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Optimal Information Design for Search Goods†

By Michael Choi, Kyungmin Kim, Marilyn Pease*

The fast-growing literature on informa-
tion design offers novel insights into many 
economic problems. Its impact has been par-
ticularly strong in the field of industrial orga-
nization. Information design has deepened our 
understanding of monopoly pricing (Roesler 
and Szentes 2017), price discrimination 
(Bergemann, Books, and Morris 2015), auc-
tion design (Bergemann and Pesendorfer 2007; 
Bergemann, Brooks, and Morris 2017), advertis-
ing (Anderson and Renault 2006), and refunds 
(Hinnosaar and Kawai 2018), to name a few.

Most studies, however, consider experience 
goods (whose true values are revealed only 
through consumption), and there has been little 
work on search goods (whose true values are 
available upon inspection).1 The only excep-
tion we are aware of is Anderson and Renault 
(2006), who study the monopoly problem for 
search goods with advertising.2 This asymmetry 
is in part because search goods present a unique 
technical challenge. With experience goods, a 
(risk-neutral) consumer makes a purchase deci-
sion only based on her conditional expectation. 
Therefore, the economic effects of information 
provision can be directly assessed through its 
effects on the distribution of conditional expec-
tations. With search goods, however, a consumer 

1 This fundamental distinction between experience goods 
and search goods is due to Nelson (1970).

2 Several recent papers (e.g., Au 2018; Hu and Dogan 
2018; Hulko and Whitmeyer 2018) study an information 
design problem in a search environment. However, to our 
knowledge, all of them still consider experience goods.
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uses the provided information to make a search 
(visit) decision, but necessarily relies on her 
true value for her purchase decision. Therefore, 
the economic role of information is indirect and 
more subtle.3

As one step toward filling this gap, we con-
sider the basic monopoly problem for search 
goods. Given an information structure (signal), 
the seller sets a price. Then, a (representative) 
consumer observes a signal realization and the 
price, and decides whether to visit the seller or 
not. If the consumer visits, then she learns her 
true value (either ​0​ or ​1​) and decides whether 
to purchase or not. In the same environment, 
Anderson and Renault (2006) provide a general 
characterization for the seller-optimal signal. 
We focus on the consumer-optimal signal (and 
the seller-worst signal).

Our model can be interpreted as a search-good 
counterpart to Roesler and Szentes (2017). As 
in their paper, unit-elastic demand plays an 
important role in our analysis. However, there 
are three notable differences. First, unit elastic-
ity is generated by the conditional distribution 
given the high value, not by the unconditional 
distribution. Second, the consumer-optimal sig-
nal and the seller-worst signal, which always 
coincide in Roesler and Szentes (2017), may 
differ depending on search costs. Finally, neither 
the seller-worst signal nor the consumer-optimal 
signal yields efficient trade. All of these differ-
ences are precisely due to the nature of search 
goods: a consumer’s search decision depends on 
available information, but her purchase decision 
is based on her true value.

3 A similar problem arises with an experience good if a 
consumer can return the good after purchase. Hinnosaar and 
Kawai (2018) study this problem and characterize the set 
of all feasible outcomes when the seller can optimally set a 
refund policy.
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I.  The Model

A seller supplies a product at zero marginal 
cost. A (representative) consumer is uncertain 
about the product’s value ​v​ to her, which can 
be either ​0​ or ​1​. It is common knowledge that 
the ex ante probability that ​v  =  1​ is equal to 
​​μ​0​​  ∈ ​ (0, 1)​​. The timing of the game is as fol-
lows. First, the seller sets a price ​p​. Then, the 
consumer receives a signal ​s​ about her true value ​
v​ according to a function ​π : ​{0, 1}​ × S → ​[0, 1]​​,  
where ​π​(v, s)​​ denotes the probability that the 
consumer observes ​s​ conditional on true value ​
v​. The information structure ​π​ is known to both 
players. Given ​p​ and ​s​, the consumer decides 
whether to visit the seller or not; she must visit 
in order to purchase. If the consumer visits, she 
pays ​c ​ (>  0)​​.4 For expositional simplicity, we 
focus on the case where ​c  < ​ μ​0​​​. If the consumer 
pays ​c​, then she learns her true value, regardless 
of her prior information, and decides whether to 
purchase or not. If trade occurs, then the seller 
gets a payoff of ​p​ and the consumer receives a 
payoff of ​v − p​. If not, both players get payoffs 
of ​0​. Both players are risk neutral and maximize 
their expected utility.

