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Abstract

Strong tidal forces can dominate star cluster evolution in merging galaxies, determining their mass-loss rates and
lifetimes. In order to model this evolution, we have developed a second-order accurate numerical method for
integrating a star cluster in an arbitrary time-variable tidal field. We extend the KIRA N-body integrator to handle
these external fields. We obtain realistic tidal histories from a galaxy merger simulation including sink particles,
which we interpret as young star clusters. Coupling these tidal accelerations to N-body models of isolated clusters,
we perform detailed dynamical studies. This generalizes the formalism previously used to explore the dynamical
effects of the galactic tidal field on clusters in circular orbits. We find that, in contrast to previous studies that
considered only stellar and dark matter dynamics, tidal interactions between clusters and dense gas in the galactic
disk can significantly influence cluster mass loss and lifetimes. Using our models, we develop an effective
semianalytic model that can be used for fast estimation of cluster mass loss in a galactic tidal field and to study the
evolution of the globular cluster mass function in isolated and merging galaxies.
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1. Introduction

The dynamical evolution of star clusters can be signifi-
cantly affected by the external tidal field of their host galaxy.
The effects of simple galactic tidal fields, such as those from a
point-mass or isothermal halo, on clusters moving on regular
orbits have been extensively studied both analytically and
numerically. Studies of the effect of external galactic fields
include the definition of new analytical equilibrium models
based on distribution functions depending on the Jacobi
integral (Heggie & Ramamani 1995; Bertin & Varri 2008;
Varri & Bertin 2009) and extensive analytical and numerical
studies of the effects of the external tidal field on the cluster
dynamical evolution for clusters on circular and eccentric
orbits, including the effects of tidal shocks occurring when
clusters cross a galactic disk (e.g., Chernoff et al. 1986;
Spitzer 1987; Weinberg 1994a, 1994b, 1994c; Vesperini &
Heggie 1997; Baumgardt & Makino 2003, see also Heggie &
Hut 2003 and references therein).

Although these studies have shed light on many fundamental
aspects of the role of external tidal fields on the properties and
evolution of globular clusters, their relevance is limited to
clusters evolving in galaxies in equilibrium. In many
circumstances, however, these approximations are clearly not
valid. Of particular interest are the rapidly varying tidal fields
found during galaxy mergers, of which the Antennae galaxies
(Whitmore et al. 1999) are perhaps the best-studied example.
The central regions of the Antennae and other starburst systems
are characterized by irregular density distributions and strong
rapidly varying tidal fields. Newly formed clusters may find
themselves on orbits that repeatedly pass through these
irregular regions before they eventually become part of the
general cluster population of the resulting merged galaxy. The
strong time variation in tidal stresses during the merger may
significantly influence the evolution of these young clusters, as
well as that of older clusters already present in the merging
galaxies.

The complex tidal field experienced by a cluster during a
merger event or the early phases of galaxy assembly is difficult
to model analytically, leading previous workers to adopt
semianalytical (Kruijssen et al. 2012) or numerical methods
(Renaud et al. 2011; Rieder et al. 2013). We follow their
example by adopting the more practical approach of obtaining
realistic tidal histories for stellar and cluster orbits from
numerical simulations of galaxy mergers. Our data are drawn
from a simulation described by Li et al. (2004, 2007), which
describes a merger of two galaxies with masses similar to the
Antennae, including an isothermal gas component, and also
includes a prescription for sink particle formation (Li
et al. 2005) to model the formation of clusters during the
merging process. Renaud & Gieles (2013), who performed a
similar analysis, did not include the effects of gas in their
galaxy merger model.
Our goal in this paper is to study the evolution of clusters

during a galactic merger. To do so, we have developed a
second-order accurate numerical method to study the dynami-
cal evolution of star clusters under arbitrary tidal fields with
strong variations in both space and time. We extend the
collisional integrator KIRA, which is part of the STARLAB
package (Portegies Zwart et al. 2001), to include this method,
and then apply it to the problem at hand.
By computing the tidal acceleration tensor along the trajectory

of every sink particle, we obtain the full tidal history of every star
cluster formed during the merger process. We then select orbits of
interest and perform detailed dynamical simulations of star
clusters using these tidal histories. We present several such
simulations in this paper. We use them to derive a reasonably
accurate semianalytic approximation of cluster mass loss in the
presence of an arbitrary time-variable tidal field.

