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Abstract 
Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. 
Here we report observation of two topologically distinct phases supporting helical edge states in 
charge neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the 
magnetic field B^ and out-of-plane displacement field D are varied, we observe a phase diagram 
consisting of an insulating phase and two metallic phases, with 0, 1 and 2 helical edge states, 
respectively. These phases are accounted for by a theoretical model that relates their conductance 
to spin-polarization plateaus. Transitions between them arise from a competition among inter-layer 
hopping, electrostatic and exchange interaction energies. Our work highlights the complex 
competing symmetries and the rich quantum phases in few-layer graphene. 
 

Helical conductors, systems that have no bulk conduction but support dissipationless 
conducting states at their edges, may be engineered to realize Majorana statistics for quantum 
computation[1-4]. Underlying these remarkable systems are the non-trivial topology of electronic 
structure in the bulk, arising in part from the states associated with a valence band that are 
energetically raised above those of a conduction band. At the system boundary, this inversion is 
relaxed, leading to crossing of “hole-like” states of the valence band with “electron-like” states of 
the conduction band. In helical conductors, these states carry different spin quantum numbers, 
protecting the crossing and preventing a gap from opening in the spectrum of edge states. Such a 
band inversion is typically induced by large spin-orbit coupling in topological insulator materials 
at zero magnetic field[5-7]. Alternatively, they may manifest in semimetals with coexisting 
electron and hole pockets in the quantum Hall regime, though the mobility of such systems realized 
in traditional semiconductors is relatively low[8]. These systems are typically not tunable in situ, 
and helical conduction is only achieved over a narrow range of parameters. 
 The advent of few-layer graphene provides an alternative platform to realize helical edge 
states: as semi-metals, they host electron and hole states coexisting near the charge neutrality point 
(CNP)[9-15], while affording high mobility transport. Helical edge states are observed in 
monolayer graphene at the charge neutrality point (CNP) in the presence of large in-plane magnetic 
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fields[16], in bilayer graphene in displacement fields[17], and in trilayer graphene in modest 
magnetic fields[12].  
 Here we report observation of quantum phases supporting helical edge states in tetralayer 
graphene (4LG) at the CNP in a large magnetic field, arising from the competing effects of inter-
layer coherence, electrostatic polarization and exchange interaction. As the interlayer potential 
and magnetic field varies, we observe a series of quantum transitions among the phases that host 
2, 1 and 0 helical edge states on each edge, with quantum critical phase boundaries that move 
with parallel magnetic field. Our work highlights the complex competing symmetries in few-
layer graphene and the rich quantum phases in this seemingly simple system. As 4LG is a few-