As is well-known, the information structure 
can be conveniently reformulated in terms of 
the distribution of posteriors. Specifically, each 
function ​π​ induces a particular distribution ​G​ 
of posteriors ​μ  =  Pr​{v  =  1 | s}​​. Conversely, 
for any Bayes-plausible distribution ​G​ (i.e., 
​​∫  ​ 

 ​​μ 𝑑G​(μ)​  = ​ μ​0​​​), there exists a signal function ​
π​ that yields ​G​. In what follows, we directly 
refer to ​G​ as a signal.

We seek to characterize the consumer- 
optimal signal (that maximizes consumer sur-
plus) and the seller-worst signal (that minimizes 
the seller’s expected profit).5 To formally define 
consumer surplus and profit, observe that given 

4 In the literature, this visit (search) cost is typically inter-
preted as either the transportation cost of visiting the seller 
or the cost of inspecting the product. In our environment 
where the consumer’s information varies, while ​c​ is fixed, 
the former (transportation-cost) interpretation is more suit-
able than the latter (inspection-cost) interpretation.

5 In our environment, the seller-optimal signal is perfectly 
informative, which enables the seller to entice the consumer 
to visit only when her true value is ​1​ and charge the high-
est possible price ​1 − c​. Since this leaves no surplus to the 
consumer, it is also a consumer-worst signal. See Anderson 
and Renault (2006) for a general characterization of the 
seller-optimal signal.

posterior ​μ​ and price ​p​, the consumer visits if 
and only if

​μ​(1 − p)​ − c  ≥  0  ⇔  μ  ≥ ​ μ 
¯

 ​​(p)​  ≡ ​   c _ 
1 − p

 ​.​

In addition, since each consumer discovers her 
true value upon visit, she purchases only when ​
v ≥ p​, which holds if and only if ​v = 1​ for  
​p  ∈ ​ (0, 1)​​. These conditions imply that the 
consumer’s expected payoff and the probability 
that she purchases the product are, respectively, 
equal to

	​​ v​B​​​(μ)​  =  max​{0, μ​(1 − p)​ − c}​

and

	 D​(μ)​  = ​​ {​​​
0
​ 

if μ  < ​ μ 
¯

 ​​(p)​
​  

μ
​ 

if μ  ≥ ​ μ 
¯

 ​​(p)​
​​.​

Consumer surplus and profit (producer surplus) 
then are defined as follows:

	​ CS​(G, p)​  = ​ ∫ ​μ 
¯

 ​​(p)​​ 
1
 ​​ ​ (μ​(1 − p)​ − c)​ dG​(μ)​

and

	 PS​(G, p)​  =  p​∫ ​μ 
¯

 ​​(p)​​ 
1
 ​​  μ 𝑑G​(μ)​.​

II.  Optimal Information Design

A. Feasible Conditional Distributions

Since the consumer’s search decision is based 
on belief ​μ​, while her purchase decision depends 
on true value ​v​, it is convenient to define the 
following conditional distributions: for each 
​v  ∈ ​ {0, 1}​​, let ​​G​v​​​ denote the distribution of 
posteriors conditional on ​v​. In other words, 
​​G​v​​​(μ)​​ is the probability that the consumer’s 
belief is below ​μ​ when her true value is ​v​. Given ​
G​, both ​​G​0​​​ and ​​G​1​​​ can be uniquely derived 
through the following two consistency require-
ments: for all ​μ  ∈ ​ [0, 1]​​,

(1)  ​G​(μ)​  = ​ (1 − ​μ​0​​)​ ​G​0​​​(μ)​ + ​μ​0​​ ​G​1​​​(μ)​,

and ​
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(2)  ​μ  = ​ 
​μ​0​​ d​G​1​​​(μ)​

  _______________________   
​μ​0​​ d​G​1​​​(μ)​ + ​(1 − ​μ​0​​)​d​G​0​​​(μ)​

 ​  ⇔

	​ 
μ
 _ 

1 − μ ​  = ​ 
​μ​0​​ _ 

1 − ​μ​0​​
 ​ ​ 
d ​G​1​​​(μ)​

 _ 
d ​G​0​​​(μ)​

 ​.​

The former simply states that the unconditional 
distribution is a weighted sum of the conditional 
distributions, while the latter is Bayes’ rule.