2. Approximating Tidal Effects

We seek to estimate the tidal effects of the galactic
environment on the internal dynamics of a star cluster. It is
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standard practice (e.g., Hartle 2003) to define a tidal
acceleration tensor,

( )º -¶ ¶ FT , 1ij i j

where Φ(x) is the gravitational potential of the surrounding
galaxy at the cluster center of mass x,5 and ∂i≡∂/∂ xi.

For a galactic system of inertial coordinates containing N
discrete particles with masses mk and positions xk (k=
1,K,N), the potential at the cluster center is
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where ∣ ∣= -x xrk k . (Note that in practice we implement a
softened version of this potential as discussed below in
Section 3.1.) Hence the acceleration is
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where xjk is the jth component of xk, and

( )( )
( )å

d
= ¶ =

- -
-

=

⎡
⎣⎢

⎤
⎦⎥T a Gm

x x x x

r r
. 4ij i j

k

N

k
ik i jk i

k

ij

k1
5 3

This tensor is symmetric with six independent components that
can be derived from an arbitrary mass distribution. In this
paper, we take that distribution from large-scale numerical
models. This is the same approach used by Renaud et al.
(2011). We note that Poisson’s equation,

( )p r F = G4 , 52

implies that the trace of the tidal acceleration tensor is related to
the local density by

( )å p r= -T G4 . 6
i

ii

We expect the reference frame of the cluster (in typical
galactic environments) to be approximately inertial. This is
confirmed by the top two panels in Figure8 of Renaud et al.
(2011), which show that tidal forces far exceed the centrifugal
contribution.

Coriolis forces can be neglected in our study because even
though the galaxy dominates the orbital motion, the primary
tidal forces are not exerted by the large-scale potential of the
galaxy, but rather by nearby small-scale density perturbations
in our model (likely giant molecular clouds in reality). To
examine the importance of Coriolis forces in more detail,
consider a cluster orbiting at distance RG in a galaxy of mass
MG, with a closer perturber of mass ¢m at distance ¢r , which
will be several times the tidal radius rt∼50 pc for cases of
interest.

The center-of-mass orbital acceleration of the cluster due to
the galaxy is =a GM Rg G G

2, while that for the perturber is
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suggesting that for these typical parameters the galaxy indeed
dominates the center-of-mass motion. On the other hand, the
tidal accelerations of a star at distance r from the center of the
cluster due to the galaxy is =a GM r R2tg G G

3, while that for

the perturber is = ¢ ¢a Gm r r2tp
3, so their ratio is
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which means that the perturber dominates the tidal field. Now,
how does the Coriolis force compare to the dominant tidal force
from the perturber? The effective Coriolis acceleration on a star
moving at speed v relative to the cluster center is ac∼Ωv,
where W ~ GM R2

G G
3. Hence ( )~a a v Vc g G , where VG is the

orbital speed of the cluster in the galactic potential. Comparing
this Coriolis acceleration with the tidal acceleration due to the
perturber at distance ¢r from the cluster center yields
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where we have chosen r=rt for our scaling. The ratio is
greatest near the cluster tidal radius, although this effect is
somewhat mitigated by the slower orbital speeds there. We
conclude that the tidal force from a perturber is likely to
significantly exceed the Coriolis forces near the boundaries of a
cluster where stars can be lost, but that future work would be
justified in considering this problem more carefully.
Rieder et al. (2013) also neglect non-inertial terms. In this

frame, linearized equations of motion for each star’s potential,
acceleration, and jerk are (Spitzer 1987; Heggie & Ramamani
1995; Renaud et al. 2011)

( )åf x x= - T
1

2
, 10

i j
ij i j

,

( )å x=a T , 11i
j

ij j

5 Here, we are only concerned with the external potential; the self-gravity of
the star cluster is already included in the N-body code we use and is not
included here.
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where ξi and ui are positions and velocities, respectively,
relative to the cluster center of mass. We include the jerk here
because it is required in the fourth-order integration scheme
that we use, as mentioned in Section 3. As usual, this
approximation is valid for ξ=x.

