performance (e.g., Baroody & Ginsburg, 1983; Matthews et al., 2012; Powell, 

Kearns, & Driver, 2016; Rittle-Johnson et al., 2011; Weaver, 1973). Specifically, the greater the 

structure deviates from the standard operations-equals-answer structure, the more difficult the 

problem is likely to be. This is true regardless of the specific task. For example, Figure 2 shows 

that open-equation-solving items are not inherently more difficult than equal-sign-definition 

problems (or vice versa). Rather, the difficulty depends on the structure of the equation and the 

extent to which the required solution strategy demands engaging arithmetic principles of 

equivalence as opposed to simple calculation. This has potential practical implications for 

designing interventions focused on varying problem structures, rather than varying problem tasks 

per se. Indeed, this is consistent with intervention research that has facilitated understanding of 
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math equivalence by including practice with non-standard equation structures (e.g., 17 = 9 + 8; 

McNeil, Fyfe, & Dunwiddie, 2015; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 

2011) or instruction on the meaning of the equal sign in the context of non-standard equation 

structures (e.g., Fyfe & Rittle-Johnson, 2016; Fyfe, DeCaro, & Rittle-Johnson, 2014; Matthews 

& Rittle-Johnson, 2009; Perry, 1991; Powell & Fuchs, 2010). 

In addition to validating the construct map, the assessment had considerable resolving 

power to detect variability in student knowledge. Even though students did well overall, there 

were reliable knowledge differences between students in pre-algebra and algebra. In particular, 

the model predicted substantial differences in performance on typical Level 4 items. Students in 

algebra were in fact more likely to exhibit comparative relational understanding by reasoning 

about transformations that preserve equality without reverting to calculation (e.g., “if we know 

17 + 12 = 29, can we tell if 17 + 12 + 8 = 29 + 8 is true without adding?”, see Alibali et al., 2007; 

Matthews et al., 2012; Steinberg et al., 1991). These Level 4 items highlight that subtle 

differences not tapped by more typically-used math equivalence items remain important for 

assessing students’ knowledge of equivalence. Indeed, with the exception of defining the equal 

sign, the majority of past research has focused on items that tap understanding at Levels 1, 2, and 

3 of the construct map (e.g., Alibali, 1999; Baroody & Ginsburg, 1983; Li et al., 2008; McNeil & 

Alibali, 2005). From an item response theory perspective, the Level 4 items add important 

information about learners who have moved beyond the basic levels of equivalence knowledge. 

From a practical perspective, this suggests Level 4 items should be included in assessments of 

math equivalence knowledge in order to obtain a nuanced picture of student understanding.  

 The inclusion of Level 4 items also provided empirical evidence for a solid connection 

between knowledge of symbolic math equivalence and at least some aspects of formal algebra 
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(e.g., Alibali et al., 2007; Knuth et al., 2006; MacGregor & Stacey, 1997; Steinberg et al., 1991). 

Several Level 4 equation-solving items were basic algebra problems with an unknown variable 

(e.g., c + c + 4 = 16). As in prior work (Matthews et al., 2012), these items loaded highly on the 

math equivalence construct. That is, they fit well with the other items and functioned in 

predictable ways, even in this cross-section of pre-algebra and algebra students. This provides 

evidence that developing knowledge of algebra is strongly linked to knowledge of equivalence.  

We also generated new findings about the links between equivalence knowledge and 

interpretation of variables: knowledge of math equivalence was related to students’ conceptual 

interpretations of an algebraic expression that did not explicitly contain the equal sign. For pre-

algebra students, the use of mnemonic letters (c and b to stand for the cost of cakes and brownies 

as opposed to the more traditional x and y) interfered with their ability to conceptually interpret 

the expression (see McNeil et al., 2010). In contrast, algebra students exhibited a deeper 

understanding of the expression that was not influenced by the specific letter variables used. 

Importantly, students’ empirically-derived ability estimates on the math equivalence assessment 

predicted their likelihood of interpreting the algebraic expression correctly, even after controlling 

for their current math course, the letter variables used, and their age. This lends support to the 

notion that a nuanced understanding of math equivalence extends to the concept as a whole 

beyond the use of the formal “=” symbol. It supports the broader idea that students’ conception 

of math equivalence progresses from an operational view to a relational/structural view (e.g., 

Kieran, 1981; Sfard & Linchevski, 1994) and that where they are in this progression predicts 

their reasoning about expressions with variables on a formal algebra task. 