Since the seller is concerned only with even-
tual purchase (that is, consumers who visit and 
purchase), ​​G​1​​​ plays an important role in the sub-
sequent analysis. The following lemma provides 
a simple necessary and sufficient condition for 
the feasibility of ​​G​1​​​.

LEMMA 1: A distribution function ​​G​1​​​ is fea-
sible (i.e., there exists a feasible unconditional 
distribution function ​G​ that generates the con-
ditional distribution function ​​G​1​​​) if and only if

(3)� ​Φ​(​G​1​​)​ ≡ 1 − ​ 
​μ​0​​ _ 

1 − ​μ​0​​
 ​ ∫ ​ 

1 − μ
 _ μ  ​ 𝑑​G​1​​​(μ)​ ≥  0.​

If ​​G​1​​​ first-order-stochastically dominates ​​G​ 1​ ′ ​​, 
then ​Φ​(​G​1​​)​  ≥  Φ​(​G​ 1​ ′ ​)​​.

PROOF:
Given ​​G​1​​​, ​​G​0​​​ is uniquely determined by (2). 

By construction, equation (1) always holds and ​​
G​0​​​ is weakly increasing. Therefore, for the fea-
sibility of ​​G​1​​​, it is necessary and sufficient that

​Φ​(​G​1​​)​  ≡ ​ G​0​​​(0)​  =  1 − ​∫ 
0+​ 
1
 ​​ d​G​0​​​(μ)​ 

	 =  1 − ​ 
​μ​0​​ _ 

1 − ​μ​0​​
 ​ ∫ ​ 

1 − μ
 _ μ  ​ d​G​1​​​(μ)​  ≥  0.​

The last claim is true because ​​(1 − μ)​ /μ​ 
falls in ​μ​ and thus the integral in equation 
(3) decreases as ​​G​1​​​ increases in the sense of 
first-order stochastic dominance. ∎

Intuitively, in order to induce posterior ​μ​, 
the measures (densities) of high- and low-value 
consumers need to be balanced in such a way 
that Bayes’ rule (2) holds. The only exception is 
when ​μ  =  0​, as this posterior is induced when-
ever ​d​G​1​​​(μ)​ /d​G​0​​​(μ)​  =  0​. Therefore, for the 
feasibility of ​​G​1​​​, it is necessary and sufficient 
that the corresponding distribution ​​G​0​​​ is such 
that ​​G​0​​​(0)​  =  Φ​(​G​1​​)​  ≥  0​. In addition, if ​​G​1​​​ 
increases in the sense of first-order stochastic 

dominance, then the mass of ​v  =  0​ receiv-
ing a signal larger than 0 decreases, so that 
​​G​0​​​(0)​  =  Φ​(​G​1​​)​​ increases.

B. Unit-Elastic Distributions

The following class of conditional distri-
butions plays a crucial role in determining the 
seller-worst and consumer-optimal signals.6

DEFINITION 1: For ​​μ 
¯

 ​  ∈ ​ (0, 1)​​ and ​​   μ​ ​ (≥ ​ μ 
¯

 ​)​​, 
let ​​G​ 1​ 

​μ 
¯

 ​,​   μ​​​ be a distribution function such that

​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​(μ)​  = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

0

​ 

if μ  < ​ μ 
¯

 ​

​   1 − ​ 
​μ 
¯

 ​ − c
 _ ​μ 

¯
 ​ ​ ​ 

μ
 _ μ − c ​​  if μ  ∈ ​ [​μ 

¯
 ​, ​   μ​)​.​   

1

​ 

if μ  ≥ ​    μ​

 ​​​

We let ​​G​​ ​μ 
¯

 ​,​   μ​​​ denote the corresponding uncondi-
tional distribution.

