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A general theory of measurement context effects, called Hilbert space multidimensional (HSM) theory, 

is presented. A measurement context refers to a subset of psychological variables that an individual 

evaluates on a particular occasion. Different contexts are formed by evaluating different but possibly 

overlapping subsets of variables. Context effects occur when the judgments across contexts cannot be 

derived from a single joint probability distribution over the complete set of values of the observed 

variables. HSM theory provides a way to model these context effects by using quantum probability 

theory, which represents all the variables within a low dimensional vector space. HSM models produce 

parameter estimates that provide a simple and informative interpretation of the complex collection of 

judgments across contexts. Comparisons of HSM model fits with Bayesian network model fits are 

reported for a new large experiment, demonstrating the viability of this new model. We conclude that the 

theory is broadly applicable to measurement context effects found in the social and behavioral sciences. 

 

Keywords: quantum cognition, Bayesian networks, social cognition, context effects, contingency table 

analysis 

 

 
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 

 
AQ: 25 

This article presents a general theory for predicting and under- 

standing the effects that measurement contexts have on human 

judgments. A measurement context refers to a set of psychological 

variables or attributes that an individual is required to evaluate on 

a particular occasion (Dzhafarov & Kujala, 2016). Different con- 

texts are formed by evaluating different but possibly overlapping 

subsets of variables. A measurement context effect occurs when 

the judgments about the variables or attributes are affected by the 

measurement context in which they appear (Bruza, 2016). This can 

happen when the interpretation or meaning of some attributes 

change across measurement contexts (see, e.g., Schwarz & Sud- 

man, 2012). Context effects raise problems for multivariate anal- 

ysis because traditional approaches rely on the use of a single joint 

probability space based on the observed variables, which turns out 

to be invalid when context effects are present. We propose an 

approach to analyzing different measurement contexts based on 

quantum probability theory, which was originally developed to 

account for variables that have contextual dependencies. 

The article is organized as follows. First, we provide a more 

precise definition of context effects after considering an illustrative 

example. Second, we empirically review context effects reported 

previously in the literature. Third, we introduce the general prin- 
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ciples of quantum probability theory as well as the justification for 

adopting these principles. Fourth, we present the steps for building 

a Hilbert space multidimensional model of measurement context 

effects. Fifth, we present an example application with a new large 

empirical data set. Last, we present a summary and describe 

possible extensions of the theory. 

 

Defining Measurement Context Effects 

Before we provide a rigorous definition for measurement con- 

text effects, we present an illustrative example. There are numerous 

studies of context effects like this example in the social science 

literature (see Harrison & McLaughlin, 1993; Pouta, 2004, for just 

a few empirical examples). Suppose that the relations among four 

psychological variables, labeled A, H, I, and U are being investi- 

gated. These variables could represent judgments about the attrac- 

tiveness, honesty, intelligence, and unusualness of political candi- 

dates obtained from a large social media source (see, e.g., 

Steinberg, 2001); or patient symptoms concerning anxiety, hyper- 

activity, irritation, and unruliness obtained from a large medical 

record source; or comments about whether a food product is 

appetizing, healthy, interesting, and unfamiliar obtained from a 

large consumer choice source (see, e.g., Popper, Rosenstock, 

Schraidt, & Kroll, 2004). It may be difficult or impossible to obtain 

judgments from individuals on all four attributes simultaneously 

and suppose that only single attributes or pairs of attributes are 

judged at a time. For example, the single attribute A may be judged 

in isolation, or the pair AI or the pair AH may be judged together. 

Each single or pair of measurements provides a context for re- 

questing judgments. How does the context (e.g., pairs being mea- 

sured) affect the judgments that people make? 
Various different kinds of context effects can occur with this 

kind of investigation. For an illustration of several of them in one 
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T1, simple (but artificial) example, consider Table 1.1 In this case, 
Fn1,AQ:each  judgment  is  answered  with  a  yes  (Y)  or  no  (N) answer. 

hold for the other three random variables. The distributions pro- 

duced by each context can be predicted from the 4 – way distri- 

AQ: 3 Judgments about a single variable in isolation forma1– way table 

with two frequencies for answers Y, N; a pair of attributes forms  

a 2 X 2 table containing relative frequencies for pairs of answers 

YY, YN, NY, NN. Table 1 presents 10 different contexts formed 

by two different 1 – way tables and eight different 2 X 2 tables. 

bution by marginalization. For example, the relative frequency 

p(YN | AI) is predicted by the theoretical marginal (pooled over the 

joint probabilities that are not involved) 

7r(A = 1 n I = -1) = �� 7r(A = 1 n H = x n I = -1 n U = z). 

Each cell within a row is a relative frequency of answers, and the x z 
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cells within a row sum to 1. For example, the 1 – way table labeled 

H is a context produced by measuring H alone, and the relative 

frequency of yes when H is asked alone equals .369. For another 

example, the pair of attributes AI forms the context for the 2 X 2 

table produced by measuring A and I together with A first, and the 

relative frequency of yes to attribute A and then no to attribute I 

equals .175. Order may matter, and so the context AH with A 

presented first is different from the context HA with H presented 

first. For simplicity, we included only two of all four possible 1 – 

way tables, and eight of all 12 possible 2 – way tables. These 10 

tables are sufficient to make our points. 

Note that context effects occur when we compare the 1 – way 

tables to the marginal probabilities in the 2 – way tables. For 

example, the relative frequency of Y to H equals .369 when asked 

alone, but it equals (.345 + .125 = .470) when asked together with 

attribute A in the pair AH. The table also contains context effects 

produced by order of presentation. For example, the relative fre- 

quency of YY equals .345 to the pair AH when A is asked first, but 

it equals .286 for the pair HA when H is asked first. Other kinds  

of context effects are described later. 

It is commonly assumed that the distributions in Table 1 can be 

derived from a single joint distribution across the four observed 

variables. In particular, categorical data models apply to only a 

single joint distribution (Agresti & Katera, 2011) of the four 

observed variables. In this case, a single 4 – way joint probability 

distribution is defined by four binary random variables (A, H, I, U) 

that generate 16 latent joint probabilities, 1r(A = w n H = x n I = 

y n U = z), where, for example, A is a random variable with 

values w = 1 for yes and w = -1 for no, and similar definitions 

 

 
Table 1 

Two 1 - way and Eight 2 X 2 Tables Produced by Yes–No 

Answers to Variables—Attributes A, H, I, and U 

Note that this 4 – way joint distribution is completely general 

(nonparametric), because no independence or conditional indepen- 

dence or parametric distribution assumptions are imposed. 

Measurement context effects can be defined more precisely by 

asking the following basic question: Does a single 4 – way joint 

probability distribution of the four binary variables exist that can 

reproduce Table 1? This question is essential for any Bayesian 

network model (see, e.g., Darwiche, 2009) based on the observed 

variables, because these models, when applied to Table 1, are all 

special cases of the single 4 – way distribution. If the answer is yes, 

then there are no context effects; if the answer is no, then some 

type of context effect has occurred. 

We use the example shown in Table 1 to illustrate some of the 

constraints implied by the 4 – way joint distribution model. It turns 

out that there is no single 4 – way joint distribution that can 

reproduce Table 1. First, the 4 – way distribution requires the 

marginal distribution of a single random variable to be invariant 

across contexts. As we pointed out earlier, this requirement fails. 

For example, the marginal probability of yes to random variable H 

is not invariant: p(Y | H) = .369, which differs from p(YY | AH)  + 

p(NY | AH) = .470. Table 1 contains other examples of violations 

of marginal invariance, depending on whether the attribute ap- 

peared first or second. 

The latter fact brings up a second problem: The order that 

questions are asked changes the 2 – way distributions for some 

pairs. For example, the distribution for the context AH is not the 

same as the distribution for the context HA, and an order effect 

also occurs for the two contexts UI and IU. Order effects violate 

the commutative property required by the 4 – way joint probability 

model: in particular, 1r(A = w n H = x) = 1r(H = x n A = w), 

and 1r(I = y n U = z) = 1r(U = z n I = y). 

It is interesting to notice that in this example, both marginal 

invariance and commutativity (no order effects) are satisfied by the 

four contexts AI, AU, HI, and HU. Suppose we restrict our 

question to only these four tables. Can a 4 – way joint distribution 

   reproduce these four tables? Surprisingly, the answer is still neg- 

ative. These four tables violate a consistency requirement of a 

single 4 – way joint distribution, called the Clauser, Horne, Shi- 

mony, and Holt (CHSH) inequality (for applications in psychol- 

ogy, see Bruza, Kitto, Ramm, & Sitbon, 2015; Dzhafarov & 

Kujala, 2012).2 The CHSH is described in detail in Appendix A, 

and we need not go into details here, except to point out that the 

inequality  implies  the  following  restriction  on  the  correlations 

 

 
 

 

 

 
Fn2 

 
 

 

 
Note. Y = yes; N = no. Pair YN, for example, refers to yes to the first 
attribute and no to the second. Each cell within a row is a relative 
frequency, and all the cells within a row sum to 1. The order of questions 
may matter, such that, for example, the HA table (H asked before A) may 
differ from the AH table (A asked before H). 

1 The artificial data set allows us to present all the context effects with 
one clear and simple example. Later we present an application to a real data 
set, but it requires a more complex individual level of analysis. 

2 The Clauser, Horne, Shimony, and Holt inequality is closely related to 
the Bell inequality. The latter was derived for the Bohm paradigm using a 

pair of entangled spin 1 photons, which was used to test the famous 

Einstein Podolsky Rosen (EPR) paradox. 