A final contribution of the current research is to reinforce the benefits of combining 

quantitative and qualitative methodological approaches in integrative ways. For example, many 
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of the Level 4 items required a qualitative coding of students’ written responses. It was often 

insufficient to know whether the student judged the equation as true or false. Rather, we had to 

take into account the student’s written explanation and to look for evidence of comparative 

relational understanding. These coding schemes were influenced heavily by qualitative work in 

mathematics education, such as that by Behr et al., (1980) and Carpenter et al. (2003). After the 

initial qualitative coding of student responses, a quantitative psychometric approach was applied 

(i.e., the Rasch model), which allowed us to obtain empirical estimates of item difficulties and 

student abilities. Finally, differences in item difficulties and student ability estimates helped to 

identify the items on which students varied in key ways, allowing us to take a closer, qualitative 

look at students’ errors on those items. Thus, this iterative process not only showed that the 

qualitative and quantitative analyses were fully compatible, but also provided greater insight into 

the structure of students’ knowledge than either approach alone.  

Despite the contributions of the current research, there are a number of limitations. First, 

although we provided some evidence for the validity of the assessment, we did not include 

additional measures that would allow us to assess discriminant validity (e.g., ensuring the 

assessment is not measuring a different construct). Further, the lack of additional measures of 

algebraic knowledge prevents us from providing a benchmark for assessing the strength of the 

correlation of equivalence knowledge with algebraic understanding. In future work, a 

comprehensive pretest of algebra knowledge would go much further both in terms of confirming 

the differences in skills among the two cohorts and in terms of charting the correlation between 

level of algebra proficiency and equivalence knowledge. These issues somewhat limit the 

conclusions we can draw, particularly in terms of the assessment’s utility in correlational data 

analysis. However, to our knowledge, there is currently no other existing psychometrically-
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validated criterion measure for assessing knowledge of math equivalence. Our work is intended 

to push the field on this end, and future work is needed to corroborate our inferences.  

Second, based on the previous measurement studies on this assessment (Matthews et al., 

2012; Rittle-Johnson et al., 2011), we opted to use a construct-modeling approach with a one-

parameter Rasch model. These methodological decisions were justified given our research aims, 

but we acknowledge that there are additional or alternative techniques that may enhance the 

measurement development process. For example, it is certainly possible that a two-parameter 

model would result in better model fit had we gathered a significantly larger sample that would 

allow us to use such a model. In the future, using one form of the assessment rather than two 

separate forms would reduce the sample size necessary to use a two-parameter model. Moreover, 

our analysis also does not allow us to directly compare the item difficulty estimates in this 

sample to those found in previous elementary-school samples. Thus, although we can examine 

whether performance in this older group supports the construct map and hypothesized order of 

difficulties, we cannot make explicit claims regarding the similarity of measurement properties 

across younger and older samples from different studies. Studies designed explicitly to facilitate 

vertical scaling across age groups would add more clarity on this end. Such studies could be 

specifically designed to deal with the fact that items that provide little information for one 

cohort, because they are very difficult or very easy for that cohort, might provide considerable 

information for another.  

Third, the generalizability of the results remains unknown given several design decisions. 

We used a convenience sample of pre-algebra and algebra students from two schools within the 

same geographical region. We did not collect a large array of individual-level demographic 

characteristics, and this limited our understanding of our sample’s representativeness to the 
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larger population. Future work with more diverse populations who are served with diverse 

curricula is necessary to get a measure of the generalizability of our finding. Also, we used a 

cross-sectional design allowing us to note differences between pre-algebra and algebra students. 

However, longitudinal studies will be necessary to track changes in math equivalence 

understanding over time. Moreover, we administered the assessment in one shot as part of a 

measurement research study. Future research should investigate its potential use for formative 

assessment in real classrooms to identify students with weak understanding and to assess 

changes in knowledge in response to intervention. Finally, we showed that math equivalence 

knowledge is related to students’ conceptual interpretations of an algebraic expression, but we 

relied on a single item to assess these interpretations. Future research could examine whether 

knowledge of math equivalence predicts performance on a more comprehensive assessment of 

variable understanding. 