In order to estimate the Jacobi radius and construct a
semianalytic model for mass loss, it is sometimes convenient to
consider the diagonalized form of the tidal tensor, whose
eigenvalues we denote αi. We can always do this by
momentarily constructing a coordinate system at the location
of the cluster such that the tidal acceleration is aligned along its
axes. The sign convention of Equation (4) is such that a
positive eigenvalue implies an extensive tide along the
direction of its eigenvector, and a negative eigenvalue implies
a compressive tide. Furthermore, since we consider tidal
disruption, we sometimes focus on the highest eigenvalue α1,
which signifies the strength of the dominant mode of mass loss.

3. Stellar Dynamics

To follow the dynamical evolution of the star cluster
population, we carry out a number of N-body simulations
using the KIRA code. KIRA is direct-summation, block time-
step (McMillan 1986; Makino 1991b) integrator based on the
fourth-order Hermite scheme (Makino 1991a). It is part of the
extensive and well-tested STARLAB (Portegies Zwart
et al. 2001) environment for exploring the dynamical and
stellar evolution of star clusters and other dense systems. KIRA
has a variety of back ends, which can offload the ( ) N 2 portion
of the calculation onto a Graphics Processing Unit (GPU) via
the SAPPORO library (Gaburov et al. 2009), several variants of
GRAPE hardware (Makino et al. 2003), or fall back to the
CPU. For performance reasons, we used the GPU-accelerated
version on a cluster with 120 NVIDIA Fermi GPUs.

Previously, KIRA only had the ability to evolve systems in an
external tidal field chosen from a predefined set of simple
analytical distributions, e.g., point-mass or isothermal, as
elaborated in Section 3.1. Furthermore, the implementation of
Equations (10) and (11) included only two diagonal elements
of Tij. We extended this functionality to arbitrary non-diagonal
time-dependent tidal tensors, such as those that arise during
complex galactic encounters, by replacing analytic external
potentials with those computed from Equation (4). We follow
Renaud et al. (2011) in computing a tabulated time series of
values of Tij from the larger galaxy merger simulation for use in
the cluster simulations.

We handle the additional complication of a time-dependent
tidal field drawn from a larger-scale model by sampling the
larger model at regular time intervals and calculating the tidal
field at those points in time. We then apply the field at the
cluster position to the N-body simulation in a piecewise
constant fashion, thus neglecting the associated time deriva-
tives. This neglect is acceptable because the energy input at
each discontinuity in the tidal forcing is small compared to the
total energy, which we show is true for the models we use in
Section 4.1 below.

We implement this method simply by halting and reinitializ-
ing at every change of the tidal field. This avoids the spurious

higher derivatives that would cause numerical instability at the
transitions in tidal force. With this procedure, the energy is
conserved to the usual level found with KIRA of a few percent.
Stars are permanently removed from the simulation for

computational convenience if they cross the =r r25 v bound-
ary, where rv is the virial radius. We assume that the linearized
tidal acceleration is still valid at this distance. However, the
choice of radius is conservative and somewhat arbitrary. The
large radius of the boundary was selected to try to ensure that
we never eliminate stars that might otherwise return to the
vicinity of the cluster. As long as these distant stars do not
significantly affect the dynamics of the cluster, we think it is
better to be less aggressive in removing them from the
simulation, even if the approximate acceleration acting on them
is less accurate out there. We have experimented with values
between 15rv and 35rv, and the particular cutoff radius chosen
has an effect weaker than 2% on the total mass at any time in
the evolution of the cluster, and weaker than 1% at late times.
In anticipation of later discussion, we define some relevant

timescales here. The dynamical time at radius r is

( ) ( )=t r
r
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. 13d

3

We are primarily interested in the values at the half-mass radius
rh and the tidal (or Jacobi) radius rt, where
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which we denote tdh and tdt,
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The half-mass relaxation time of a system of N particles each
of mass m is (Spitzer 1987)
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h
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where we have adopted the Spitzer (1987) value γ=0.4 (but
see Giersz & Heggie 1994). We use the initial half-mass
relaxation time as the time unit for all figures showing cluster
structural evolution. The relaxation times at the above-
mentioned locations are