Variable Y N YY YN NY NN 

Single 
A .446 .554 

 

H .369 .631  

Pair 
AH .345 .101 .125 .429 

AI .271 .175 .084 .469 
AU .115 .331 .269 .285 
HI .335 .035 .021 .610 
HU .296 .073 .088 .543 
IU .300 .055 .100 .545 
HA .286 .083 .143 .488 

UI .325 .059 .095 .521 
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HILBERT SPACE MULTIDIMENSIONAL THEORY 3 

(expectation of products) predicted for the tables of the 4 – way 

joint probability model: 

necessary that nj = 2). It may not always be possible to measure 

all p variables at once, and perhaps, only subsets of variables 

(Yk , . . . , Yk ) ,  1 < s < p, can be measured at once (it is not - 2 < CHSH < 2, 1 s 
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CHSH = E(A · I) + E(H · I) + E(H · U) - E(A · U), 
(1)

 

where E(X · Y) stands for the expected value of the product of two 

random variables. For example, the estimate for E(A · I) equals 

[p(YY | AI) + p(NN | AI)] - [p(YN | AI) + p(NY | AI]. (When vari- 

ables are relabeled, there are several different ways to compute the 

CHSH, which can produce different answers, but they all must fall 

between -2 and +2.) Using the data shown in Table 1, the CHSH 

value equals 2.25, which exceeds the bound (<2) required by the 

4  – way joint probability model. In this case, it is the pattern of 

correlations in the 2 X 2 tables that violate the joint distribution. 

The CHSH is only one of a number of constraints that are required 

for a single joint distribution to reproduce a collection of contin- 

gency tables. Another type of correlation inequality, called the 

temporal Bell inequality, applies to 3 – way joint distributions 

(Leggett & Garg, 1985; Suppes & Zanotti, 1981). 

The constraints just described on the 4 – way joint probability 

model are all necessary. But another important question is raised 

by these constraints: What is the sufficiency and what are the 

logical relations of these constraints? First, if we restrict our 

attention to the four contexts AI, AU, HI, and HU, then it can be 

shown that (a) if marginal invariance is satisfied and (b) the CHSH 

inequality holds in all permutations, then the 4 – way joint distri- 

bution can reproduce all four tables (Fine, 1982). Using the em- 

pirical tables constructed from the psychological variables, the 

result of the CHSH test is logically independent of tests of mar- 

ginal selectivity or commutativity (violations of both can occur, 

violations of neither can occur, violations of only one can occur). 

Marginal selectivity can be violated without violating commuta- 

tivity. For example, a 1 – way distribution might differ from the 

corresponding margin from a  2  – way table. However, noncom- 

mutativity (order effects) implies some violation of marginal se- 

lectivity, because the marginal probability of a variable changes 

depending on order. Dzhafarov and Kujala (2012) derived and 

provided a general summary of linear constraints that are neces- 

sary and sufficient for a single joint distribution for larger size joint 

distributions and larger numbers of contingency tables. Next we 

provide a statistical test that is related to the general constraints 

derived in Dzhafarov and Kujala. 

We should point out that a Hilbert space multidimensional 

(HSM) model, constructed using the principles described later in 

this article, can perfectly reproduce all the findings in the artificial 

data in Table 1 using three less parameters than the 4 – way joint 

necessary that s = 2). Each subset of variables forms a context k  

of measurement. More than one context can be collected, which 

forms a collection of K data tables (T1, . . . , Tk, . . . , TK), each 

collected under a different context k. Each table Tk is a joint 

relative frequency, or contingency, table based on a subset of 

variables. The general question is the following: Can the K tables 

formed from p variables be derived from a single p – way joint 

distribution of the p observed variables? If the answer is yes, then 

there are no context effects; if the answer is no, then there are 

context effects (this is a broader definition of context effects than 

that proposed by Dzhafarov & Kujala, 2016). As pointed out 

earlier, this question is essential for any Bayesian network model 

or categorical data model based on the observed variables, because 

these models are all require the validity of the single p – way joint 

distribution of the observed variables. 

Suppose the data in Table 1 are based on a hypothetical sample 

of N = 100 independent observations for each 2 X 2 table (we can 

hold out the 1 – way tables for a later generalization test). Then it 

is unclear whether the violations of the 4 – way joint probability 

distribution, described earlier, are statistically significant. To ad- 

dress this issue, we use the same standard statistical test used in 

categorical data modeling for testing nested hypotheses (testing a 

general vs. a restricted special case; see Agresti & Katera, 2011): 

We compare the restricted 4 – way joint probability model to a 

general saturated model.3 The saturated model simply assumes that 

we have eight independent 2 – way tables and that each table has 

four probabilities that sum to 1. The saturated model is completely 

general and unrestricted, and it perfectly reproduces the sample 

data. The 4 – way joint probability model has 15 free parameters, 

because the 16 joint probabilities are constrained to sum to 1. The 

saturated model has 8 X 3 = 24 parameters, because the proba- 

bilities sum to 1 within each table. The 4 – way joint probability 

model is nested within the saturated model, and the difference in 

number of parameters equals df = 24 - 15 = 9. Maximum 

likelihood methods can be used to estimate the parameters of each 

model, and G2 = -2 X loglikelihood can be determined for each 

model. Then a log-likelihood ratio (i.e., G-square difference) test, 

which is the commonly used method to test departures of restricted 

model from the general model in categorical data modeling 

(Agresti & Katera, 2011), can be used to compare models. Using 

this method with N = 100 (hypothetical) observations per table 
produces a G-square difference equal to G2     = G2      - G2  = 
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probability model (see Busemeyer & Wang, 2017, for details). 

However, one should not get the impression from this perfect fit 

that an HSM can fit any data. In fact, all HSM models must satisfy 

another inequality, called the Tsirelson bound, which states that 

| CHSH | < V2 · 2. 

Table 1 is just an example using four binary variables that form 

a collection of 2 X 2 tables. However, the definition for the 

presence of measurement context effects can be stated much more 

generally. When judgments are collected from different contexts, 

they can often be summarized by collections of contingency tables 

18.04. Under the null hypothesis, G2 has a central chi-square 

distribution with df = 9. Using the chi-square distribution, the G2
 

must exceed a criterion of 16.92 to be statistically significant (i.e., 

produce a p < .05). The G2 = 18.04 exceeds the criterion 16.92, 

and the p value for this G2 equals p = .031. Therefore, using this 

classical statistical test, the joint probability model is rejected and 

therefore is statistically different from the saturated model. Note 

that this is a nonparametric test that requires no conditional inde- 

pendence or parametric distribution assumptions. 

or cross-tabulation tables. Suppose there are p different variables    

(Y1, . . . , Yp) that can be used to measure objects, or events, or 

people. Each variable Yj  can have nj different values (it is not 

3 This is what Dzhafarov and Kujala (2013; Dzhafarov & Kujala, 2016) 
called the context by default assumption. 
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This nonparametric method for testing a single 4 – way joint 

distribution model can be generalized and applied to p – way joint 

distributions as long as there is a sufficient number of tables that 

allow the saturated model to have more parameters than does the 

joint distribution model. For example, if only the four 2 X 2 tables 

(AI, AU, HI, and HU) are included in the design, then the saturated 

model has only 4 X 3 = 12 parameters, which is fewer than in the 

4 – way joint distribution model.4 However, if four 1 – way tables, 

produced by measuring each attribute alone, are included in the 

design to form a collection of eight tables (A, H, I, U, AI, AU, HI, 

and HU), then the saturated model has 16 parameters, which leaves 

df = 1 for testing the joint probability model. 

On the one hand, an advantage of this nonparametric statistical 

test of the joint distribution model is that it tests all the constraints 

imposed by the joint distribution model (including marginal in- 

variance, absence of order effects, CHSH type inequalities, and 

others) with a single test. On the other hand, it does not isolate the 

particular property that is violated. We have developed more 

specific log-likelihood statistical tests that are designed to test a 

particular property (e.g., a test of order effects vs. a test of 

marginal invariance), but these additional tests are not described in 

detail here. 

Before ending this section, we need to point out that the pro- 

posed test of a p – way joint distribution to account for a collection 

of contingency tables formed by subsets of the p–variables does 

not rule out all Bayesian models. This is because a more general  

p + q joint distribution can be postulated with additional q latent 

variables that are not necessarily observed. The proposed nonpara- 

metric method tests a p – way joint distribution based on only the 

observed p–variables. 

 
Empirical Review of Measurement Context Effects 

During our presentation of Table 1, we mentioned several em- 

pirical studies of context effects on judgments, but these studies 

were not specifically designed to test the joint distribution hypoth- 

esis. Next we summarize a number of earlier experiments that were 

specifically designed to investigate the different types of measure- 

ment context effects that violate the joint distribution hypothesis. 

Question order effects are usually investigated by using two 

contexts formed by the pair of tables (AB, BA) that vary the order 

that the attributes are evaluated. It has long been known that 

question order effects commonly occur with human judgments 

(Schuman & Presser, 1981). There are many examples of question 

order effects in the literature (Tourangeau, Rips, & Rasinski, 

2000), and we mention only a few examples here. Wang and 

Busemeyer (2016a) investigated judgments about effectiveness of 

a public health service message for self versus another: Effective- 

ness was rated higher for self when self was evaluated first, but the 

difference disappeared when the other was evaluated first. More 

generally, Wang, Solloway, Shiffrin, and Busemeyer (2014) re- 

viewed the widespread occurrence of order effects across 70 

different national surveys. Different kinds of order effects occur in 

these national surveys. Moore (2002) identified four different 

types of question order effects defined by the comparison of the 

marginal distributions for the two attributes when they appear in 

the first position (the difference between A for the AB table and B 

for the BA table) versus the second position (the difference be- 

tween A for the BA table and B for the AB table): Contrast effects 

occur when the second position increases the difference compared 

to the first; synthesis (consistency) effects occur when the second 

position decreases the difference compared to the first; additive 

effects occur when both marginals increase in the second position; 

subtractive effects occur when both marginals decrease in the 

second position. 