layer graphite system that is tunable by gate, our observations may also be relevant to the highly 
resistive state observed in bulk graphite[18-23], whose underlying nature remains controversial 
to date. 
 The low energy electron bands of 4LG consist of two bilayer graphene (BLG)-like bands with 
light (m) and heavy (M) effective masses (Fig. 1a), which intersect and hybridize near the CNP 
due to next-nearest interlayer hoppings (Fig. S1a). The unique band structure and high tunability 
give rise to multiple Lifshitz transitions and multi-band transport when the magnetic field is absent 
or small[24-27]. We note that inversion (and thus valley) symmetry is always preserved in the 
absence of external fields.  
 We perform magneto-transport measurement on dual-gated 4LG devices with Hall bar and 
Corbino geometris[28] (Fig. 1b-c), with independently controlled charge density n and out-of-
plane displacement field D. The experiments were performed in a 3He cryostat employing lock-in 
techniques. The devices’ field-effect mobility ranges from 30,000 to 100,000 cm2/Vs. All 
measurements are taken at T=0.3 K unless specified otherwise. 
 Fig. 1d displays the longitudinal resistance Rxx=V23/I14 of a Hall bar device (H1) vs. n and 
perpendicular magnetic field B^ at D=0. Here the subscript numbers denote the terminals of 
voltage and current probes as indicated in Fig. 1b. A well-defined Landau fan is observed. At n=0 
and relatively low field, the device is highly resistive with Rxx ranging from 100 kW to 2 MW, 
similar to those observed in monolayer and bilayer graphene[16, 29-35]. However, when B^ 
exceeds ~30 T, Rxx drops precipitously to ~ 7 kW (Fig. 1e). This dramatic decrease in resistance 
has not been observed in other graphene systems, suggesting a field-induced insulator-metal 
transition.  
 To explore the electronic phases of the n=0 QH state, we measure Rxx vs. B^ and D, while 
maintaining overall charge neutrality. At large magnetic field, a striking phase diagram emerges 
(Fig. 2a). Guided by the boundaries between dramatically changed Rxx, we identify three different 
phases. The brown region, identified as phase I, indicates a highly insulating state (Rxx >50 kW). It 
develops at a moderate B^ (~6 T) and persists over the entire range of D (up to ±600 mV/nm) until 
B^=22 T. This insulating state transitions abruptly to conductive regions with Rxx~7-12 kW, or 
equivalently, conductance that is approximately 2-4 times the conductance quantum GQ=e2/h. 
Interestingly, the phase boundary that separates the insulating and conductive states is not 
monotonic in the B^-D plane, but has a “S” shape: the transition at B^=30 T occurs at D=0, and 
B^=22 T at D=280 mV/nm. Within the conductive regions, phase II (blue) has the lower resistance, 
with Rxx ranging from 4 to 8 kW. It starts at the transition point from phase I at B^~30 T and D=0, 
its phase boundary expanding linearly with B^, and re-appears at larger D. Lastly, the green region 
dominating the conducting regime at moderately low D has resistance ~12 kW, and is identified as 
phase III. Here we identify phases II and III as distinct phases, due to their conductances that are 
nearly quantized at low temperature to ~ 4e2/h and 2e2/h, respectively (Fig. 2d inset). Transitions 