A special property of ​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​ is that it induces 
unit-elastic demand for the seller. To see this 
formally, let ​​ p 

¯
 ​​(μ)​​ be the inverse function of​ 

​ μ 
¯

 ​​(p)​​, that is, ​μ​(1 − ​ p 
¯

 ​​(μ)​)​  =  c​ for all ​
μ  ∈  [0, 1]​. Then, the probability that the con-
sumer eventually purchases is given by

​​μ​0​​​(1 − ​G​ 1​ 
​μ 
¯

 ​,​   μ​​​(​μ 
¯

 ​​(p)​)​)​ = 

​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

​μ​0​​

​ 

if p < ​ p 
¯

 ​​(​μ 
¯

 ​)​

​   ​μ​0​​ ​ 
​μ 
¯

 ​ − c
 ____ ​μ 

¯
 ​ ​ ​ 

​μ 
¯

 ​​(p)​
 ______ 

​μ 
¯

 ​​(p)​ − c
 ​ = ​μ​0​​ ​ 

​ p 
¯

 ​​(​μ 
¯

 ​)​
 ____ p ​ ​  if p ∈ ​[​ p 

¯
 ​​(​μ 
¯

 ​)​, ​ p 
¯

 ​​(​   μ​)​]​.​    

0

​ 

if p > ​ p 
¯

 ​​(​   μ​)​

 ​​​

It is then clear that ​PS​(​G​​ ​μ 
¯

 ​,​   μ​​, p)​  = ​ μ​0​​​ p 
¯

 ​​(​μ 
¯

 ​)​​  
for all ​p  ∈ ​ [​ p 

¯
 ​​(​μ 
¯

 ​)​, ​ p 
¯

 ​​(​   μ​)​]​​ ​​(and PS​(​G​​ ​μ 
¯

 ​,​   μ​​, p)​ 

< ​ μ​0​​​ p 
¯

 ​​(​μ 
¯

 ​)​ whenever p  ∉ ​ [​ p 
¯

 ​​(​μ 
¯

 ​)​, ​ p 
¯

 ​​(​   μ​)​]​)​​.

The conditional distribution ​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​ is not neces-
sarily feasible, however. The next lemma shows 
that ​​G​ 1​ 

​μ 
¯

 ​,​   μ​​​ is feasible if and only if ​​μ 
¯

 ​​ is above a 
certain threshold ​​μ​​ ∗​​ and ​​   μ​​ is sufficiently close 
to ​1​.

6 We take the same approach as Roesler and Szentes 
(2017), who also define and utilize a similar class of distri-
butions. The main difference is that they work with uncondi-
tional distributions ​G​, not with conditional distributions ​​G​1​​​.  
This difference is precisely due to the fundamental distinc-
tion between experience and search goods.
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LEMMA 2: There exists ​​μ​​ ∗​  ∈ ​ (c, ​μ​0​​)​​ and a 
strictly decreasing function ​ϕ : [​μ​​ ⁎​, 1)  → ​ [0, 1]​​ 
such that ​​G​ 1​ 

​μ 
¯

 ​,​   μ​​​ is feasible if and only if ​​μ 
¯

 ​  ≥ ​ μ​​ ∗​​ 
and ​​   μ​  ∈ ​ [ϕ​(​μ 

¯
 ​)​, 1]​​.

PROOF:
It can be directly shown that ​​G​ 1​ 

​μ 
¯

 ​,​   μ​​​ increases in 
the sense of first-order stochastic dominance as 
either ​​μ 

¯
 ​​ or ​​   μ​​ increases. The monotonicity result 

(that ​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​ is feasible if and only if both ​​μ 
¯

 ​​ and ​​ ̄  μ​​ 
are above certain thresholds) then follows from 
Lemma 1. See the online Appendix for a proof 
that ​​μ​​ ⁎​  ∈ ​ (c, ​μ​0​​)​​ and ​ϕ​ is strictly decreasing 
in ​​μ 

¯
 ​​. ∎

An important implication of this result is that, 
since ​​ p 

¯
 ​​(μ)​​ is increasing in ​μ​, ​​ p 

¯
 ​​(​μ​​ ⁎​)​​ is the low-

est price that can be implemented by a condi-
tional unit-elastic distribution. In fact, as shown 
shortly, ​​ p 

¯
 ​​(​μ​​ ⁎​)​​ is the lowest implementable price 

by any feasible distribution. In other words, it is 
impossible to induce the seller to offer a lower 
price than ​​ p 

¯
 ​​(​μ​​ ⁎​)​​.