Violations of marginal invariance are typically studied using 

two contexts: a single variable context A, in which an attribute A 

is measured alone, and another two-variable context BA, in which 

attributes B and then A are measured. These experiments are also 

called tests of the law of total probability, or tests for interference 

effects (Khrennikov & Haven, 2009). A violation of total proba- 

bility is said to occur when the marginal probability for A obtained 

from the BA table is different from the table when A is measured 

alone. For example, Croson (1999) investigated marginal invari- 

ance using a prisoner dilemma game: In the A alone condition, 

participants simply decided to cooperate or defect; in the BA 

condition, participants first made a prediction about their opponent 

and then decided for themselves. The marginal probability to 

cooperate decreased in the BA context when compared to the 

probability of cooperation in the A alone context. Wang and 

Busemeyer (2016b) investigated marginal invariance using a 

category–decision task: In the A alone condition, participants 

simply decided to act by “attacking” or “withdrawing” against an 

agent, and in the BA condition, participants first categorized the 

agent as “good guy” or “bad guy” and then decided to act. The 

marginal probability of A (“attack”) decreased in the BA context 

when compared to the probability to “attack” in the A alone 

condition. Kvam, Pleskac, Yu, and Busemeyer (2015) examined 

marginal invariance using a signal detection task in which partic- 

ipants had make judgments about movement direction of a noisy 

target: In the A alone condition, participants simply judged their 

confidence that the target was moving left or right at time t2; in the 

BA  condition,  participants  first  made  a  binary  decision  about 

the direction at time t1 and later judged their confidence at time t2. 

The marginal distribution of confidence shifted to less confidence 

in the BA (choice–confidence) condition compared to the A (con- 

fidence) alone condition. Other examples of marginal invariance 

violations were found in perceptual judgments with ambiguous 

figures (Conte et al., 2009). 

A number of experiments have tested the pattern of correlations 

by using collections of 2 X 2 tables. Aerts, Gabora, and Sozzo 

(2013) and Bruza, Kitto, et al. (2015) tested the CHSH inequality 

required by a 4 – way joint distribution using four different 2 X 2 

tables composed of pairs of four binary variables. Asano, 

Hashimoto, Khrennikov, Ohya, and Tanaka (2014) and Atmans- 

pacher and Filk (2010) tested the temporal Bell inequality required 

by a 3 – way joint distribution using three different 2 X 2 tables 

composed of three binary variables. Although the observed 

correlations in these studies violated the required inequalities 

for a joint probability distribution, they coincided with viola- 

tions of marginal invariance (Dzhafarov et al., 2016). However, 

clear evidence for violations of the CHSH inequality, after 

correcting for violations of marginal selectivity, was recently 

 
4 Nevertheless, G2 = 2.56 after fitting the 4 – way model to Table 1, 

which reflects the violation of the Clauser, Horne, Shimony, and Holt 
inequality. 
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found by Cervantes and Dzhafarov (2018). Using a different 

type of design, Gronchi and Strambini (2016) also tested the 

T2 CHSH inequality for a 4 – way joint distribution. Table 2 

provides a summary of the empirical findings. 

 
Quantum Models of Judgment and Decision 

As mentioned earlier, the purpose of this article is to present a 

general theory of context effects. Our theory is based on quantum 

probability theory, and so it is useful to first discuss the psycho- 

logical justification for taking this approach. 

Classical probability theory evolved over several centuries, be- 

ginning in the 18th century with contributions by Pascal and 

Laplace. However, an axiomatic foundation for classical probabil- 

ity theory did not exist until Kolmogorov (1933/1950) provided 

one. Much of the theory was initially motivated by problems 

arising in physics, and later applications appeared in economics, 

engineering, insurance, statistics, and so forth. Classical probabil- 

ity theory is founded on the premise that events are represented as 

subsets of a larger set called the sample space. The adoption of 

subsets as the basis for describing events entails a logic—the logic 

of subsets—which is equivalent to Boolean logic (more generally, 

a sigma algebra of events). Boolean logic includes some strict 

laws, such as the closure property that if A, B are events in the 

same sample space, then A n B is an event, and the axiom that 

events are commutative, (A n B) = (B n A), and distributive, A n 

(B U C) = (A n B) U (A n C). Social and behavioral scientists  

are generally trained to accept these axioms (explicitly or implic- 

itly), and consequently most of us consider the theory as the only 

way to think about events and probabilities. How could there be 

other ways? 

Looking back into history, scientists were faced with similar 

questions, such as with Euclidean geometry. How could there be 

any other geometry other than Euclidean? Nevertheless, we now 

have many applications of non-Euclidean geometry. Could this 

happen with probability theory too? Quantum mechanics was 

invented by a brilliant group of physicists in the 1920s in response 

to physical phenomena that seemed paradoxical from a classical 

physics perspective. This theory has revolutionized our world by 

giving us transistors, lasers, a foundation for chemistry, and many 

other accomplishments. It is interesting that, though not at first 

realizing it, these physicists invented an entirely new theory of 

probability. It was not clear that they invented a new probability 

theory until an axiomatic foundation was provided by Dirac (1930/ 

1958) and Von Neumann (1932/1955). Quantum theory is founded 

on the premise that events are represented as subspaces of a vector 

space (called a Hilbert space, hence the name of our model). The 

adoption of subspaces as the basis for describing events entails a 

 
new logic—the logic of subspaces—which relaxes some of the 

axioms of Boolean logic. In particular, this logic does not entail 

having events always be commutative and distributive, and the 

closure property does not always hold. 

It is often argued that although the microworld is quantum, the 

macroworld that we observe is classical, and so why would nature 

evolve a noncommutative human reasoning system? This confuses 

an important point. We are comparing classical versus quantum 

probability models of observed (epistemic) phenomena. We are 

not comparing classical versus quantum models of the unobserved 

physical (ontological) world. Even classical physical models of the 

world can produce event probabilities that are observed to be 

noncommutative. The latter can happen when only coarse epis- 

temic measurements concerning the underlying ontic physical 

states are available (Graben & Atmanspacher, 2006). The reliance 

on epistemic measurements is particularly relevant to human judg- 

ments, which may be why they are so frequently found to be 

contextual. When context effects are present, classical theory re- 

quires a separate probability space for each context without any 

way to connect them together in a simple manner, whereas quan- 

tum theory provides an elegant way to connect contexts together 

into a single coherent probability model (Pothos, Yearsley, Shif- 

frin, & Busemeyer, 2017). 

The principles from quantum theory actually resonate with 

deeply rooted psychological conceptions (Aerts, Broekaert, & 

Gabora, 2011). First, consider the enigmatic quantum principle of 

superposition—it captures the intuitive feelings of conflict, ambi- 

guity, or uncertainty. A superposition state is maintained across 

potential choices until a decision must be reached, at which point 

the state collapses to a specific choice (Lambert-Mogiliansky, 

Zamir, & Zwirn, 2009). This behavior of changing from a super- 

position to a specific decision is similar to what Bohr called the 

wave–particle aspects of quantum mechanics. Next, consider the 

principle of complementarity—taking a measurement of a system 

constructs rather than records a property of the system, and the first 

question sets up a context that changes the answer to the next 

question; thus, answering a question disturbs the answers to sub- 

sequent questions and the order of questions is important (Wang, 

Busemeyer, Atmanspacher, & Pothos, 2013). In quantum physics, 

order-dependent measurements are said to be noncommutative, 

and quantum theory was especially designed for these types of 

noncommutative measures. Finally, consider the unique quantum 

concept of entanglement—the event A n B may be observed, and 

another event C n D maybe observed, but the event A n B n C   

n D may not even exist, violating closure. Entangled states pro- 

vide a basis for explaining violations of joint probability distribu- 

tions produced by nonclassical patterns of correlations (Aerts et 

 
 

Table 2 

Experimental Tests for Measurement Context Effects 

 
Marginal 
(B, AB) 

 
Order 

(AB, BA) 

 
Three correlations 

(AB, BC, AC) 

 
Four correlations 

(AC, AD, BC, BD) 
 

 

Croson (1999) Moore (2002) Asano  et al. (2014) Aerts et al. (2013) 
Conte  et al. (2009) Tourangeau  et al. (2000) Atmanspacher  & Filk (2010) Bruza, Kitto, et al. (2015) 

Wang  & Busemeyer (2016) Wang  et al. (2014)  Dzhafarov et al. (2016) 
Kvam  et al. (2015) Wang  & Busemeyer (2016) Cervantes & Dzhafarov (in press) 
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al., 2013; Bruza, Kitto, et al., 2015; Cervantes & Dzhafarov, 

2018). 

For these reasons, it turns out that quantum probability theory is 

not only useful for explaining physical phenomena but also pro- 

vides useful new tools to model human behavior (Blutner & beim 

Graben, 2016; Bruza, Wang, & Busemeyer, 2015; Pothos & Buse- 

replaces this with a vector space H containing all events, which is 

called the Hilbert space. Classical theory defines an event A = 
(Y1 = yi) as a subset of the sample space, whereas quantum theory 

defines an event A = (Y1 = yi) as a subspace of the Hilbert space. 

Each subspace, such as A, corresponds to a projector, denoted PA 

for subspace A, which projects vectors into the subspace. (A 
meyer, 2012). Note that we are not necessarily proposing that the projector satisfies P = P† = P2 , where † represents the Hermitian 

A A A 
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brain is some kind of quantum computer (see, e.g., Hameroff, 

2013, for an example of this interpretation), and instead, we are 

only using the mathematical principles of quantum theory to 

account for human behavior. In fact, the formal computations of a 

quantum model may be implemented by some underlying type of 

neural network (Stewart & Eliasmith, 2013). Also note that we are 

not proposing a theory that necessarily competes with earlier social 

psychology explanations for context effects (e.g., Schwarz & 

Bless, 2007), and instead, we are providing a mathematical way to 

formalize these concepts. 

Quantum probability theory has proven to be very useful for 

modeling the different kinds of context effects reviewed in the 

previous empirical review section. In particular, Wang et al. (2013) 

proposed a quantum model for question order effects that was later 

tested in a larger study using 70 national surveys by Wang et al. 

(2014). Pothos and Busemeyer (2009) proposed a quantum model 

for violations of marginal invariance that was later tested by 

comparing it with more traditional decision models in a larger 

experiment by Busemeyer, Wang, and Shiffrin (2015). Aerts et al. 