between various phases as a function of D and B^ are illustrated by the line cuts in Fig. 2b-d. The 
point at B^ =30 T and D=0 constitutes a quantum critical point, apparently adjoining all three 
phases, which we denote Bcp. The overall phase diagram is observed in 4 Hall bar devices, and a 
similar partial phase diagram is mapped in additional 5 Hall bar devices. 
 The insulating (metallic) nature of phase I (II and III) is further confirm by their temperature 
dependence. As T increases, Rxx of phase I decreases from ~80 kΩ to ~40 kΩ; in contrast, in phase 
II, Rxx rises from ~6 kΩ at base temperature to become nearly as resistive as phase I at 40 K (Fig. 
2b). Similarly, at B^=25 T, phase II is indicated by the resistance valleys centered at |D|~280 
mV/nm, where Rxx increases from ~5 kΩ to ~40 kΩ as T is raised 20 K (Fig. 2c). At B^=34 T, Rxx 
of the resistive state for |D|>600 mV/nm drops with increasing temperature, signifying its 
insulating nature. 
 A central question in ascertaining the natures of these phases is whether conduction therein 
occurs via bulk or edge state transport, as Rxx in Hall bar devices contains contributions from both 
mechanisms. To address this question, we fabricated dual-gated devices with Corbino geometry 
(Fig. 1c), in which no physical edges connect the electrodes and therefore probe only bulk transport. 
The conductance difference between Corbino and Hall bar devices then originate solely from edge 
states. Fig. 3a plots the two-terminal conductance GCorbino(B^, D) from a Corbino device (C1). 
Phase I is insulating in both the Hall bar and Corbino devices; the absence of a gap transition point 
suggests a first-order transition, in agreement with Hartree-Fock calculations (see Fig. 4 and 
associated discussion). Interestingly, GCorbino(B^, D)~0 while Rxx ~h/4e2 for phase II, indicating an 
insulating bulk and high edge state conductance. In phase III, a somewhat higher GCorbino~0.5e2/h 
suggests that bulk excitations have a relatively small gap; nevertheless, much of the conductance 
in phase III is also contributed by edge states. Similar phase diagrams are observed in 3 Corbino 
devices. 