Given the push to make algebra accessible to all students, it is imperative to measure 

emerging algebraic knowledge with valid, comprehensive assessments. In the current 

measurement endeavor, we did just that – we focused on the assessment of math equivalence 

knowledge beyond elementary school and provided empirical support for the link between 

knowledge of equivalence and formal algebraic reasoning in middle school students. 
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Appendix: Math Equivalence Assessment Items 
 

# Level Form 2 Item Form 1 Item 
  Equation-Structure Items (ST) 

1.A  1 8 = 5 + 10 (true or false?) 8 = 5 + 10 (true or false?) 
2. 2 3 = 3 (true or false?)  8 = 8 (true or false?) 
3. 2 6 = 6 + 0 (true or false?) 4 = 4 + 0 (true or false?) 
4. 2 7 = 3 + 4 (explain why true) 8 = 5 + 3 (explain why true) 
5.A 3 31 + 16 = 16 + 31 (true or false?) 31 + 16 = 16 + 31 (true or false?) 
6. 3 7 + 6 = 6 + 6 + 1 (true or false?) 3 + 1 = 1 + 1 + 2 (true or false?) 
7.A 3 6 + 4 = 5 + 5 (explain why true) 6 + 4 = 5 + 5 (explain why true) 
8. 4 67 + 86 = 68 + 85 (explain why true) 89 + 44 = 87 + 46 (explain why true) 
9. 4 8 + 2 + __ = 10 + __ 1 + 9 + __ = 10 + __ 
10. 4 If 17 + 12 = 29, does 17 + 12 + 8 = 29 

+ 8? (explain why) 
If 25 + 14 = 39, does 25 + 14 + 7 = 39 
+ 7? (explain why) 

11. 4 If 2 x 3 = 6, does 2 x 3 x 4 = 6 x 4? If 3 x 5 = 15, does 3 x 5 x 6 = 15 x 6?  
12.A 4 If 76 + 49 = 121, does 76 + 49 – 9 = 

121 – 9? (explain without subtracting) 
If 76 + 49 = 121, does 76 + 49 – 9 = 
121 – 9? (explain without subtracting) 

13. 4 2 x __ = 58, 8 x 2 x __ = 8 x 58 (why 
same number goes in the blanks) 

3 x __ = 45, 7 x 3 x __ = 7 x 45 (why 
same number goes in the blanks) 

  Equal-Sign Items (ES) 
14. 1 6 + 4 (identify an equal pair) 3 + 6 (identify an equal pair) 
15. 2 5 cents __ one nickel (select symbol 

that shows they are the same) 
10 cents __ one dime (select symbol 
that shows they are the same) 

16. 3 Is “the same as” a good definition of 
the equal sign? 

Is “two amounts are the same” a good 
definition of the equal sign? 

17.A 4 Which is best definition of equal sign? Which is best definition of equal sign? 
18.A 4 1 quarter = 25 pennies (define) 1 quarter = 25 pennies (define) 
19.A 4 What does the equal sign mean? What does the equal sign mean? 
  Open Equation-Solving Items (OE) 
20. 1 4 + __ = 8 __ + 5 = 9 
21. 2 8 = 6 + __ 7 = __ + 3 
22.A 3 3 + 6 = 8 + __ 3 + 6 = 8 + __ 
23. 3 __ + 2 = 6 + 4 5 + __ = 6 + 2 
24.A 3 7 + 6 + 4 = 7 + __ 7 + 6 + 4 = 7 + __ 
25.* 3 8 + __ = 8 + 6 + 4 __ = 8 + 5 + 9  
26. 3 6 – 4 + 3 = __ + 3 8 + 5 – 3 = 8 + __  
27.A 4 67 + 84 = __ + 83 67 + 84 = __ + 83 
28. 4 43 + __ = 48 + 76 __ + 55 = 37 + 54 
29 3 10 = z + 6 13 = n + 5 
30.A 4 c + c + 4 = 16 c + c + 4 = 16 
31. 4 m + m + m = m + 12 z + z + z = z + 8 
Note. A indicates anchor items, * indicates Form 1 item was intended to be __ + 9 = 8 + 5 + 9, 
but misprint renders it Level 2. All “Levels” were assigned a priori and hypothesized based on 
the construct map.
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Table 1 

Construct Map for Math Equivalence Knowledge 

Level Description Equation Structure Sample Items 

4 
Comparative 

Relational 
 

Successful with a variety 
of equation structures by 
comparing expressions on 
the two sides of the equal 
sign. Generate a relational 
definition of the equal sign. 

Operations on both 
sides with multi-
digit numbers or 
with multiple 
instances of a 
variable. 