C. Seller-Worst Signal

As explained above, given ​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​, the seller’s 
(maximized) profit is equal to ​PS​(​G​​ ​μ 

¯
 ​,​   μ​​, ​ p 

¯
 ​​(​μ 
¯

 ​)​)​  
= ​ μ​0​​​ p 

¯
 ​​(​μ 
¯

 ​)​​. Therefore, among the class of 
unit-elastic conditional distributions, the signal 
that minimizes ​​ p 

¯
 ​​(​μ 
¯

 ​)​​ also minimizes the seller’s 
profit. Since ​​ p 

¯
 ​​(​μ 
¯

 ​)​  = ​ (​μ 
¯

 ​ − c)​/​μ 
¯

 ​​ is increas-
ing in ​​μ 

¯
 ​​, the seller’s profit is minimized when ​​

μ 
¯

 ​  = ​ μ​​ ⁎​​. The following result shows that ​​G​​ ​μ​​ ⁎​,1​​ 
is the seller-worst signal in the set of all feasible 
signals.

THEOREM 1: The seller’s expected profit is 
always minimized by ​​G​​ ​μ​​ ⁎​,1​​.

PROOF:
 It suffices to show that for any feasible ​​G​1​​​,  

there exists a conditional unit-elastic distribu-
tion that produces the same profit. Fix any feasi-
ble ​G​, and denote by ​p​ the seller’s optimal price 
under ​G​. Let ​​p ′ ​  ≡  PS​(G, p)​/​μ​0​​​, and consider ​​

G​ 1​ 
​μ 
¯

 ​​(​p ′ ​)​,1
​​. Clearly, ​​p ′ ​​ is optimal to the seller under ​​

G​ 1​ 
​μ 
¯

 ​​(​p ′ ​)​,1
​​, and ​PS​(​G​ 1​ 

​μ 
¯

 ​​(​p ′ ​)​,1
​, ​p ′ ​)​ = ​μ​0​​ ​p ′ ​ = PS​(G, p)​.​ 

Therefore, it suffices to show that ​​G​ 1​ 
​μ 
¯

 ​​(​p ′ ​)​,1
​​ is 

feasible. Since ​p​ is the seller’s optimal price 
under ​G​, it must be that

​PS​(G, ​p ′ ​)​  = ​ μ​0​​​(1 − ​G​1​​​(​μ 
¯

 ​​(​p ′ ​)​)​)​​p ′ ​ 

	 ≤  PS​(G, p)​  for any ​p ′ ​.​

In addition, by the structure of conditional 
unit-elastic distributions, we have

​PS​(​G​​ ​μ 
¯

 ​​(​p ′ ​)​,1​, ​p ′ ​)​  = ​ μ​0​​​(1 − ​G​ 1​ 
​μ 
¯

 ​​(p)​,1
​​(​μ 
¯

 ​​(​p ′ ​)​)​)​​p ′ ​ 

	 = ​ μ​0​​ ​p ′ ​  =  PS​(​G​​ ​μ 
¯

 ​​(​p ′ ​)​,1​, p)​,  

whenever ​p ′ ​  ∈ ​ [​ p 
¯

 ​​(​μ 
¯

 ​)​, ​ p 
¯

 ​​(1)​]​.​

These conditions imply that ​​G​1​​​(μ)​ ≥ ​G​ 1​ 
​μ 
¯

 ​​(p)​,1
​​(μ)​​  

for all ​μ  ≥ ​ μ 
¯

 ​​(p)​​, that is, ​​G​ 1​ 
​μ 
¯

 ​​(p)​,1
​​(μ)​​ first- 

order-stochastically dominates ​​G​1​​​. The result 
then follows from Lemma 1. ∎

For the intuition behind this result, con-
sider the intermediate problem of finding the 
seller-worst signal among those that induce the 
same price. Given ​p​, the seller’s profit is min-
imized when her demand is minimized. In our 
search-good problem, this is equivalent to max-
imizing ​​G​1​​​(​μ 

¯
 ​​(p)​)​​, the probability that the con-

sumer does not visit when her true value is ​1​. 
With no other constraint, this is accomplished 
by inducing only two beliefs, ​​μ 

¯
 ​​(p)​​ and ​1​, in the 

same way as in the optimal Bayesian persua-
sion problem (Kamenica and Gentzkow 2011). 
Under such a signal, however, ​p​ is no longer the 
seller’s optimal price, as a slightly lower price 
would discretely increase demand. In other 
words, the size of ​​G​1​​​(​μ 

¯
 ​​(p)​)​​ is constrained 

by the fact that ​p​ must remain optimal for the 
seller. A conditional unit-elastic distribution ​​
G​ 1​ 

