Potential role of a ventral nerve cord central pattern generator in forward and backward locomotion in $\textit Caenorhabditis$ $\textit elegans$

C. elegans locomotes in an undulatory fashion, generating thrust by propagating dorsoventral bends along its body. Although central pattern generators (CPGs) are typically involved in animal locomotion, their presence in C. elegans has been questioned, mainly because there has been no evident circuit that supports intrinsic network oscillations. With a fully reconstructed connectome, the question of whether it is possible to have a CPG in the ventral nerve cord (VNC) of C. elegans can be answered through computational models. We modeled a repeating neural unit based on segmentation analysis of the connectome. We then used an evolutionary algorithm to determine the unknown physiological parameters of each neuron so as to match the features of the neural traces of the worm during forward and backward locomotion. We performed 1,000 evolutionary runs and consistently found configurations of the neural circuit that produced oscillations matching the main characteristic observed in experimental recordings. In addition to providing an existence proof for the possibility of a CPG in the VNC, we suggest a series of testable hypotheses about its operation. More generally, we show the feasibility and fruitfulness of a methodology to study behavior based on a connectome, in the absence of complete neurophysiological details.


Publication Date:
Aug 14 2018
Date Submitted:
Aug 10 2018
Pagination:
323-343
ISSN:
2472-1751
Citation:
Network Neuroscience
2
3
Note:
A freely accessible, full text version is available using the link(s) in External Resources.
External Resources:




 Record created 2018-08-10, last modified 2019-04-03


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)