ST 67 + 86 = 68 + 85 (true 
or false? explain why) 

EQ What does the equal 
sign mean? 

OE __ + 55 = 37 + 54 

3 
Basic 

Relational 

Successful with equation 
structures with operations 
on both sides of the equal 
sign. Recognize a 
relational definition of the 
equal sign as correct. 

Operations on both 
sides: 
a + b = c + d 
a + b – c = d + e 

ST 31 + 16 = 16 + 31 (true 
or false?) 

EQ 
Is “the same as” a good 
definition of equal sign? 
 

OE 5 + __ = 6 + 2 

2 
Flexible 

Operational 

Successful with equation 
structures that are 
compatible with an 
operational view of the 
equal sign. 

Operations on the 
right side: 
c = a + b 
No operations: 
a = a 

ST 4 = 4 + 0 (true or false?) 

EQ 
10 cents __ one dime 
(select correct symbol) 
 

OE 7 = __ + 3 

1 
Rigid 

Operational 

Successful with an 
operations-equals-answer 
equation structure. 
Generate an operational 
definition of the equal sign. 

Operations on the 
left side: 
a + b = c 

ST  5 + 2 = 7 (true or false?) 

EQ Identify a pair equal to 
3 + 6 

OE __ + 5 = 9 

Note. Table adapted from Rittle-Johnson et al. (2011, p. 87). Success includes the ability to 
solve, evaluate, and encode equations of a particular structure. ST = Equation-Structure Items, 
EQ = Equal-Sign Items, OE = Open Equation-Solving Items. 
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Table 2 
 
Examples of Students’ Interpretations of the Algebraic Expression 
 

Interpretations of the expression 4c + 3b 
Correct Interpretations 
     “The total cost of cakes and brownies” 
     “The amount of money you’ll pay for the cakes and brownies” 
     “The price of four cakes plus the price of three brownies” 
     “Four times the cost of one cake plus three times the cost of one brownie” 
Incorrect Interpretations 
     “Four cakes plus three brownies” 
     “The number of cakes and brownies I bought” 
     “It means you do 4 times c and 3 times b” 
     “That is the equation to find the answer” 
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Table 3 

Item Statistics for Mathematical Equivalence Assessment 

Construct 
Component # Hypothesized 

Level Item Name Item Example Mean 
Accuracy 

Observed 
item location  
(d, in Logits) 

Standard error 
of d estimate  

Infit 
MSQ 

Outfit 
MSQ 

Structure 1A 1 L1_Structure1_V1V2 8 = 5 + 10 (True or False) 0.96 -1.57 0.36 0.9544 0.6267 

Structure 2 2 L2_Structure2_V1 8 = 8 (True or False) 0.97 -2.07 0.61 1.0946 0.5365 

Structure 3 2 L2_Structure3_V1 4 = 4 + 0 (True or False) 0.96 -1.74 0.54 1.0287 1.3742 

Structure 4 2 L2_Structure4_V1 8 = 5 + 3 (Explain why True) 0.97 -2.03 0.62 0.7506 0.1427B 

Structure 5A 3 L3_Structure5_V1V2 31 + 16 = 16 + 31 (True or False) 0.96 -1.57 0.36 0.9006 0.5156 

Structure 6 3 L3_Structure6_V1 3 + 1 = 1 + 1 + 2 (True or False) 0.95 -1.25 0.45 1.0937 1.5785 

Structure 7A 3 L3_Structure7_V1V2 6 + 4 = 5 + 5 (Explain why True) 0.9 -0.37 0.25 0.7184 0.542 

Structure 8 4 L4_Structure8_V1 89 + 44 = 87 + 46 (Explain why True) 0.59 2.02 0.22 1.0444 1.153 

Structure 9 4 L4_Structure9_V1 1 + 9 + � = 10 + � (Explain which 
numbers could go in box) 

0.51 2.45 0.22 0.9688 0.8884 

Structure 10 4 L4_Structure10_V1 If 25 + 14 = 39, does 25 + 14 + 7 = 39 + 
7? (explain why) 

0.59 2.02 0.22 0.8435 0.7927 

Structure 11 4 L4_Structure11_V1 If 3 x 5 = 15, does 3 x 5 x 6 = 15 x 6? 
(explain why) 