( )µt Nt , 18rh dh

( )µt Nt , 19rt dt

neglecting logarithmic terms.
However, the properties of the N-body system per se are

quoted in terms of the dynamical time at the virial radius tdv
because the simulations are scaled in standard Hénon units,
according to Heggie & Mathieu (1986); these are described in
detail in Section 5.
For all simulations, we used the initial Plummer distribution

with Np=16,384 equal-mass particles, all of which are cluster
members. This neglects any structure remaining from the initial
formation of the cluster, but should be sufficient to capture the
dynamical evolution of an equilibrium gas-free cluster over
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galactic dynamical timescales. The Plummer model,
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where b is a scale parameter, is an equilibrium density
distribution commonly used in dynamical simulations. We
have also considered King models with various concentration
parameters, but could find no substantive impact on their later
mass-loss histories, which is the quantity of most interest to us.
The half-mass relaxation time with this many particles is

( )»t t174 . 21rh dv

3.1. Circular Orbit in Point-mass Potential

As a test of our formalism and its implementation in KIRA,
we compare the mass loss of a cluster on a circular orbit,
including centrifugal effects, in a point-mass potential, using
the original special-case implementation and the new general
one. We use this particular test configuration because it is one
of the built-in orbits in the prior version of Kira. This is not in
the inertial frame, unlike the general case we considered
in Section 2, or the numerical model we use for clusters in
merging galaxies that we describe below. In this simple case
the tidal acceleration tensor is constant, diagonal, and readily
obtainable (Spitzer 1987):

( )=
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥T

GM

R

3
0

1
, 22G

G
3

where MG is the mass of the point-mass producing the
potential, and RG is its distance.

The mass of a cluster in the field of Equation (22) is shown
in Figure 1; the initial strength of the tidal field can be
characterized by = 5.2r

r
t

h
. Mass loss commences after the

cluster has expanded to fill the cutoff surface at 25 rv. As
expected, the tidal field induces mass loss in two phases: (a)
mass outside the newly imposed tidal radius becomes
unbound and is removed rapidly; and (b) the remaining
stable star cluster undergoes relaxation, marked by linear

mass loss. In Figure 1, the first phase lasts roughly trh. In both
this test and our production models, we run for approximately
10trh, or 1.7 Gyr, for our standard parameters. The agreement
between the two versions is generally good. A small
difference in the realization of the initial Plummer model
for the N-body system can easily explain the remaining
differences. We can eliminate any non-inertial terms as a
cause of the difference since both tests were run with the same
set of (non-inertial) assumptions.
The enhanced version of KIRA outputs and samples the tidal

acceleration at fixed intervals and reinitializes the entire system
whenever the value of the tidal acceleration changes.
Obviously, this is not necessary in the case of the constant
tidal field, but we applied this procedure to both versions of
KIRA to maintain consistency with later simulations.