(2013) proposed a quantum entanglement model to account for 

their findings of violations of CHSH and marginal invariance 

found with their collection of four 2 X 2 tables. 

The problem is that each of these previous modeling advances 

have developed specialized models for the particular design that 

was under investigation. What is needed is a more general theo- 

retical framework from which it is possible to easily construct new 

specialized quantum models. Therefore, the purpose of this article 

was to present a more general theoretical framework that can be 

used for new model development. The general framework can then 

be used to construct new applications for new designs by following 

a standard program for model construction.5 

Multidimensional Hilbert Space Theory 

Basics of Quantum Probability Theory 

Our theory is based on quantum probability theory, which is 

unfamiliar to most social and behavioral scientists. A good way to 

introduce quantum theory is to compare it with the more familiar 

classical probability theory.6 Although both classical and quantum 

theories are applicable to infinite spaces, for simplicity, we limit 

this presentation to finite spaces. 

Suppose we have p psychological variables (Yi; i = 1, . . . , p) 

and each variable, such as Yi, produces one of a finite set of ni 

values when measured. In classical theory, variable Yi is called a 

random variable, and in quantum theory, Yi is called an observable. 

The measurement outcome generated by measuring one of the p 
variables produces an event. For example, if variable Y1 is mea- 

sured and it produces the value yi, then we observe the event A = 

(Y1 = yi). 

Classical theory begins with a universal set !1 containing all 

events,  which  is  called  the  sample  space,  and  quantum theory 

transpose operator). The change from subsets to subspaces is 

where the logic of events differs between the two theories. 

Classical theory assumes closure: If A = (Y1 = yi) E !1 is an 

event and B = (Y2 = yj) E !1 is another event, then A n B E !1 

is also an event in the sample space. By definition of intersection, 

the classical event A n B is commutative A n B = B n A. In 

quantum theory, the events A E H B E H may not be 

commu- tative, and if they are not, then the conjunction does not 

exist, and closure does not hold. Instead, quantum theory uses 

the more general concept of a sequence of incompatible events. 

In quantum theory, a sequence of events, such as A and then B, 

denoted AB, is represented by the sequence of projectors PBPA. If 

the projectors commute, PAPB = PBPA, then the product of the two 

projectors is a projector corresponding to the subspace A n B, that 

is, PBPA = P(A n B) = PAPB, and the events A and B are said to  

be compatible. When the events are compatible, they share the 

same basis in the vector space for their representation. However, if 

the two projectors do not commute, PBPA * PAPB, then their 

product is a not a projector, and the events are incompatible. In this 

case, we need to evaluate the sequence using the product PBPA 

(operating from right to left, first project on A with PA and then 

project on B with PB). When the events are incompatible, they 

require changing the basis of the vector space from one that 

represents event A to another that represents event B. 

Classical theory defines a set function p that assigns probabili- 

ties to events, which is required to be an additive measure: p(A) > 

0, p(!1) = 1. And if A n B = ⊘, then p(AUB) = p(A) + p(B). 

Quantum theory uses a unit length state vector, denoted | lji 

즐怀議 怀Ꚙ翩) E H, to assign probabilities to events as follows: 

 

p(A) = IPA | t!)I2, (2) 

where  the  state  vector  | lji 즐怀議怀Ꚙ翩) represents  a  

person’s beliefs about the events under investigation. Quantum  

probabilities also satisfy an additive measure:  p(A)  > 0,  p(H)=1.  

And  if PAPB  = 0,  then p(A V  B) = p(A) + p(B). In fact, Equation 

2 is  the unique way to assign probabilities to subspaces that form 

an additive measure for dimensions greater than 2 (Gleason, 

1957). 

According to classical theory, if an event A is an observed fact, 

then the conditional probability of event B is defined as 

 

5 Hilbert space multidimensional (HSM) theory is certainly not the most 
general development in quantum cognition. For example, Asano, Basieva, 
Khrennikov, Ohya, and Tanaka (2017) have used mixed states instead of 
pure states; Aerts (2009) has used Fock spaces instead of a Hilbert space, 
Denolf, Martínez-Martínez, Josephy, and Barque-Duran (2017) have used 
positive operator valued measurements instead of projectors; and Martínez- 
Martínez and Sánchez-Burillo (2016) have used Lindblad operators in 
conjunction with unitary operators. HSM is a theory that is not too simple 
but not too complex. 

6 See Busemeyer and Bruza (2012), Haven and Khrennikov (2013), 
Khrennikov (2010), and van Rijsbergen (2004) for introductions to quan- 
tum probability theory written for social and behavioral sciences. 
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p(B | A) = 
p(A n B) 

, 

and so the joint probability of A n B equals 

p(A n B) = p(A)· p(B | A). 

The corresponding definition in quantum theory is 

IPBPA | t!)I2 
p(B | A) = 

p(A) 
,
 

and so the probability of the sequence AB equals 

p(AB) = p(A)· p(B | A) = IP P | t!)I2. (3) 

 
the restricted real field. Second, in general, a projector associated 

with an event spans a subspace of dimension one or greater. Some 

of the previous applications of quantum theory have made use of 

multidimensional (greater than one) projectors for the individual 

values of a variable (e.g., Wang & Busemeyer, 2016a), whereas 

other applications have assumed that each value corresponds to a 

one-dimensional subspace (White, Pothos, & Busemeyer, 2014). 

Using one-dimensional subspaces (i.e., rays) provides the simplest 

possible representation, but this imposes severe restrictions on the 

model (described later in the ●●● section), and often multidimen- 

sional subspaces are needed. The theory proposed here allows the 
B   A use of multidimensional subspaces to represent the values of a 
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The commutative property of classical probability requires that 

p(A)· p(B | A) = p(B)· p(A | B), but this commutative property does 

not hold for quantum theory, so that p(A) · p(B I A) * p(B) · p  

(A I B) occurs when events are incompatible. 

Extensions to sequences with more than two events follows the 

same principles for both classical and quantum theories. The 

probability of the joint event (A n B) n C equals p((A n B) n C) 

for classical theory, and the probability of the sequence (AB)C 

equals 

p((AB)C) = IPC(PBPA)| t!)I2 (4) 

for quantum theory. 

Equations 2– 4 provide the essential ideas that we need to 

compute the predictions from quantum probability theory. In the 

●●● section, we provide more technical details about specifying 

the dimension of the Hilbert space and building the projectors to 

represent events. However, there are two technical issues that 

should be mentioned up front. First, in general, the Hilbert space  

is defined on the field of complex numbers. Some of the previous 

applications of quantum theory have relied on the full complex 

field (e.g., Kvam et al., 2015), whereas some others have been 

restricted to real numbers (e.g., Pothos, Busemeyer, & Trueblood, 

2013). The theory proposed here allows for the full complex field, 

but the application presented in the ●●● section requires only the 

real field. Mathematically, working with the complex field is not 

any more complicated than is working with the real field—the 

equations remain exactly the same. However, the use of the com- 

plex field requires more free parameters than when working with 

variable. 

Figure 1 provides a simple “toy” illustration of these basic 

principles restricted to a real vector space and using one- 

dimensional rays to represent distinct outcomes. Suppose a person 

is judging the quality of a piece of art from a personal perspective 

and then from the perspective of a friend. In this case, we have two 

variables: Y1 is the self perspective with three values (yes, no, 

uncertain); Y2 is the other perspective, also with three values (yes, 

no, uncertain). In previous research, we have shown that these two 

variables (self vs. other perspective) are incompatible (see Wang & 

Busemeyer, 2016a). As we described earlier, quantum theory 

represents incompatible events by changing the basis. Therefore 

we use the basis in the left panel to represent evaluations of self, 

and we use the basis shown in the right panel to represent evalu- 

ations  of  other.  Each  panel  has  three  axes  representing  three 

responses to the question “Is this piece of art worth buying”: Yes, 

No, Uncertain. The vector S in the figure represents the state vector 

| tj.  앜 ), which encodes the person’s superposed state of belief    

about the artwork.  The  probability  of  the  event  Y  from  the 
personal 

perspective (i.e., I like the artwork) is obtained by projecting the 

state vector S down onto the ray spanned by the basis vector Y, 

producing the projection denoted by T. The squared length of T 

provides the probability of choosing Y from the personal perspec- 

tive (which equals .67). The probability of the sequence of events, 

Y to the personal perspective and then N to the other perspective, 

is obtained by projecting T onto the ray spanned by the basis vector 

N from the other perspective, producing the second projection 

denoted R. The probability of this sequence is obtained by squaring 
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the length of R (which equals .17). The probability of the reverse 

sequence, responding N to the friend’s perspective and then Y to 

the personal perspective, turns out to equal .20, exhibiting a small 

order effect. Of course, we do not propose that people actually 

rotate vectors in their mind. Instead, these computations can be 

performed by some underlying neural network system (Stewart & 

Eliasmith, 2013). 

All of the previously mentioned quantum models for context 

effects use these same rules (Equations 2– 4) for computing prob- 

abilities. However, as we mentioned before, the previous models 

were specialized for a particular application. Two problems need 

to be solved to form a more general program for constructing 

models. One is to build the structure of the Hilbert space H, and 

the second is to formulate the projectors for events. One of the 

main contributions of the present work is to describe a conceptual 

program of steps for solving these two problems. Next we describe 

the abstract principles, but later we illustrate these with a simple 

application to a new experiment. 

 
Building the Hilbert Space 

The structure of the Hilbert space is determined by the compat- 

ible variables. Consider three variables: Y1 with n1 values, Y2 with 

n2 values, and Y3 with n3 values. 

Suppose the first two variables are compatible. In this case, we can 

define all n1 · n2 conjunctions (Y1 = yi n Y2 = yj), i, j = 1, . . .  , n). 