​μ 
¯

 ​,​   μ​​​ is the solution to this constrained optimi-

zation problem: if ​​G​1​​​(​μ 
¯

 ​​(p)​)​  > ​ G​ 1​ 
​μ 
¯

 ​​(p)​,​   μ​
​​(​μ 
¯

 ​​(p)​)​​,  
then there necessarily exists ​​p ′ ​ ​ (<  p)​​ that gives 
a higher profit to the seller. This is the funda-
mental reason why the seller-worst signal is  
unit-elastic.
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D. Consumer-Optimal Signal

Now we characterize the signal that maxi-
mizes consumer surplus. We first show that, as 
for the seller-worst signal, we can restrict atten-
tion to conditional unit-elastic distributions.

PROPOSITION 1: If ​G​ is feasible and induces the 
seller to charge ​p  ∈ ​ (0, 1 − c)​​, then ​​G​​ ​μ 

¯
 ​​(p)​,1​​ is 

also feasible and produces larger consumer sur-
plus than ​G​, namely ​CS​(​G​​ ​μ 

¯
 ​​(p)​,1​, p)​ ≥ CS​(G, p)​​.

PROOF:
We first show that without loss of generality 

we can assume that ​G​ has no probability mass in ​​
(0, ​μ 

¯
 ​​(p)​)​​ (i.e., ​G​(0)​  =  G​(​μ 

¯
 ​​(p)​−)​​). Suppose 

that ​G​(0)​  <  G​(​μ 
¯

 ​​(p)​−)​​. Then, there exists an 
alternative feasible distribution ​​G ′ ​​ that yields 
the same consumer surplus but has no atom in 
​​(0, ​μ 

¯
 ​​(p)​)​​. Specifically, define ​​G ′ ​​ so that if 

​μ  ≥ ​ μ 
¯

 ​​(p)​​, then ​​G ′ ​​(μ)​  =  G​(μ)​​, while if 
​μ  < ​ μ 

¯
 ​​(p)​​, then

	​​G ′ ​​(μ)​  =  G​(​μ 
¯

 ​​(p)​−)​ − ​∫ 
0+​ 
​μ 
¯

 ​​(p)​−
​​ x 𝑑G​(x)​/​μ 

¯
 ​​(p)​.​

In words, ​​G ′ ​​ spreads the mass in ​​(0, ​ μ 
¯

 ​​(p)​)​​ to ​
0​ and ​​ μ 

¯
 ​​(p)​​. By construction, ​​G ′ ​​ is feasible 

(​​μ​0​​  =  ∫ μ 𝑑​G ′ ​​(μ)​​) and strengthens the sell-
er’s incentive to post ​p​. Moreover, ​CS​(​G ′ ​, p)​  
=  CS​(G, p)​​.

Now suppose that ​G​ has no probability mass 
in ​​(0, ​ μ 

¯
 ​​(p)​)​​. Then, by the same argument as 

in the proof of Theorem 1, we can show that 

​​G​1​​​(μ)​  ≥ ​ G​ 1​ 
​ μ 
¯

 ​​(p)​,1
​​(μ)​​ for all ​μ  ≥ ​  μ 

¯
 ​​(p)​​ and, 

therefore, ​​G​ 1​ 
​ μ 
¯

 ​​(p)​,1
​​ first-order-stochastically dom-

inates ​​G​1​​​. Lemma 1 then implies that if ​G​ is fea-
sible, so is ​​G​​ ​ μ 

¯
 ​​(p)​,1​​.

In order to show ​CS​(​G​​ ​ μ 
¯

 ​​(p)​,1​, p)​ ≥ CS​(G, p)​​,  
notice that if ​G​ has no probability mass in 
​​(0, ​ μ 

¯
 ​​(p)​)​​ and the seller charges ​p​, then con-

sumer surplus can be rewritten as

​CS​(G, p)​  = ​ μ​0​​​(1 − p)​ − ​(1 − G​(0)​)​c 

	 = ​ μ​0​​​(1 − p)​ − ​(1 − ​(1 − ​μ​0​​)​ ​G​0​​​(0)​)​c,​

as all consumers with value ​1​ eventually pur-
chase, all consumers with posteriors strictly 
above ​0​ search, and ​G​(0)​  = ​ (1 − ​μ​0​​)​ ​G​0​​​(0)​​ 

by Bayes’ rule. Then, by the above result and 
Lemma 1,

​​G​0​​​(0)​  =  Φ​(​G​1​​)​  ≤  Φ​(​G​ 1​ 
​ μ 
¯

 ​,1
​)​  = ​ G​ 1​ 

​μ 
¯

 ​,1​​(0)​ 

	 ⇒  CS​(G, p)​  ≤  CS​(​G​​ ​μ 
¯

 ​​(p)​,1​, p)​.​ ∎

Clearly, given ​​G​ 1​ 
​μ 
¯

 ​,​   μ​​​, it is optimal for the 
consumer that the seller charges the lowest 
optimal price ​​ p 