4. Galactic Merger Simulations

Tidal histories were obtained by post-processing results from
the galaxy merger simulations of Li et al. (2004, 2007), which
were carried out using version 1.1 of the open-source smoothed
particle hydrodynamics code GADGET (Springel et al. 2001)
extended with the sink particle prescription of Li et al. (2005).
Sink particles were formed in regions of high gas density
(n>103 cm−3), replacing gravitationally bound gas particles
while conserving mass and linear and angular momenta. The
original sink particle formalism for smoothed particle hydro-
dynamics simulations on which it is based was described by
Bate et al. (1995).
The simulations were initialized with bulgeless galactic

disks, each containing a dark matter halo, exponential stellar
disk, and gas with an isothermal equation of state, and sound
speed = -c 6 km ss

1. This value for the sound speed was
chosen to reproduce the effects of stellar feedback on the
dynamics of the gas, maintaining the star formation rate at a
realistic value. This simple model ensures a converged star
formation rate (Li et al. 2005) that agrees with the Schmidt–
Kennicutt law (Kennicutt 1998), since the details of the
turbulence are approximated by the high sound speed.
Although much more detailed treatments of the physics of
the interstellar medium and star formation have since been
developed, the relatively tractable models of Li et al. (2007)
capture the basic dynamics of the tidal forcing. The particular
model used for all tidal histories in this paper was referred to
as MG2 in Li et al. (2007); its progenitor galaxy haloes had
masses 3.3×1011M☉ and rotation velocities 100 km s−1.
Gas particles had masses of 6.6×103M☉, giving a mass
resolution of ∼5×105M☉, and had softening lengths of
10 pc. The softening lengths of the dark matter halo particles
were 0.4 kpc, while for the sink particles and stellar disk
particles they were 0.1 kpc. Half of the 2×106 particles were
gas, 30% were dark matter, and 20% were disk stars. The
collisionless softening lengths substantially exceed a typical
globular cluster size of rh 10 pc. The masses of the galaxies in
this model are similar to those of the Antennae merging
galaxies (Whitmore & Schweizer 1995), although the orbits
are not the same.
This merger simulation produced full system output,

including positions and velocities of all particles, at regular
intervals of 10Myr; these were used for all further analysis.
This sampling time appears sufficiently frequent, as it is
comparable to the dynamical time at the tidal radius for typical

Figure 1. Mass evolution of a star cluster in a circular orbit around a point-
mass potential. The dotted curve shows KIRAʼs original special-purpose
implementation, and the solid curve shows the new generalization to an
arbitrary tidal acceleration.
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tidal fields. Sink particles were given unique integer identifiers
during the simulation, generated sequentially by time of
formation, starting at unity.

Star cluster formation occurred in three distinct episodes, as
shown in Figure 2 (Li et al. 2005, 2006, 2007). Although the
modeled starbursts are unlikely to be realistic in every detail,
they do provide a qualitatively correct tidal environment
modeled with more physical processes than previous work. We
refer to those clusters that formed before the first passage, i.e.,
roughly before 1 Gyr, as first generation; they had IDs in the
range 1–141. They formed in unstable regions in the progenitor
galaxies. Second-generation clusters formed during the first
interaction; significant formation activity is visible around
1.5 Gyr; their IDs were 142–370. A final formation episode
occurred on the second passage, shortly after 4 Gyr; their IDs
were 371–417. Unfortunately, there is very little dynamical
history for these final clusters, therefore they are omitted from
our analysis.

Figure 3 shows sink particles in the X–Y plane of the
simulation volume; first-generation sinks are colored red,
second generation are blue, and third generation are purple.
Four important periods of the simulation are shown:

1 Gyr: just before the first interaction, but after some star
clusters have formed in initially unstable regions in
the progenitors;

1.5 Gyr: during the first interaction;
4 Gyr: during the second lower velocity interaction, where

the individual galaxies are still discernible;
5 Gyr: as the merger product virialized, shortly before the

end of the simulation.

In these frames, the star clusters trace the areas of activity (such
as the centers of the progenitor galaxies) fairly well because
they form in the densest and most unstable regions.

The distribution of final galactocentric distances is shown in
Figure 4, where it is clear that the first- and third-generation
clusters are confined to the inner 7 kpc by the end of the
simulation, while the second-generation clusters can be found
past 40 kpc.