Each of these conjunctive events corresponds to a subspace in the 

Hilbert space. Each subspace can be multidimensional, but the 

smallest subspace is a ray, which is a one-dimensional subspace 

spanned by a single vector. It is not necessary to use rays, but if 

they are used, then the minimum dimension to represent the two 

compatible variables is N = n1 · n2. After determining the dimen- 

sion N from the compatible variables, a common N-dimensional 

basis can be chosen to represent all the conjunctions. It is simplest 

to use the canonical basis to represent the coordinates of the chosen 

basis, in which case each basis vector can be simply represented by a 

N X 1 column matrix el = [0  0 . . . 1 . . . 0   0]†, with one located  

in position l and zeros otherwise. Assuming the minimum dimen- 

sion, the column matrix el represents the lth conjunction. 

Now suppose Y3  is incompatible with the conjunctions formed 
by Y  , Y  . Under this assumption, the dimension remains the same 

other incompatible variables, the system needs to rotate to a new 

basis within the N-dimensional space for each incompatible vari- 

able. 

The dimension N needed to fit the data may be larger than the 

minimum. In other words, events can be represented by multidi- 

mensional subspaces. Therefore we start with the minimum di- 

mension and add dimensions as needed. But dimensions are added 

only if they are required according to statistical model compari- 

sons favoring higher over lower dimensional models (similar to 

multidimensional scaling or factor analysis programs). 

Once a basis for the N-dimensional space is chosen, the coor- 

dinates of the state vector, | t(), can be represented by an N X 1 

column matrix t(. This state represents a person’s superposition 

state of beliefs about the variables. Usually, this state of the judge 

is unknown to the researcher, but it can be estimated by best fits 

to the data. In general, each coordinate can be complex, con- 

taining a magnitude and a phase. Therefore, if the dimension 

equals N, then the state requires 2 · N parameters. However, the 

state must satisfy the unit length constraint t(†t( = 1, which 

constrains one magnitude. Also, one phase can be arbitrarily fixed 

without any effect on the choice probability. In sum, only 2 · (N - 

1) parameters are estimated from the data. 

 

Building Projectors 

Consider once again the Hilbert space structure with variables 

Y1 and Y2 compatible with each other but incompatible with Y3. 

Again, it is simplest to use the canonical basis to represent the 

compatible variables. Using this basis, the projector for the event 

(Y1 > yi) is simply an N X N diagonal (indicator) matrix Mi with 

ones located in rows corresponding to the conjunctions satisfying 

(Y1  > yi). The projector for the event (Y2  > yj) is simply an N X   

N diagonal (indicator) matrix Mj with ones located in rows corre- 

sponding to the conjunctions satisfying (Y2 > yj). 

The projector for any events involving Y3  require rotating to a 

new basis. An N X N unitary matrix, denoted U, is used to 

compute this rotation (a unitary matrix satisfies U† · U = I). Each 

column of U represents an orthonormal basis vector, which is used 

to represent events involving Y3. The projector for events (Y3 = yk) 
is P(Y3  = yk) = U · Mk  · U

†, where Mk  is a diagonal matrix with 
1 2 

for all three Y1, Y2, Y3 variables as it was for the two compatible  

Y1, Y2. In other words, if an N dimensional space was used to 

represent Y1, Y2, then the same N dimensional space can be used 

for all three Y1, Y2, Y3. The same N-dimensional canonical basis 

can be chosen to represent all of the conjunctions for the compat- 

ible events. However, to evaluate events involving the incompat- 

ible (Y3  = yk) variable Y3, the cognitive system needs to rotate to    

a new basis within the same N-dimensional space. This is where 

the quantum representation simplifies the representation of the 

variables. A Bayesian model would have to form a n1 · n2 · n3-

dimensional joint probability space for the three random vari- 

ables Y , Y , Y . If Y is incompatible with Y , Y , then the quantum 

ones located in rows satisfying the event (Y3 = yk) and zeros 

otherwise. The key problem is to construct the unitary matrix U. 

Usually, this matrix is initially unknown. 

A general solution for low dimensional spaces is the following 

(see Appendix B or Busemeyer & Wang, 2017, for technical 

details). Any unitary matrix can be formed by an exponential 

transformation of a Hermitian matrix (a Hermitian matrix satisfies 

H = H†). In general, the Hermitian matrix has N diagonal entries 

that are real and N · (N - 1)/2 off diagonal entries that can be 

complex. However, adding a constant to all the diagonal entries 

has no effect on the choice probabilities, and so one diagonal entry 

can be set to a fixed value. In sum, only (N2 - 1) parameters are 
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1     2     3 3 1 2 

model could represent all three variables in smaller n1 · n2- 

dimensional space. 

More generally, suppose we have at most q compatible vari- 

ables. Then we can form conjunctions of all values for all q-

compatible variables. The number of these conjunctions deter- 

mines the minimum dimension N of the Hilbert space. If there are 

estimated for a Hermitian matrix, so the general solution is to 

estimate the free parameters of the Hermitian matrix that best fit 

the data. This solution is feasible for low dimensional spaces. For 

high dimensional spaces, sparse matrices that are built from a 

small number of parameters can be used (see, e.g., Kvam et al., 

2015; Wang & Busemeyer, 2016a). 
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The Hilbert Space Multidimensional Program 

An HSM model is built using the following programmatic 

steps.7 All these steps are illustrated in the next section using a 

concrete application to data from a new experiment on context 

effects (see Busemeyer & Wang, 2017, for technical details). 

First, the researcher needs to determine which variables or 

attributes are commutative and which are not. If two events are 

compatible, then the events can be defined simultaneously and we 

can form all the conjunctions of two events, but if they are 

incompatible, they must be evaluated sequentially and we need to 

change from one basis to another basis to model the evaluation of 

the sequence. One way to determine compatibility is to observe 

whether a pair of variables produces order effects. Alternatively, 

one can statistically compare competing models with different 

hypothesized compatibility relations. Referring to Table 1, we see 

that attributes A and H do not commute, and so they are incom- 

patible. We do not have a test for order effects for variables AI in 

Table 1, but we could test a model that assumes they are compat- 

ible. 

Second, the dimension N of the Hilbert space is determined. 

Referring to the artificial example in Table 1, if there are at most 

two compatible variables and the variables are binary, then the 

minimum dimension equals four. Given the compatibility rela- 

tions, an HSM modeling procedure can begin with the lowest 

possible dimension and increase the dimension only as required by 

model comparisons that favor a higher dimension. 

Third, a basis is selected for representing the coordinates of the 

state vector | t(). As described earlier, the simplest choice is to start 

with the canonical basis for the compatible variables. Once a basis 

is chosen, the coordinates of the state vector, represented by the 

N X 1 column matrix t(, can be estimated by best fits to  the 

data. The state | t() is then represented by an N X 1 matrix t(  

with coordinate t(j representing the amplitude assigned to basis 

vector ej. 

Fourth, a unitary matrix is built to rotate from one basis to 

another for each pair of incompatible variables. If we construct the 

unitary matrix in a completely general manner, then (N2 - 1) 

parameters are estimated for each unitary matrix (see Appendix B 

for details; also see Busemeyer & Wang, 2017). For example, 

referring to the artificial example in Table 1, if we assume that 

variables AH are incompatible, then we construct a 2 X 2 unitary 

matrix to rotate from A to H. 

Fifth, the quantum probability for a sequence of measurements 

is computed using Equations 2– 4. Using the predicted probabili- 

ties, the model is used to compute the log-likelihood of the data. 

The parameters for the state and the Hermitian operators are 

estimated from the data using maximum likelihood, and the result 

is used to compute G2 = -2 · loglikelihood statistics for model 

 
Seventh, an HSM model allows many opportunities for very 

strong generalization tests of the model. For example, if there are 

three variables and two of them are incompatible, then after 

estimating the model parameters from an HSM model for a col- 

lection of 2 X 2 tables, the same model and parameters can be used 

to make new predictions for new tables that were not included in 

the original design, such as smaller 1 – way tables or larger 3 – way 

tables. Even stronger a priori tests (e.g., estimating the model 

parameters with a collection of 2 X 2 tables and testing on a 4 – 

way joint distribution) can be designed for studies with a larger set 

of variables. In short, these models provide for many strong 

empirical tests. 

 

A New Empirical Application 

This section applies HSM modeling to a real experiment that 

was designed in a manner similar to that for the artificial example. 

A total of 184  participants  made  judgments  on  four attributes 

of antismoking public service announcements (PSAs). They were 

asked to judge how persuasive (P), believable (B), informative (I), 

and likable (L) they perceived various PSAs to be. The PSAs were 

in the form of a single static visual image with a title. Each person 

judged 16 different PSAs: One stimulus type included eight ex- 

amples warning about smoking causing death (Death PSAs), and 

the other stimulus type included eight PSAs warning about smok- 

ing causing health harm (Harm PSAs). Each participant judged 

each PSA under 12 contexts: six combinations of two attributes 

with the attributes presented in two different orders. For example, 

one context was PI, where the participants answered the question 

of whether the PSA was persuasive and informative by choosing 

either YY, YN, NY, or NN (where, e.g., YN means Yes to 

persuasive and No to informative). Thus, each person provided 

responses to 16 (PSAs) X12 (contexts) = 192 questions, which 

were presented in a randomized order across participants. Alto- 

gether, this produced a total of 184 participants X 192 judgments 

per person = 35,328 observations. 

The aggregate results are presented in Tables 3 and 4. The 

results are presented separately for each stimulus type and order 

pooled across participants. For example, when the Death PSA was 

presented, the relative frequency of Y to persuasive and then N to 

likable was .21, and the corresponding result for the Harm PSA 

was .18. Each 2 X 2 table for a pair of attributes and type of 

stimulus is based on 184 · 8 = 1,472 observations. However, (to 

simplify the presentation), this table of pooled results ignores 
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Fn8 comparison.8 The number of model parameters is determined by    

the number of parameters used to build the state vector plus the 

number of parameters used to estimate the unitary (rotation) ma- 

trices. 

Sixth, the fit of the model returns parameters for the state that 

can be used to describe the probability distribution over a variable 

as if it were measured alone (free of context of other variables) and 

also the parameters of the unitary rotations that describe the 

relations between incompatible variables. 