0.49 2.55 0.22 0.9907 0.9444 

Structure 12A 4 L4_Structure12_V1V2 If 76 + 49 = 121, does 76 + 49 – 9 = 121 
– 9? (explain why without subtracting) 

0.47 2.74 0.16 0.8756 0.8002 

Structure 13 4 L4_Structure13_V1 3 x __ = 45, 7 x 3 x __ = 7 x 45 (explain 
why the same number goes in the blanks) 

0.15 4.89 0.31 0.9575 0.6901 

Equal-Sign 14 1 L1_EqualSign14_V1 3 + 6 (Identify an equal pair) 0.92 -0.73 0.38 1.2629 2.6169 

Equal-Sign 15 2 L2_EqualSign15_V1 10 cents __ one dime (select symbol that 
shows they are the same) 

0.96 -1.74 0.54 1.0759 0.4256 B 

Equal-Sign 16 3 L3_EqualSign16_V1 Is “two amounts are the same” a good 
definition of the equal sign? 

0.93 -0.89 0.4 0.9976 0.502 

Equal-Sign 17 4 L4_EqualSign17_V1 Which (of three options) is the best 
definition of the equal sign? 

0.67 1.56 0.23 1.0724 1.1386 
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Construct 
Component # Hypothesized 

Level Item Name Item Example Mean 
Accuracy 

Observed 
item location  
(d, in Logits) 

Standard error 
of d estimate  

Infit 
MSQ 

Outfit 
MSQ 

Equal-Sign 18A 4 L4_EqualSign18_V1V2 1 quarter = 25 pennies (define equal sign 
in this context) 

0.73 1.2 0.17 1.1439 1.0716 

Equal-Sign 19A 4 L4_EqualSign19_V1V2 What does the equal sign mean? 0.62 1.88 0.16 1.0508 1.0247 

Solving 20 1 L1_Solve20_V1 __ + 5 = 9 0.98 -2.52 0.74 1.1714 7.6052 B 

Solving 21 2 L2_Solve21_V1 7 = __ + 3 0.99 -3.26 1.02 0.9759 0.1575 B 

Solving 22A 3 L3_Solve22_V1V2 3 + 6 = 8 + __ 0.97 -2.04 0.43 0.8617 1.5427 B 

Solving 23 3 L3_Solve23_V1 5 + __ = 6 + 2 0.96 -1.74 0.54 0.8749 0.2063 B 

Solving 24A 3 L3_Solve24_V1V2 7 + 6 + 4 = 7 + __ 0.9 -0.31 0.24 1.0839 1.9299 B 

Solving 25 2 L2_Solve25_V1 __ = 8 + 5 + 9 0.94 -1.06 0.42 1.1763 5.1268 B 

Solving 26 3 L3_Solve26_V1 8 + 5 – 3 = 8 + __ 0.9 -0.46 0.35 0.9169 0.9855 

Solving 27A 4 L4_Solve27_V1V2 67 + 84 = __ + 83 0.81 0.61 0.19 0.8555 0.6237 

Solving 28 4 L4_Solve28_V1 __ + 55 = 37 + 54 0.75 0.98 0.25 1.0703 1.9032 B 

Solving 29 3 L3_Solve29_V1 13 = n + 5 0.92 -0.73 0.38 1.1461 1.0362 

Solving 30A 4 L4_Solve30_V1V2 c + c + 4 = 16 0.69 1.49 0.17 1.018 1.1409 

Solving 31 4 L4_Solve31_V1 z + z + z = z + 8 0.97 1.77 0.23 0.9584 0.8911 

Note. The data table is based on collapsing the data from the two forms of the revised assessment, with example items from one of the 
forms. A indicates anchor items. B Indicates items with outfit scores out of the desired range. These items tended to be items for which 
the current sample demonstrated ceiling effects. 
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Table 4 

Confirmatory Factor Analysis Exploring Unidimensionality  

 Version 1  Version 2 

Measure 1-Factor Model  3-Factor Model  1-Factor Model 3-Factor Model 

RMSEA .067 .062  .045 .043 

RMSEA CI  (.056, .077) (.051, .073)  (.038, .053) (.035, .051) 

CFI .725 .762  .762 .735 

Chi-Sq 

df  

652.831 

df = 434 

619.710 

df = 432 

 637.467 

df=434 

613.687 

df = 321 
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Table 5 

Probabilities of Success Based on Item Difficulty Estimates and Student Ability Estimates 