¯
 ​​(​μ 
¯

 ​)​​. Then, as in the proof of 
Proposition 1,

​CS​(​G​​ ​μ 
¯

 ​,​   μ​​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​ 

  = ​μ​0​​​(1 − ​ p 
¯

 ​​(​μ 
¯

 ​)​)​ − ​(1 − ​(1 − ​μ​0​​)​ ​G​ 0​ 
​μ 
¯

 ​,​   μ​​​(0)​)​c 

  = ​μ​0​​ ​ 
​μ 
¯

 ​ − c
 _ ​μ 

¯
 ​ ​  ln​(​ 

​μ 
¯

 ​
 _ ​μ 

¯
 ​ − c ​  ​ 

​   μ​ − c
 _ ​   μ​ ​ )​.​

The second equality is based on the explicit 
solution for ​​G​ 0​ 

​ μ 
¯

 ​,​   μ​
​​(0)​​, which is obtainable from 

(2) and the specific structure of ​​G​ 1​ 
​ μ 
¯

 ​,​   μ​
​​. Clearly, ​

CS​(​G​​ ​ μ 
¯

 ​,​   μ​​, ​ p 
¯

 ​​(​ μ 
¯

 ​)​)​​ is always increasing in ​​ ̄  μ​​. 
Since increasing ​​ ̄  μ​​ also slackens the feasibility 
constraint (Lemma 2), we can restrict attention 
to the case where ​​   μ​  =  1​. This implies that the 
problem reduces to identifying the value of ​​ μ 

¯
 ​​ 

that maximizes

(4)  ​CS​(​G​​ ​μ 
¯

 ​,1​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​ 

	 = ​ μ​0​​ ​ 
​μ 
¯

 ​ − c
 _ ​μ 

¯
 ​ ​  ln​(​ 

​μ 
¯

 ​
 _ ​μ 

¯
 ​ − c ​​(1 − c)​)​.​

Based on this observation, the following 
result fully characterizes the consumer-optimal 
distribution.7

THEOREM 2: Let ​​c​​ ⁎​  ≡ ​ μ​0​​​(e − 2)​ /​(e − 2​μ​0​​)​​  
and ​​μ​​ ⁎⁎​  ≡  ec /​(e − 1 + c)​​. If ​c  ≤ ​ c​​ ∗​​, then ​​
G​​ ​μ​​ ⁎​,1​​ maximizes consumer surplus, while if ​
c  ∈ ​ (​c​​ ⁎​, ​μ​0​​)​​, then ​​G​​ ​μ​​ ⁎⁎​,1​​ maximizes consumer 
surplus.

7 We make an implicit assumption that under the 
consumer-optimal signal, the seller offers the lowest price 
among all optimal prices. Note that this assumption is not 
necessary for the seller-worst signal, and if this assumption 
fails, then the consumer-optimal signal does not exist.
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PROOF:
​CS​(​G​​ ​μ 

¯
 ​,1​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​​ in (4) is single-peaked in ​​μ 
¯

 ​​ 
and maximized when ​​μ 

¯
 ​  = ​ μ​​ ⁎⁎​​. This means that 

if ​​μ​​ ⁎​  ≥ ​ μ​​ ⁎⁎​​, then ​∂ CS​(​G​​ ​μ 
¯

 ​,1​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​ / ∂ ​μ 
¯

 ​  ≤  0​ 

for all ​​μ 
¯

 ​  ≥ ​ μ​​ ⁎​​ and, therefore, ​CS​(​G​​ ​μ 
¯

 ​,1​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​​  
is maximized when ​​μ 