4.1. Tidal Histories

At every snapshot we computed the tidal acceleration tensor
at the position of each sink particle according to Equation (4).6

This produced a tensor-valued function representing the local
tidal environment in the galactic inertial frame for every star
cluster, sampled every 10Myr. We refer to these functions as
tidal histories. A selection is shown in Figure 5. These clusters
were chosen to show a variety of features in the tidal
accelerations.
Many of the first-generation star clusters formed in very

dense and violent regions, and they tend to have strong
irregular tidal accelerations. Sink 309 formed in a moderately
active region, but subsequently moved into a much less
perturbed periodic orbit. Sink 319 experienced a nearly
constant tidal acceleration throughout its lifetime. Sink 305
moved slowly from an extensive tidal region into a
compressive one, while sink 366 was basically an isolated
cluster. One feature common to most sinks is a violent
formation process, as evidenced by the initial spike in the tidal
acceleration. Although some sinks formed in regions of
extensive tidal forces, the sink formation criteria require
gravitational binding of the gas (Li et al. 2005), guaranteeing
that the parent clouds of the sink were indeed gravitationally
bound.
This figure allows us to demonstrate that our approximation of

neglecting the time derivatives at transitions between piecewise
constant tidal forces (Section 3) is acceptable, because the
energy input at each discontinuity in the tidal forcing is small
compared to the total energy. This can be seen by comparing the
initial total energy of our cluster, E0=−1/2, to the typical
changes in energy associated with the tidal forcing from our
merger model. We have chosen units such that the eigenvalues
of tidal acceleration can be directly compared to the changes in
energy resulting. As can be seen in Figure 5, these changes
remain small compared to E0 at each point in time.

5. Scaling N-body Simulations

Having obtained a set of tidal acceleration curves, we
conducted a series of numerical experiments with the extended
version of KIRA, where we simulated the dynamics of star
clusters with Equations (10) and (11) incorporated to model the
effects of the external tidal field.
Because of computational constraints, we model a star

cluster using a simulation containing fewer stars than typical
real clusters (1.6×104 stars rather than the 105–6 stars typical
of globular clusters). The central issue, then, is how to scale the
model to preserve the most important physical properties.
Suppose that the real cluster can be characterized by the 4-tuple
( )a¢ ¢ ¢ ¢N M r, , ,h 1 and the model system by ( )aN M r, , ,h 1 ,
representing the number of stars, mass, half-mass–radius, and
the dominant eigenvalue of the tidal acceleration, respectively.
We quantify the strength of the tidal field on a cluster by the

dimensionless parameter,

( )aG =
r

GM
. 231

h
3

Figure 2. Globular star cluster formation in simulation MG2 clearly occurred
in three distinct bursts; the numbers denote the total in each. The first-
generation clusters (red)—roughly those formed before 1 Gyr—were produced
in unstable regions of the progenitors before the initial interaction. The second-
generation clusters (blue)—formed between 1 Gyr and 2 Gyr—were produced
during the first close pass of the colliding galaxies. Third-generation clusters
(purple)—formed after 4 Gyr—were produced during the second pass.

6 To be more precise, we used a Plummer-softened form of the potential in
order to maintain consistency with the form of the force law used during the
merger simulations.
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We can now write

( )G = =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r

r

t

t
, 24h

t

3
dh

dt

2

where tdh and tdt are defined by Equations (15) and (16),
respectively.

Ideally, we would like to preserve all relevant physical
scales, but this is impossible because different quantities scale
differently with the number of stars N. In particular, we cannot
preserve both relaxation time and dynamical time simulta-
neously (Aarseth & Heggie 1998). In this situation, mass loss
will manifest as stellar flow through the tidal boundary. The
timescale for the loss of stars near the tidal boundary in the case

of sudden changes in the tidal radius is the dynamical time at
the tidal radius. Therefore we choose to preserve that
dynamical time. We do this by setting