7 The word program here refers to the set of procedures that we formu- 
lated to build Hilbert space multidimensional models. We are in the process 
of writing generalizable computer codes to implement the conceptual 
program described here, which will be published separately. At this point, 
we have created computer codes for collections of 1 – way, 2 – way, and  
3 – way tables. The current codes are written in MATLAB and are 
available at http://mypage.iu.edu/~jbusemey/quantum/HilbertSpaceModel 
Programs.htm 

8 Currently, we use a particle swarm method to estimate parameters to 
avoid local minimum. 

http://mypage.iu.edu/~jbusemey/quantum/HilbertSpaceModelPrograms.htm
http://mypage.iu.edu/~jbusemey/quantum/HilbertSpaceModelPrograms.htm
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Fn9 

important individual differences. All of the subsequent analyses 

were conducted at the individual level of analysis.9 

 
Test of the Joint Probability Model 

To determine whether there are context effects, we conducted a 

statistical chi-square test of a 4 – way joint probability model based 

on four binary random variables (P, B, I, and L) corresponding to 

those used in the experiment. Each individual produced a table in 

the same form as that for Table 3 but pooled across orders, so that 

question order was not a factor for this test. This reduced the 

number of tables to six per individual, and each individual 2 X 2 

table had 16 observations (192 observations in total for both types 

of stimuli). The joint probability model states that the six rows of 

2 X 2 tables for each stimulus type are produced by a joint 

distribution, 1r(P = w n B = x n I = y n L = z), where w = -1, 

1, x = -1, 1, y = -1, 1, and z = -1, 1, that has 16 - 1 = 15 free 

parameters per stimulus type, or 30 parameters altogether. A 

completely unconstrained saturated model requires three parame- 

ters for each 2 X 2 table, producing a total of 18 parameters per 

stimulus type, or 36 parameters altogether. Using maximum like- 
lihood estimation for each person, we computed the G2 and G2

 

Table 4 

Observed Relative Frequencies of Pairs of Answers for 

Harm PSA 

 

 

 

 

 

 

 

Harm PSA Order 2 

 

 

 

 

 
 

Note. PSA = public service announcement; Y = yes; N = no; P = 
persuasive; I = informative; B = believable; L = likable. Pair YN, for 
example, refers to yes to the first attribute and no to the second.  

sat joint 

for each person. A total of 44 participants produced a statistically 

significant G2 difference based on six degrees using the critical 

cutoff equal to 12.59 for p < .05. A quantile–quantile plot of the observed G2 differences, G2   = G2    - G2  versus the chi-square 

probability model systematically deviates from the observed re- 

sults for a substantial number of individuals. 

diff joint sat Comparisons Between Bayesian Network and 

 
F2, 
AQ:16 

value, predicted by the chi-square distribution under the null 

hypothesis is shown in Figure 2. As can be seen in Figure 2, the 

observed G2 exceeds the expected amount for large values of the 

predicted chi-square. We computed a lack of fit from the null chi-

square distribution by comparing the observed versus expected 

frequencies using categories defined by cutoffs [0, 5, 10, 35]. The 

expected frequencies were [84, 77, 23], but the observed frequen- 

cies were [48, 75, 61]. We used a G2 difference test of the 

difference between the expected and observed frequencies, and the 

G2 difference was statistically significant, G2(2) = 78.84, critical 

cutoff = 5.99, p < .001. We conclude that the 4 – way joint 

 

 
Table 3 

Observed Relative Frequencies of Pairs of Answers for 

Death PSA 
 

Order and attributes YY YN NY NN 

Death PSA Order 1 

 

 

 

 

 

 

 

 

 

 

 
Note. PSA = public service announcement; Y = yes; N = no; P = 
persuasive; I = informative; B = believable; L = likable. Pair YN, for 
example, refers to yes to the first attribute and no to the second.  

HSM Models 

Any Bayesian network model, based on the four random vari- 

ables P, B, I, and L is a special case of the 4 – way joint probability 

model, which implies that there is also some systematic deviation 

from any Bayesian network type of model. However, there may 

also be systematic deviations from an HSM model. Therefore, it is 

important to compare the fits of Bayesian network versus HSM 

models to the individual participant data. Maximum likelihood 

estimates and G2 statistics were computed by fitting each model to 

the 192 observations separately for each of the 184 participants. 

Our goal was to select a model that was accurate yet relatively 

simple, and we needed to compare nonnested models; therefore we 

used the Bayesian information criterion (BIC) for model compar- 

ison. The BIC is defined as G2 + v · ln(N), where G2 = -2 · 

loglikelihood, v is the number of model parameters, and N is the 

number of observations, and so for this application ln(192) = 

5.2575. The model with the lowest BIC is preferred. 

 
Simple Bayesian Network Model 

There is a large number of possible Bayesian network type of 

models that one can construct for this application. We chose the 

 

9 Rather than conducting individual level analyses, we could formulate  
a hierarchical Bayesian model that introduces assumptions about the dis- 
tribution of individual differences and priors on these hyperparameters. At 
this early stage, we do not think this is a good place to start for comparing 
complex models such as the 4 – way joint probability model (184 partic- 
ipants with 15 · 2 = 30 parameters for each participant) because of lack of 
empirical support for specific parametric distributions of individual differ- 
ences and lack of informative priors on the hyperparameters for these 
complex models. We did not want to confound our test of core models 
(classical versus quantum) with arbitrary assumptions about individual 
difference distributions and hyperpriors. 

Order and attributes YY YN NY NN 

Harm PSA Order 1 
PI 

 
.44 

 
.15 

 
.04 

 
.38 

PB .46 .11 .06 .38 
PL .38 .18 .08 .36 
IB .42 .08 .11 .40 
IL .34 .17 .11 .38 

BL .34 .20 .10 .36 

IP .43 .12 .06 .38 

BP .46 .09 .08 .37 
LP .38 .17 .09 .36 
BI .42 .08 .11 .39 
LI .31 .17 .14 .38 

LB .37 .17 .10 .36 

 

PI .53 .17 .06 .23 
PB .61 .10 .07 .21 
PL .50 .21 .06 .23 
IB .54 .08 .12 .26 
IL .44 .18 .12 .25 
BL .50 .19 .08 .23 

Death PSA Order 2 
IP .52 .16 .08 .23 
BP .61 .08 .08 .24 
LP .50 .19 .07 .24 
BI .53 .07 .14 .26 
LI .44 .18 .13 .26 

LB .49 .18 .09 .23 
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following model because (a) it is simple and (b) it makes assump- 

tions that match design of the stimuli and responses to the stimuli 

for this experiment. We note, however, that our conclusions are 

restricted to these particular models, and there may be other 

Bayesian network models that perform better than does the one 

here. 

For the Bayesian network type of model, we assumed that the 

two attributes informative (I) and believable (B) are exogenous 

factors determined by the type of PSAs. Therefore, each type of 

stimulus produced a  2  – way joint distribution with four joint 

probabilities, 1r(I = x n B = y | stimulus), x = -1, 1, y = -1, 

1, and these were allowed to vary across the two types of 

stimuli. This produces (4 - 1) · 2 = 6 parameters per stimulus 

type. Next we assumed that the response to attributes persuasive 

(P) and likable (L) depended on the stimulus attributes I and B, 

and this dependency was represented by the conditional prob- 

abilities 1r(P = w n L = z | I = x n B = y), for w = -1, 1, and 

z = -1, 1. However, this model produces the same number (15 

· 2 = 30) of parameters as does the 4 – way joint probability 

model. To simplify the model, we assumed conditional inde- 

pendence, so that 

7r(P = w n L = z | I = x n B = y) = 7r(P = w | B = y) 

· 7r(L = z | I = x). 

We also assumed that the two conditionals, 1r(P = w | B = y) and 

1r(L = z | I = x), did not depend on the stimulus type. Therefore, 

each of the two conditionals produces two parameters. Altogether, 

this model entails (4 - 1) · 2 + (2 · 2) = 10 parameters. We refer 

to this as the 10-parameter Bayesian model. 

We also examined a constrained version of this Bayesian model 

that imposed a type of symmetry on the conditional probabilities: 

7r(P = +1 | B = -1) = 1 - 7r(P = +1 | B = +1) 

7r(L = +1 | I = -1) = 1 - 7r(L = +1 | I = +1). 

This model requires only (4 –1) · 2 + 2 = 8 parameters. We refer 

 
to this as the eight-parameter Bayesian model. The purpose of 

examining this model was to provide a Bayesian model with the 

same number of parameters and similar constraints as has the 

quantum model described next. 

 

Simple HSM Model 

The simplest possible HSM model was applied to the real 

data from our experiment. First, we assumed that the attributes 

believable (B) and informative (I) are compatible. This assump- 

tion implies that the order of measurement for these two attri- 

butes does not matter and that the conjunction (B = x n I = y)   

of their binary values can be defined. This is consistent with a 

lack of effect of the order effects of the two attributes in the 

aggregated data. Second, we assumed that persuasive (P) is a 

rotation of believable (B) and that likable (L) is a rotation of 

informative (I). In other words, B, P were assumed to be 

incompatible and so were I, L. This assumption was also 

consistent with order effects found at the aggregate level for 

these variables. 

For the simplest case, we assumed that each conjunction for 

a compatible pair is represented by a single basis vector. To- 

gether, these compatibility assumptions imply that we required 

a –four-dimensional space, with four different bases: one basis 

defined by the four joint events (B = x n I = y), a second basis 

defined by the four events (B = x n L = z), a third basis defined 

by the four events (P = w n I = y), and a fourth defined by four 

events (P = w n L = z). 

We chose to represent the state and projectors using the basis 

described by the B, I events (B = x n I = y). Choosing this basis, 

the basis vector for the event (B = + 1 n I = -1), for example, 

can be represented by a 4 X 1 column matrix of coordinates  

[0 1 0 0 ]†. To reduce the number of model parameters to a 

minimum, we restricted the coordinates of the state to be a real 

valued 4 X 1 column matrix t( with unit length t(†t( = 1: 
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t!+1,+1 

t !=   
t!+1,-1     . 
t!-1,+1 

t!-1,-1 

The coordinate t(x,y corresponds to the event (B = x n I = y). To 

account for the effect of type of stimulus, we allowed the state 

vector to vary across the two types of stimuli, t(Death  and t!Harm. 