To better visualize the edge conductance, we note that the longitudinal conductance of the 
Hall bar device is a sum of the edge and bulk conduction, GHall=Gedge+sbulk(W/L), while GCorbino 
arises sole from the bulk, 𝐺!"#$%&" =
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devices H1 and C1, we plot Gedge(B^, D) in Fig. 3b, thus explicitly demonstrating that the edge 
conduction approaches 4e2/h in phase II and 2e2/h in phase III. In addition, non-local 
measurements also yield conductance values that agree with Landauer-Buttiker formalism for 2 
and 1 helical edge states, respectively[36]. Taken together, these data sets unambiguously establish 
edge state conduction in phase II and III.  
 Lastly, we investigate how the phases are affected by an in-plane magnetic field B||. Fig. 3c 
displays Rxx(B^, D) of H1 that is tilted at an angle q=49°. The general features resemble that in Fig. 
2a with B||=0; however, the entire phase boundaries shift towards lower B^. For instance, the 
transition between phase I and II at D=0 now takes place at B^=27 T. Such Zeeman-induced 
reduction of the critical magnetic field B^c indicates spin-ordering. A detailed Zeeman energy 
dependence of transition at n=D=0 from phase I to II for another Hall bar device H2 is plotted in 
Fig. 3d, showing the quantum critical point B^cp moves to lower values as larger B|| is applied. In 
fact, B^cp decreases linearly with total applied field Bt, suggesting that the transition point is 
linearly dependent on the Zeeman energy (Fig. 3d). 



 To understand the phase diagram and the origin of the metallic states, we first calculate the 
LL spectrum of 4LG using a non-interacting k·p continuum model[26, 27]. The hopping 
parameters are extracted by fitting calculated spectra to experimentally observed LL crossing 
points, and are consistent with previous reports[27, 37]. Fig. 4a displays the calculated LL 
spectrum at D=0, where each LL is valley- and spin-degenerate, labeled by spin (↑ and ↓), valley 
(K and K’), orbital (N=-1 and 0), and bands with heavy (M) and light (m) masses. Red and blue 
curves denote electron-like and hole-like LLs, respectively.  
 Of most relevance to our studies are two LLs (M, 0) and (m, -1), between which the CNP of 
4LG resides. At low field, the electron-like (m, -1) LL has higher energy than the hole-like (M, 0) 
LL. Taking Zeeman splitting into account, the n=0 state is an insulator with spin and valley 
polarization at D=0 (Fig. 4b); upon the application of D, this state crosses over smoothly into a 
layer-polarized insulator. This insulating phase at lower field (B^<22 T) and over the entire range 
of accessible D corresponds to phase I.  
 The insulating phase I, however, can transition into a metallic phase, if the hole-like (M, 0) 
LL surpasses the electron-like (m, -1) level, thus leading to counter-propagating edge states. Such 
a “band inversion” can be achieved by tuning either B or D. First, at D=0, the different dispersions 
of these two LLs in B^ lead to their crossing at sufficiently high magnetic fields. Fig. 4b plots the 
spin-split LL spectra E(B^) at D=0 near the crossing points, assuming a g-factor of 2. At B^=30 T, 
the (m, -1, ↑) and (M, 0, ↓) LLs cross; the two valley-degenerate hole-like and two electron-like 
edge states disperse in opposite directions at the sample edge, giving rise to magnetic field-induced 
helical edge states that counterpropagate with opposite spin polarizations. This metallic phase 
corresponds to phase II with ~4e2/h conductance. 
 To examine the effect of D, we calculate the LL spectra at constant B^ while varying the 
interlayer potential Δ (Fig. 4c-d). Here Δ is the actual potential difference between the top and 
bottom layers of 4LG, which, because of screening, is typically reduced by a factor of 5-7 from 
Dd, the experimentally imposed potential difference[27] (d~1 nm is the thickness of 4LG). Δ 
breaks the inversion symmetry and lifts the valley degeneracy, and the different dispersion of 
valley-split LLs in D gives rise to new crossing points.  
 Two representative E(Δ) spectra below and above B^cp=30 T are shown in Fig. 4c-d, where 
the K and K’ LLs are represented by solid and dashed lines, respectively. For instance, at  
B^=25 T (Fig. 4c), the hole-like (M, 0, K’, ↓) level is elevated above the electron-like (m, -1, K, ↑) 
when D exceeds 13 mV, giving rise to the conductive phase III, where there is only one “inverted 
LL”, hence its conductance is ~2e2/h. Further increase of D above ~20 mV causes these two LLs 
to cross again, leading to the re-entrance of phase I. These two crossing points are labeled by 
hollow and solid circles in Fig. 4c, respectively. For B^>30 T, the high magnetic field alone is 
sufficient to induce the “band inversion” at D=0, and raising Δ gives rise to two distinct LL 
crossings. The first crossing occurs between (M, 0, K, ↓) and (m, -1,K’, ↑), labeled by solid triangle 
in Fig. 4d, yielding a transition from phase II to III, where the number of hole-like LLs above the 
Fermi level is reduced from 2 to 1. The n=0 state reverts to a layer-polarized insulator when 
sufficient Δ is applied to fully valley-polarize the charge carriers, incurring (m, -1, K, ↑) crosses 
back with (M, 0, K’, ↓), as indicated by the solid circle. 
 We reproduce the phase diagram in Fig. 2a by calculating E (Δ) at different B^, and plot the 
crossing points in the B^-Δ space (Fig. 4e), using the same symbols as in Fig. 4b-c to denote 
different LL crossings. The resulting phase diagram captures prominent features of the 
experimental data, most notably the sharp phase boundaries separating phase II from I and III. 
However, the single-particle model cannot account for the re-emergence of the low resistance state 



