Emergent Kink Statistics at Finite Temperature

In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newly introduced discrete kink model. Using Monte-Carlo simulations as well as analytic methods, we demonstrate how kinks become abundant at low temperatures. These results may shed useful insights on how topological phenomena may occur in QCD.


Publication Date:
Aug 02 2017
Date Submitted:
Aug 10 2018
Pagination:
324-341
ISSN:
0375-9474
Citation:
Nuclear Physics A
A966
Note:
A freely accessible, full text version is available using the link(s) in External Resources.
External Resources:




 Record created 2018-08-10, last modified 2019-04-03


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)