The rotation matrices were based on the following simple type 

of rotation: 

 

U =  
cos(7r · 0)   -sin(7r · 0)   

. (5)
 

sin(7r · 0) cos(7r · 0) 

Different parameters, 0PB and 0LI, were used to define the param- 

eter 0 in Equation 5 to produce rotation matrices UPB for the PB 

incompatible pair and ULI for the IL incompatible pair (1r in 

Equation 5 refers to the mathematical constant for a circle). The 

transitions between basis states for incompatible variables B and P, 

as well as the transitions between basis states for incompatible 

variables I and U, should only depend the unitary transformation 

U, and the latter depends only on the variables and is independent 

of the stimulus. 

To define the projectors for different events, we first define an 

indicator matrix for a yes response as M+1 = diag[1 0 ] and a no 

response  as  M-1  =  diag[0   1 ].  To  form  the  matrices  for  the 

four-dimensional space, it is efficient to use the Kronecker (tensor) 

product operator, denoted R (see Appendix C for a review). Then 

the projectors for events were defined by 

P(B = x) = Mx 0 I, 

P(I = y) = I 0 My 

P(P = w) = (UPB · Mw · U† ) 0 I 

P(L = z) = I 0 (ULI · Mz · U† ). 

Finally, the probabilities within each 2 – way table were computed 

from the quantum rule for sequential events. For example, the 

probability of obtaining x on B and then z on L equals 

Results of Model Comparisons 

Recall that the 4 – way joint probability model has 30 param- 

eters, the Bayesian models have 10 or eight parameters, and the 

HSM models also have 10 or eight parameters. 

First, consider comparisons within the Bayesian models. When 

comparing the 10-parameter Bayesian model to the joint probabil- 

ity model, we found that all 184 participants produced BICs 

favoring the 10-parameter Bayesian model. When comparing the 

10- versus eight-parameter Bayesian models, we found that 102 

participants produced BICs favoring the 10- over the eight- 

parameter model. Thus, the 10-parameter Bayesian model is the 

preferred model in this class. 

Second, consider comparisons within the HSM models. When 

comparing the 10-parameter HSM model to the joint probability 

model, we found that all 184 participants produced BICs favoring 

the 10-parameter quantum model. When comparing the 10- versus 

eight-parameter HSM models, we found that 158 participants 

produced BICs favoring the eight- over the 10-parameter model. 

Thus, the eight-parameter HSM model is the preferred model in 

this class. 

Third, consider comparing the preferred 10-parameter Bayesian 

model to the preferred eight-parameter HSM model. We found that 

115 participants produced BICs that favored the eight-parameter 

HSM model over the 10-parameter Bayesian model. However, we 

also compared the two eight-parameter models because we can 

directly compare G2 without any penalty for these models (they 

use the same number of parameters, so the penalty is the same for 

both). We found that 127 participants produced G2 that favored the 

HSM model over the Bayesian model. 

The predictions generated by the eight-parameter Markov model 

compared with the observed proportions, pooled  across  partici- 

pants, are presented in the left panel of Figure 3. Similarly, the F3 

right panel of Figure 3 shows the results for the HSM model. As     

can be seen in the figures, the  constrained  HSM  model  does  a 

much better job of predicting the pooled results when compared to 

the Markov model. The most important errors occur for the in- 

 

p(B = x, L = z) = IP(L = z)· P(B = x)· t!I2. 

We tested the prediction from the HSM model that the parameters 

of the unitary matrix are independent of the stimulus by comparing 

a model that allowed 0PB, 0LI to change across stimuli with a  

model that constrained these to be the same across stimuli. The 

constrained HSM model requires estimating a total of (3 · 2) + 2 = 

8 parameters, which we refer to as the eight-parameter HSM 

model. The model that allows 0PB, 0LI to change across stimuli 

adds two more parameters, and we refer to this as the 10-parameter 

quantum model. 

In sum, the HSM model starts with the four-dimensional BI 

basis, which provides the coordinates that define the distribution t(. 

The coordinates of t( are then used to compute the 2 – way joint 

distribution for the BI table. The distributions for all of the other 
2  – way tables are generated by rotating the basis of the four- 
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compatible variables, where we constrained the model to use the 

same parameters across stimulus types. 

 
Additional Tests of the HSM Model 

The simplest possible subspaces, one-dimensional rays, were used 

in this application to represent each conjunction of two compatible 

events. For example, the conjunctive event (B = +1 n I = -1) was 

represented by a one-dimensional ray spanned by the vector rep- 

resented by the 4 X 1 column matrix of coordinates [0 1 0 0 ]†. 

The use of one-dimensional rays to represent conjunctive events 

leads to the following strong predictions: The 2 X 2 matrix of 

transition probabilities p(P = w | B = x) for each individual are 

equal to the 2 X 2 matrix of produced by squaring the magnitudes 

of the unitary matrix in Equation 5 using the parameter 0PB for the 

incompatible pair P, B (see Appendix D for derivation). Further- 

more, the 2 X 2 matrix of transition probabilities p(B = x | P = w) 

is predicted to be identical to that for p(P = w | B = x). This is 

called the law of reciprocity in quantum probability theory (Peres, 

1998). Note that the Bayesian models are not required to satisfy 

this symmetry property of the HSM model. These predictions can 

be approximately checked by comparing the conditional probabil- 

ities computed from the aggregate observed relative frequencies 

with the predictions computed from the aggregate predicted rela- 

tive frequencies. The predictions do not exactly follow the law of 

reciprocity anymore because of aggregation, but they remain close 

to this prediction. The predictions for the conditional probabilities 

based on the incompatible pair I, L are similar. 

The results of this comparison, pooled across order and stimulus 

type, are shown in Table 5. These results are most challenging   

for the simple HSM model used in this application for the follow- 

ing two reasons. First, this simple model approximately satisfies 

the law of reciprocity, and second, the constrained HSM model 

was forced to use the same unitary matrices for both types of 

 

 
Table 5 

Observed and Predicted Probability of Column Values 

Conditioned on Row Values for the P,B and I,L Attributes 

= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Observed probability of column values conditioned on row values 

appear above the slash, and predicted probability of column values condi- 
tioned on row values appear below the slash. P = persuasive; I = 
informative; B = believable; L = likable. 

 
stimuli. As can be seen in Table 5, the observed conditionals match 

the general pattern predicted by the law of reciprocity fairly well. 

This is not always the empirical case—for example, Boyer- 

Kassem, Duchêne, and Guerci (2016) reported very large devia- 

tions from reciprocity. Some deviations from reciprocity are ex- 

pected because they can be fabricated by aggregation across 

individuals. However, the observed deviations from reciprocity 

were a bit larger than the predicted deviations from reciprocity. 

This difference in deviations from reciprocity suggest that a higher 

dimensional model (e.g., a plane instead of a ray) may provide a 

more accurate representation each conjunction. 

 

Interpretation of Parameters 

The HSM model provides two sets of model parameters for each 

participant. The distributions of these parameters provide an inter- 

pretation of the data from the view of the HSM model. One set, 

which is based on the state t(, describes the probabilities of 

responding “yes” to each variable when the variable is measured 

alone (free from context effects of other attributes). Figure 4 

presents the relative frequency distribution of these response prob- 

abilities for each type of stimulus. For example, the bottom left 

panel shows the relative frequencies for “yes” responses to P 

attribute with the death appeal PSAs, and the right lower panel 

shows the results for the harm appeal PSAs. As can be seen in the 

figure, the probabilities are widely spread out among participants, 

but the probability of answering “yes” was generally higher for the 

death appeal PSAs. Similarly, we can compare the parameter 

distributions for the other three attributes between the two types of 

PSAs with different appeals (see Figure 4). In general, participants 

responded more positively toward death appeal PSAs on all the 

four attributes but clearly more so for the attributes of believable 

and persuasive. 

The second set is based on the parameters 0PB, 0LI used for the 

rotation matrices for the two incompatible variables (recall that 

these are the same for the two types of stimulus). The squared 

magnitude of the coefficients within the unitary rotation matrices 

describe the probability of transiting from one basis to another, that 

is, transitioning from basis vectors for I to basis vectors for L and 

transitioning from basis vectors for B to basis vectors for P. Figure 

5 presents the relative frequency of cos(0 · 1r)2, which describes 

the probability of transiting from a “yes” to one variable to a “yes” 

to another variable that is incompatible with the former variable. 

The panel on the left presents the distribution for 0IL and the 

distribution on the right is for 0PB. As can be seen in Figure 5, the 

parameter for each pair of attributes is located at a high value on 

average, indicating that the two attributes are quite similar to each 

other. It is interesting, however, that the similarity between P and 

B tends to be higher across all participants than is the case for L 

and I; in addition, there are larger individual differences for the 

L and I transitions because the parameter distribution is more 

widely distributed compared to that for the P and B transitions 

(see Figure 6). 

 

Summary, Related Theories, and Extensions 

Summary of Contribution 

In this article, we presented the general theory of measurement 

context effects based on quantum probability theory. HSM models 
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F6 

Variable B 1 B = -1 

P = 1 .85/.89 .19/.14 

P = -1 .15/.11 .81/.86 

 
P = 1 P = -1 

B = 1 .88/.91 .24/.16 

B = -1 .12/.09 .76/.84 

 
L = 1 L = -1 

I = 1 .69/.74 .28/.27 

I = -1 .31/.26 .72/.73 

 
I = 1 I = -1 

L = 1 .75/.76 .36/.30 

L = -1 .25/.24 .64/.70 
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Quantum meaningful and useful interpretations of these effects. First, the 

state vector of an HSM model provides an estimation of the 

respondents’ response tendencies to each of the p variables in a 

context-free manner, that is, as if a variable was measured in 

isolation. Second, the measurement operators describe the interre- 

lations between the p measurements, independent of the response 

tendencies. Furthermore, once the variables being measured have 

been mapped into the Hilbert space by an HSM model, the pa- 

rameters of the model can be used to make new predictions for 

new contexts not included in the original design. For example, if 

there are three variables and two of them are incompatible, then 

after estimating the model parameters from an HSM model for a 

collection 2 – way tables, the same model and parameters can be 

used to make new predictions for new tables that were not included 

in the original design, such as smaller 1 – way tables or larger 3 – 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Predicted 

 
Figure 4. ●●●. 

