Universal Fluctuations of Floquet Topological Invariants at Low Frequencies

We study the low-frequency dynamics of periodically driven one-dimensional systems hosting Floquet topological phases. We show, both analytically and numerically, in the low-frequency limit $\Omega\to0$, the topological invariants of a chirally-symmetric driven system exhibit universal fluctuations. While the topological invariants in this limit nearly vanish on average over a small range of frequencies, we find that they follow a universal Gaussian distribution with a width that scales as $1/\sqrt{\Omega}$. We explain this scaling based on a diffusive structure of the winding numbers of the Floquet-Bloch evolution operator at low frequency. We also find that the maximum quasienergy gap remains finite and scales as $\Omega^2$. Thus, we argue that the adiabatic limit of a Floquet topological insulator is highly structured, with universal fluctuations persisting down to very low frequencies.

Publication Date:
May 08 2018
Date Submitted:
Jun 28 2019
Physical Review Letters
External Resources:

 Record created 2019-06-28, last modified 2019-08-06

Rate this document:

Rate this document:
(Not yet reviewed)