BDNF genotype and tDCS interaction in aphasia treatment

BACKGROUND: Several studies, including a randomized controlled trial by our group, support applying anodal tDCS (A-tDCS) to the left hemisphere during behavioral aphasia treatment to improve outcomes. A clear mechanism explaining A-tDCS's efficacy has not been established, but modulation of neuroplasticity may be involved. OBJECTIVE/HYPOTHESIS: The brain-derived neurotrophic factor (BDNF) gene influences neuroplasticity and may modulate the effects of tDCS. Utilizing data from our recently completed trial, we conducted a planned test of whether aphasia treatment outcome is influenced by interaction between A-tDCS and a single-nucleotide polymorphism of the BDNF gene, rs6265. METHODS: Seventy-four individuals with chronic stroke-induced aphasia completed 15 language therapy sessions and were randomized to receive 1 mA A-tDCS or sham tDCS (S-tDCS) to the intact left temporoparietal region for the first 20 min of each session. BDNF genotype was available for 67 participants: 37 participants had the typical val/val genotype. The remaining 30 participants had atypical BDNF genotype (Met allele carriers). The primary outcome factor was improvement in object naming at 1 week after treatment completion. Maintenance of treatment effects was evaluated at 4 and 24 weeks. RESULTS: An interaction was revealed between tDCS condition and genotype for treatment-related naming improvement (F = 4.97, p = 0.03). Participants with val/val genotype who received A-tDCS showed greater response to aphasia treatment than val/val participants who received S-tDCS, as well as the Met allele carriers, regardless of tDCS condition. CONCLUSION: Individuals with the val/val BDNF genotype are more likely to benefit from A-tDCS during aphasia treatment.

Publication Date:
Aug 18 2018
Date Submitted:
Jun 28 2019
Brain Stimulation
External Resources:

 Record created 2019-06-28, last modified 2019-07-24

Rate this document:

Rate this document:
(Not yet reviewed)