   Probability of Success 
 

  
Pre-Algebra 
Mean Ability 

Estimate,  
q = 2.3 

Algebra 
Mean Ability           

Estimate,  
q = 2.9 

Item 
Hypothesized 

Difficulty 
Level 

Difficulty 
Estimate, 

d 
  

7 = __ + 3 2 -3.26 0.996 0.998 

__ + 5 = 9 1 -2.52 0.992 0.996 

4 = 4 + 0 (true or false) 2 -1.74 0.983 0.990 

13 = n + 5 3 -0.73 0.954 0.974 

If 25 + 14 = 39, does 25 + 14 + 7 = 
39 + 7? (explain why) 4 2.02 0.574 0.711 

3 x __ = 45, 7 x 3 x __ = 7 x 45 
(explain why the same number 
goes in the blanks) 

4 4.89 0.069 0.119 

Note. Entries in the two rightmost columns represent the probabilities that the average student of 
a given ability estimate (2.3 or 2.9) will answer an item of a given difficulty estimate correctly. 
Difficulty level is the hypothesized level based on the construct map. Difficulty estimate is the 
empirically-derived difficulty estimates based on the Rasch analysis. 
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Figure 1. Scatterplot of anchor item difficulties for Form 1 vs. Form 2. Plots anchor item 
difficulty estimates in logits for both Forms of the assessment. Best fit line has a slope near one 
and an intercept near zero, indicating that the scales for each form are interchangeable. 
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Respondents Logits Items 
xxxxx 6   

xxxxxxxxxx  |   
  5.5   

xxxxxxxx  |   
xxxxx 5 L4_Structure13_V1; L4_Structure13_V2 

  |   
  4.5   

xxxxxxxxxxx |   
xxxxxxxxxxxx 4   

xxxxxxxxx |   
xxxxxxxxxxxxxx 3.5   
xxxxxxxxxxxxxx |   

xxxxxxxxxx 3 L4_Structure11_V2 
xxxxxxxxxxxxxxxxxxxx | L4_Structure11_V1; L4_Structure12_V1V2; L4_Structure10_V2 

xxxxxxxxxxxx 2.5 L4_Structure9_V2 
xxxxxxxxxxxxxxxxxxxxxxxx | L4_Structure9_V1; L4_Solve31_V2 

xxxxxxxxxxxxxx 2 L4_Structure10_V1; L4_Structure8_V1; L4_Structure8_V2 
xxxxxxxxxxxxxxx | L4_EqualSign17_V2; L4_Solve31_V1; L4_EqualSign_19_V1V2 

xxxxxxxxxxxxx 1.5 L4_EqualSign17_V1; L4_Solve30_V1V2  
xxxxxxxxx | L4_EqualSign18_V1V2 

xxxxxxx 1 L4_Solve28_V1; L4_Solve28_V2 
xxxxxxxx |  

x 0.5 L4_Solve27_V1V2 
xxx |   

x 0  
xxxx | L3_Solve24_V1V2; L3_Structure7_V1V2; L3_Structure6_V2 

xxxxx -0.5 L3_Solve26_V1; L3_EqualSign16_V2 
xxx | L3_Solve25_V2; L3_Solve29_V1; L1_EqualSign14_V1 

  -1 L3_Solve26_V2; L2_Structure3_V2; L3_EqualSign_16_V1 
x | L2_Solve25_V1; L3_Structure6_V1 

 -1.5 L3_Solve29_V2 

 x | L3_Structure5_V1V2; L1_Structure1_V1V2; L2_Structure2_V2  
  -2 L2_Structure3_V1; L2_EqualSign15_V1 L3_Solve23_V1; L22_Structure4_V2  
  | L2_Structure4_V1; L2_Structure2_V1; L3_Solve22_V2; L3_Solve23_V1  

  -2.5 L1_Solve20_V2; L1_EqualSign14_V2; L2_EqualSign15_V2 
  | L1_Solve20_V1  
  -3 L2_Solve21_V1; L2_Solve21_V2 

 
Figure 2. Wright map for the math equivalence assessment. Each x on the left represents one 
student. Each entry on the right represents one item. Item entries name the hypothesized 
difficulty level (e.g., L4), the item type (e.g., Structure), the item number (e.g., 13), and the form 
number (e.g., V1). The numbers on the vertical axis represent item difficulty and student ability 
estimates in logits. The horizontal lines are for visual, descriptive purposes only – the construct 
is theorized to be continuous. 