( )=
¢

¢⎜ ⎟⎛
⎝

⎞
⎠r

N

N
r , 25h

1 3

h

( )a a= ¢, 261 1

( )G = G¢. 27

The last equation implies

( )=
¢
¢

r

r

r

r
. 28t

h

t

h

Figure 3. Star clusters forming during the course of the MG2 galaxy merger simulation. The first frame, at 1 Gyr, shows clusters that formed in the progenitors before
the interaction. The snapshot at 1.5 Gyr depicts clusters strewn along the arms during the first passage; this was a major cluster formation event. The frame at 4 Gyr
shows the interaction during the second passage; the centers of the individual galaxies are well represented by the density of star clusters. The final frame shows the
virialized merger product at 5 Gyr. As in Figure 2, first-generation clusters are shown in red (circles), second generation in blue (triangles), and third generation in
purple (squares).
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We note that this choice of scaling implies a constant-density
cluster mass–radius relation, rh∼M1/3, and a constant mean
particle mass, = ¢ ¢M N M N .

We still have the freedom to choose the actual value of the
dynamical time. To convert the physical units of the tidal
acceleration tensor obtained from the galactic merger simula-
tions into the dimensionless units of the N-body cluster
simulations, we used the typical value for globular clusters of
tdv=1Myr (Portegies Zwart et al. 2001).

The results of simulations performed as described in this
section are shown in Figure 6. We have performed several
dozen such simulations, and these were used to calibrate the
semianalytic model that we describe in Section 6. These
simulations were also used to understand the accuracy of the
model; this is shown in Figure 8.

6. Mass-loss Model

A full dynamical simulation of one of our star clusters with
KIRA requires days or weeks of computational time. Consider-
ing that we are mainly interested in lifetimes and total mass loss
and not in detailed dynamical histories, this approach is
needlessly resource intensive. It is therefore desirable to obtain
a simple analytic model for estimating mass loss, given a set of
cluster parameters and tidal history.

Our models are fit to simulations that did not reach core
collapse. However, this produces a negligible additional
amount of mass loss because of the small volume occupied
by the core (for example, see Figure6 of Baumgardt &
Makino 2003, which shows no deviation from linear mass loss
at the time of core collapse), and therefore we believe that this
neglect does not significantly affect the quality of our model.

Dynamical effects of a time-variable tidal field can induce
stellar mass loss through several underlying processes. We find
it most useful to decompose the overall phenomenon into two
distinct parts: internal two-body relaxation under the influence
of the external tidal field, and changes in the Jacobi radius
driven by that tidal field.

6.1. Two-body Relaxation

Even in isolation, a star cluster will undergo steady
evaporation, as particles gain enough energy to escape, through
two-body interactions. For clusters evolving in the external

tidal field of their host galaxy, the mass-loss rate increases
because the threshold for escape energy is lowered. It has been
shown that for a broad range of values of rh/rt, mass loss is
determined by the mean density within the tidal radius r̄t (e.g.,
Gieles & Baumgardt 2008, and references therein),

¯ ( ) ( )r gµ
dN

dt
G Nln . 29t

Considering particles of uniform mass m and assuming that
the tidal radius is proportional to the half-mass radius, we can
substitute the definition of the tidal radius from Equation (14)
to obtain

¯ ( )r
a

aµ µ µ
N

r

N

GM
. 30t

t
3

1
1

Substituting this into Equation (29), we find that the mass-loss
rate due to enhanced evaporation from tidal acceleration acting
on the two-body relaxation process is

( ) ( )aµ
dM

dt
Nln 0.4 , 311

1 2

where we again use the Spitzer (1987) value γ=0.4.
In order to verify this piece of the model, we performed a set

of simulations with a range of simple analytic tidal tensors,
which were kept constant during the runs (note that these
tensors are chosen just to test the numerical implementation of
the model, and do not correspond to physical density
distributions). The values were of the form

( )
a

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥T 0

0
, 32

1

where the magnitudes α1ä{0.15625, 0.3125, 0.625, 1.25, 2.5,
5}×10−2 -tdv

2 were chosen so as to cover a reasonable range of
values seen from tidal histories described in Section 4.
The initial conditions for these simulations were as described
in Section 3. The given values of α1 imply =r rt h

{ }11, 8.9, 7.0, 5.6, 4.4, 3.5 , respectively. Figure 7 shows mass
loss during the actual simulations together with the predictions
of Equation (31). These predictions of slope are accurate for a
large range of tidal field strengths, so long as the cluster
remains bound and in gravitational equilibrium. As the field
gains in strength and mass loss begins to deviate from the
expected linear form, this model becomes less accurate. This
can be observed in the last curve of Figure 7, when
a = -t0.051 dv

2, and the cluster loses mass in a superlinear
fashion.