¯
 ​  = ​ μ​​ ⁎​​. Otherwise, 

​CS​(​G​​ ​μ 
¯

 ​,1​, ​ p 
¯

 ​​(​μ 
¯

 ​)​)​​ is maximized when ​​μ 
¯

 ​  = ​ μ​​ ⁎⁎​​.
It remains to show that ​​μ​​ ⁎​  ≥ ​ μ​​ ⁎⁎​​ if and only 

if ​c  ≤ ​ c​​ ⁎​​. Recall that ​​μ​​ ⁎​​ satisfies

​Φ​(​G​ 1​ 
​μ​​ ⁎​,1​)​  =  − ​ 

​μ​0​​ − ​μ​​ ⁎​
 _ 

​μ​​ ⁎​​(1 − ​μ​0​​)​
 ​ 

	 + ​ 
​μ​0​​ _ 

1 − ​μ​0​​
 ​ ​ 
​μ​​ ⁎​ − c

 _ 
​μ​​ ⁎​ c

  ​ ln​(​ 
​μ​​ ⁎​​(1 − c)​

 _ 
​μ​​ ⁎​ − c

  ​)​  =  0.​

The desired result can be obtained from this 
implicit function by recognizing that ​​c​​ ⁎​​ is the 
unique cost in ​​(0, ​μ​0​​)​​ at which ​​μ​​ ⁎​  = ​ μ​​ ⁎⁎​​ and 
showing that when ​c  = ​ c​​ ⁎​​,

  ​​  
d​μ​​ ⁎⁎​

 _ 
dc

  ​  = ​ 
​(e − 1)​ ​​(e − 2 ​μ​0​​)​​​ 2​

  ______________  
e ​​(e − ​μ​0​​ − 1)​​​ 2​

 ​ 

	 > ​ 
​​(e − 2 ​μ​0​​)​​​ 2​

  ___________  
e ​​(e − ​μ​0​​ − 1)​​​ 2​

 ​  = ​ 
d​μ​​ ⁎​

 _ 
dc

 ​.​ ∎

The consumer-optimal signal has two notable 
features. First, it induces excessive search: the 
consumer pays to visit even if her true value is ​
0​ and, therefore, she will not purchase for sure. 
This is obviously detrimental to consumer sur-
plus ex post but necessary to improve consumer 
surplus ex ante: if the consumer visits only when 
her true value is ​1​ (i.e., ​μ  =  1​), then the seller 
charges ​1 − c​ and, therefore, leaves no con-
sumer surplus. In other words, ex post regret is 
unavoidable to reduce the seller’s price. Note 
that this is similar to the result in Roesler and 
Szentes (2017) that the consumer-optimal sig-
nal induces the consumer to purchase even if her 
true value falls short of the price.

Second, the signal that minimizes the seller’s 
price, ​​G​​ ​μ​​ ⁎​,1​​, is not necessarily the consumer- 
optimal signal. This is because the consumer- 
optimal signal must balance inducing a lower 
price and reducing search expenditures. If ​
c​ is rather small, then minimizing the sell-
er’s price is more beneficial to the consumer 

than avoiding excessive search and, therefore, 
​​μ 
¯

 ​  = ​ μ​​ ⁎​​ is optimal. If ​c​ is sufficiently large, 
however, the marginal cost of excessive search 
outweighs the corresponding marginal benefit 
(of further lowering the price). In this case, it 
is beneficial to discourage the consumer from 
visiting by giving some mass of ​v  =  0​ a pos-
terior of ​0​, which comes at the cost of increas-
ing ​​μ 

¯
 ​​ and therefore ​p​ as well. This makes the 

consumer-optimal signal differ from the signal 
that minimizes the seller’s price. Clearly, this 
divergence between the seller-worst signal and 
the consumer-optimal signal stems from the 
unique nature of search goods: in Roesler and 
Szentes (2017) (and also in other related stud-
ies), they always coincide.

III.  Conclusion

In this paper, we characterize the seller-worst 
signal and the consumer-optimal signal for the 
monopoly pricing problem with search goods. 
Our results complement Anderson and Renault 
(2006), who characterize the seller-optimal sig-
nal for the same environment, and Roesler and 
Szentes (2017), who study the experience-good 
counterpart to our problem. Whereas we think 
that this specific contribution is not marginal, 
our main aim is to bring attention to search 
goods, which have received disproportionately 
less attention than experience goods from the 
recent literature on information design. Our 
analysis takes the natural first step toward 
incorporating search goods into information 
design. We think that there are many interest-
ing information-design problems for search 
goods, as there have been for experience 
goods.
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