(phase II) at large B^ and intermediate D, suggesting the enhanced effect of interactions, e.g. 
exchange terms which favor spin-polarization.      
 To account for interaction effects, we introduce a minimal set of one-body and interaction 
terms, and perform Hartree-Fock (HF) calculations (see [28] for details). A typical phase diagram 
analysis is depicted in Fig. 4f. Comparing to the non-interacting result, it exhibits a richer structure 
and accounts for additional experimental features, including the re-entrance of high conduction 
phase for intermediate D, and smearing of the multi-critical point at B^~30 T and D=0 due to 
interaction-induced degeneracy lifting of the single particle levels. Two particularly robust phases 
emerge from the calculations: (a) a low-B spin-singlet state (Sz = 0); it is largely determined by the 
one-body part of our model, and dominated by the competition between the one-body term (g2) 
that favors layer-coherence and D that favors layer-polarization. Here 8 states of the form 
|+;𝑁	𝑠⟩2 = cos 5"

'
|𝑎; 𝑁	𝑠⟩ + sin 5"

'
|𝑎 + 2;𝑁	𝑠⟩ are occupied, where a=1, 2, s=↑, ↓ and N=0, 1 

are layer, spin and orbital LL indices. The layer-polarization angles θa vary with D, from θa= π/2 
for D®0 to θa =0 in the high D limit. Throughout this phase, both bulk and edge charge excitations 
are gapped and the system is an insulator, corresponding to phase I. (b). the second phase is a high-
B partially spin-polarized phase with Sz = 2 that is stabilized by interactions, where each orbital 
hosts four occupied single-electron states of the form|𝑎 = 1, 3; 𝑁 ↑⟩, |+;𝑁 ↓⟩6 and |+;𝑁 ↓⟩'. 
This ground-state corresponds to phase II, and has a bulk gap, but supports gapless helical edge 
modes protected by Sz conservation. The resulting edge-dominated conductance G~2Sze2/h=4e2/h 
is compatible with the blue regions of Fig. 2a.  
 Interestingly, at large B and moderately low D, a phase with Sz=1 appears, followed by the re-
emergence of phase II with Sz=2 (Fig. 4f). These phases have 1 and 2 pairs of helical edge states, 
respectively. The precise boundaries of the less conducting Sz=1 state in the phase diagram (which 
appears compatible with the green regions in Fig. 2a) depend sensitively on the parameters of our 
model. 
 Finally, in narrower regions of the phase diagram, the HF analysis yields more complex states 
formed by a coherent superposition of various states |𝑎; 𝑁	𝑠⟩. These coherent states are zero 
temperature insulators; their continuous nature of the transitions into them suggest relatively small 
stiffnesses associated with the broken U(1) symmetries they host[38], hence small edge and bulk 
gaps and associated enhanced transport at non-vanishing T. The emergence of these broken 
symmetries can account, for example, for the enhanced transport observed at large B and 
intermediate D in the Corbino geometry. Further investigation of 4LG’s phase diagram with 
refined parameters and measurements are warranted to fully understand the competing symmetries 
at the CNP. 
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Fig. 1. (a) Low energy band structure E(kx) of 4LG in the absence of external fields. Red and blue 
lines denote BLG-like bands with light (m) and heavy (M) effective masses, respectively. (b-c) 
Schematics of Hall bar and Corbino devices, respectively, and propagation of 1 pair of helical 
edges therein. (d) Landau fan Rxx(n, B^) for a Hall bar device (H1) at D=0. The unit is kW, in 
logarithmic scale. Blue numbers indicate filling factors. (e) Rxx(n) at D=0 and B^=29 and 32 T, 
respectively. 
 

 
  



Fig. 2. (a) Electronic phase diagram Rxx(D, B^) at n=D=0, different phases are labeled I, II and III. 
The unit is kW. Dotted box indicates the region shown in Fig. 3a-b. (b) Rxx(B^) at n=D=0 at selected 
temperatures. (c-d) Temperature dependence of Rxx(D) of n=0 state, at B^=25 T and 34 T, 
respectively. Inset in (d): Zoom-in plot of Rxx(D) at T=0.3 K, showing near quantization of phase 
I and II to 4e2/h and 2e2/h, respectively. 
 
 
 
  



Fig. 3. (a) Conductance in unit of e2/h for a Corbino device (C1) as a function of D and B^, 
respectively. (b) Conductance contributed by edge states. (c) Phase diagram Rxx(D, B^) measured 
in tilt magnetic field at an angle q=49°, in unit of kW. The red dotted curves outline the phase 
boundaries in Fig. 2a at q=0 and B||=0. (d) Rxx(D, B^) at n=D=0 measured at different tilt angles 
from device H2. Inset: location of the quantum critical point in the plane of perpendicular (B^) and 
total (Bt) magnetic field from 4 different devices. Solid line is a linear fit to the data. 
 
 
   



Fig. 4. (a) Spin- and valley-degenerate LL spectrum of 4LG at D=0. Red and blue lines denote 
electron and hole-like LLs, respectively. Numbers between the LLs indicate filling factors. LLs 
are labeled by heavy (M) or light (m) mass BLG-like band, orbital index and spin polarization. (b) 
Similar to (a), except for 25<B^<45T and each LL is spin split by a g-factor of 2. (c-d) LL energy  
vs. interlayer potential D at B^=25 and 35 T, respectively. Circles and triangles indicate crossing 
points of electron and hole-like LLs that form the n=0 state. (e) Single particle phase diagram in 
Δ-B^ plane, using the same symbols for LL crossing points in (c-d). (f) Theoretical phase diagram 
by taking electronic interactions into account. PP1 and PP2 refer to two distinct ground states with 
partial spin polarization that support no conducting edges, with spin canting next-layer coherence 
and nearest-neighbor interlayer coherence, respectively[28]. 
 
 