 

 

provide a simple and low dimensional vector space representation 

of collections of contingency tables formed from measurement of 

subsets of p variables. HSM models are needed when responses to 

questions about a variable depend on the context formed by the 

other variables present in the subset and the order in which they are 

presented. HSM models provide tools for modeling context ef- 

fects, and the model parameters provide two psychologically 
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way tables. 

In the past, specific quantum models were built for particular 

applications. Here we have organized the principles used in the 

past into a new general program for constructing quantum models. 

To form this general program, we introduced two general princi- 

ples: one for building the structure of the Hilbert space and one for 

building projectors. HSM models provide new contributions to the 

current set of probabilistic and statistical tools for contingency 

table analysis. Loglinear–categorical data models apply to only a 

single table containing all p variables, whereas the HSM models 

can be applied to multiple tables containing different subsets of the 

p variables. Bayesian network models can also be applied to 
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collections of tables; however, they assume the existence of a 

complete p – way joint distribution of the observed variables, and 

it is often the case that no such p – way joint distribution exists. 

HSM models can be applied to collections of tables even when no 

p – way joint distribution exists to reproduce the collection. 

In addition to presenting the general procedures for con- 

structing HSM models, we presented an artificial data example 

and a real data example. The artificial example was designed to 

illustrate various kinds of violations of consistency require- ments 

of the p – way joint distribution model. The real data example (a) 

presented the results of a new experiment investi- gating 

evaluations of health messages, (b) reported significant deviations 

from the 4 – way joint distribution, and (c) compared the fit of a 

simple HSM model to a simple Bayesian network model using 

Bayesian information criteria. We conclude from these analyses 

that HSM models are empirically viable for modeling collections 

of contingency tables. 

 
Relation to Social Psychological Theories of 

Context Effects 

Context effects on judgments have been extensively studied 

by social psychologists in the past (Schwarz & Sudman, 2012). 

These investigations have led to the development of influential 

conceptual theories to explain and predict context effects. In 

general, these theories postulate that although some answers to 

questions are simply based on retrieval (e.g., What is your 

political party affiliation?), many other answers have to be 

constructed by currently available information (e.g., Do you 

think a new policy will improve health care?). The current 

information can be affected by context generated  from  an 

earlier question (e.g., Is the policy economically sound?), which 

is carried over and used to answer the next question  

(Tourangeau et al., 2000). The context of an earlier question can 

(a) add or subtract information that is used to represent  the 

target (e.g., the new policy) or (b) add or subtract information 

that is used to represent the standard of comparison (improve 

health care; Schwarz & Bless, 2007). 

These concepts can be used to guide the mathematical formu- 

lation of an HSM model. According to quantum theory, answers to 

questions are constructed from a superposed (indefinite) belief 

state. In general, when answering a sequence of questions, the state 

is modified by each projection, so that an earlier question changes 

the state to form a context that carries over to influence the 

answers to the later questions. Changes in the target representation 

correspond to changes in the state t( used to represent the person’s 

state of beliefs, whereas changes in the standard can be represented 

by changes in the projectors (basis vectors) used represent the 

meaning of the answers to a question. For example, a priming 

event that adds positive expectations for the target policy can 

increase the amplitudes of the initial state t( corresponding to a 

positive evaluation. An earlier question about the economic fea- 

tures of a policy could focus the projector used to answer the next 

question about health care on unique features other than econom- 

ics, such as quality of care. The added advantage of formulating a 

quantum model, with the help of social psychological principles, is 

that the formal model provides new and more precise quantitative 
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Relative frequencies, pooled across 
participants, for the transitions from I to L (left 
panel) and for the transitions from B to 
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predictions (see, e.g., Trueblood & Busemeyer, 2010; Wang & 

Busemeyer, 2016a; White et al., 2014; Yearsely & Trueblood, 

2017). 

 
Extension to Other Research Settings 

Besides those considered here, many other applications of HSM 

models are possible. For example, past research in consumer 

behavior has shown that measurements of preferences for different 

sets of consumer products are context-dependent (Huber, Payne, & 

Puto, 1982), and HSM models could be used to analyze these 

context effects. As another example, the HSM models can be 

useful for analyzing survey data from multiple sources, such as 

different family members or different cross-cultural groups (De 

Roover et al., 2012). Dynamic extensions of HSM models can be 

used to model changes in measurements across longitudinal or 

multiple stage surveys when different subsets of measurements are 

used across stages (McArdle, Grimm, Hamagami, Bowles, & 

Meredith, 2009). In sum, HSM models can be applied to complex 

data collected from a large number of different sources and con- 

texts found in the social and behavioral sciences. 
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Appendix A 

Derivation of the Clauser, Horne, Shimony, and Holt (CHSH) Inequality 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TA1 

This proof for the CHSH inequality was presented in At- 

manspacher and Filk (2013). If we assume that a 4 – way joint 

distribution of four binary random variables A, H, I, and U can 

reproduce Table 1, then we assume that we can represent the 

distribution by the following table. First, we define the  values 

w, x, y, and z of the four binary random variables A, H, I, and U, 

respectively, as -1 or 1. Then we define a new random variable 

X = A · I + H · I + H · U - A · U (there are three other ways to 

permute this arrangement to get different inequalities that also 

satisfy the CHSH criterion). For example, if A = 1, H = 1, I = 1, 

and U = 1, then X = 1 · 1 + 1 · 1 + 1 · 1 - 1 · 1 = 2. The values 

assigned to X for each possible event are shown in Table A1. 

The expected value of the random variable X can be written as 

follows: 

E[X] = E(A · I) + E(H · I) + E(H · U) - E(A · U) 

= � p(A = w n H = x n I = y n U = z) 

· (w · y + x · y + x · z - w · z), 

where the sum extends across all 16 combinations of values of the 

four random variables. Note that the values of X ranges from-2 

to +2, and the expectation is a convex combination of these 

Table A1 

Joint Probability Distribution Over 16 Combination of Events 

From 4 Binary Valued Variables, and the Values of 2 Different 

Random Variables Assigned to the 16 Events 
 

 

A H I U X 
 

-1 -1 -1 -1 2 

-1 -1 -1 1 2 
-1 -1 1 -1 -2 
-1 -1 1 1 -2 
-1 1 -1 -1 2 
-1 1 -1 1 -2 
-1 1 1 -1 2 
-1 1 1 1 -2 

1 -1 -1 -1 -2 
1 -1 -1 1 2 
1 -1 1 -1 -2 
1 -1 1 1 2 
1 1 -1 -1 -2 
1 1 -1 1 -2 
1 1 1 -1 2 

1 1 1 1 2 

 
values, and so the expectation of these values must lie between -2 

and +2. 

 

 

 
Appendix B 

General Method for Building a Unitary Matrix 
 

Suppose H is an N X N Hermitian matrix. Then we can decom- 

pose H into its orthonormal eigenvector matrix V and its real 

eigenvalue diagonal matrix A as follows: H = V · A · V†. The 

matrix exponential of H is defined as 

exp(H) = V · exp(A)· V†, 

exp(A) = diag[eA1 . . . eAj . . . eAN]. 

Any unitary matrix can be built from a matrix exponential of a 

Hermitian matrix as follows: 

U = exp(-i · H) = -i · V · exp(A) · V†. 

 

In general, the Hermitian matrix has N diagonal entries that are 

real and N · (N - 1)/2 off diagonal entries that can be complex. 

However, adding a constant to all the diagonal entries has no 

effect on the choice probabilities, and so one diagonal entry can 

be set to a fixed value. In sum, only (N2 - 1) parameters are 

estimated for each Hermitian matrix. 

 

 

 

 

(Appendices continue) 
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Appendix C 

Kronecker Product 

Suppose P is an m X n matrix and Q is an r X s matrix. Then the Kronecker product is an (m · r) X (n · s) matrix defined by 

[
p11 · Q É p1n · Q 

]
 

 

 

For example, 
P 0 Q = 

É 

É 
p 

É

· Q 

· · · p 

É

· Q · · ·  
É 

É 

É 

É . 
p 

É

· Q 

2 3 4 
3 6 -2 
4   -2 5 

0 
1 0 

=
 

0  1 

2   0 3 0 4 0 

0   2 0 3 0 4 

3   0 6 0 -2 0 
.
 

0   3 0 6 0 -2 

4   0   -2 0 5 0 

0   4 0 -2 0 5 

The Kronecker product satisfies the following property (assuming the column dimension of P matches the row dimension of U, and 

likewise for Q and T): 

(P 0 Q)· (U 0 T) = (P · U) 0 (Q · T). 
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Here we derive the quantum predictions for the conditional probability p(P = w | B = x) for the model used in the ●●● section. Consider 

the case with x = 1, w = -1: 
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2 + | t!1, 1 | 

2. 
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= I((UPB · Mw · U† · Mx) 0 I) · t!I2 
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Therefore,  
p(P = w | B = x) = p(B = x, P = w)

 
= 

= | u-1,1 | 
2

 

The fact that U† UPB = I implies the equality | u 1,1 | 
2 = | u1, 1 | 

2. But using the same argument just explained, we obtain p(B = x | P = 
w) = | u1, 1 | 

2, and therefore p(B = x | P = w) = p(P = w | B = x). The same argument leads to p(I = y | L = z) = p(L = z | I = y). This 
- 

is called the law of reciprocity, but this law holds for only one-dimensional projectors like those used in the application. 
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