6.2. Fluctuations in the Jacobi Radius

The second element of our model relates to the changes in
the Jacobi surface induced by a time-variable tidal field.
Specifically, we aim to estimate the fractional mass lossΔM/M
for small variations of the Jacobi radius Δrt/rt. After a stronger
tidal field establishes a smaller Jacobi radius, stars left outside
are expected to escape on the local dynamical timescale.
We assume that near the tidal boundary the approximate

radial mass dependence is

( ) ( )µM r r , 33a

Figure 4. Distribution of the final galactocentric distance of star clusters
formed in MG2. First-generation clusters (red) are confined to the inner 7 kpc,
second generation (blue) are less concentrated, and third generation (purple) are
again confined to the core of the merger product.
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so that we can write the finite difference proportionality

( ) ( )
( )

( ) ( )+ D - D
µ

DM r r M r

M r

M

M

r

r
, 34t t t

t

tot t

t

where (ΔM)tot the total amount of mass that would be lost due
to a small decrease in the tidal radius Δrt induced by an
increasing tidal potential.

As discussed in Section 5, this mass will be lost on the local
dynamical timescale tdt, so the mass-loss rate is ( )DM ttot dt.
Thus the amount of mass ΔM actually lost during a time Δt
since the change in the Jacobi radius occurred can then be
found by substitution from Equation (34):

( ) ( )D =
D

D µ
D D

M
M

t
t M

r

r

t

t
. 35tot

dt

t

t dt

Differentiation of Equation (14) and algebraic rearrangement
using the same equation give

( )a
a

= -
dr

r

dM

M

d
3 . 36t

t

1

1

Using the assumption of power-law radial mass dependence
(Equation (33)), we can substitute =dM M adr

r
t

t
, so

( ) ( )a
a

- = -a
dr

r

d
3 . 37t

t

1

1

Taking this in finite difference form, we find the proportionality

( )a
a

D
µ

Dr

r
. 38t

t

1

1

Substituting this into the previous proportionality Equation (35)
and algebraically rearranging gives

( )a
a

D
µ

D D⎛
⎝⎜

⎞
⎠⎟

M

M

t

t
. 391

1 dt

Combining Equations (14) and (16) shows that

( )a= -t . 40dt 1
1 2

In final form, then, our estimate of mass loss due to a shrinking
Jacobi surface over a time Δt is

( )a
a

D
µ

D
D

M

M
t. 411

1

Figure 5. The dominant eigenvalue of the tidal acceleration is shown for a representative selection of sink particles from the galaxy merger simulation that we use. See
Section 4.1 for a discussion of dynamical history revealed by these curves.
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Combining Equations (31) and (41) yields the expected mass
loss due to enhanced evaporative pressure (first term) as well as
contracting Jacobi radius (second term),

( )a
a
a

D = D +
D

DM A t B M t, 421
1

1

where A and B are constants of proportionality.
Given the form of Equation (42), a few provisions must be

made in order to handle all possible inputs. First, mass loss will
only actually occur when α1�0. More subtly, the second term
is derived for cases of decreasing Jacobi radius, i.e., increasing
tidal field strength. Our experiments have shown that clusters

do not respond to negative, i.e., compressive, tides in any
significant way, at least when they are under a few percent of
internal binding energy. When iterating Equation (42) over the
values of tidal acceleration,7 we therefore apply mass loss only
during extensive periods, when α1�0.
We further assume that the cluster comes into equilibrium

with any applied tidal field, and that enhanced mass loss only
occurs when that field grows stronger. Therefore we only
engage the second term during periods of increasing tidal
acceleration. Together these two criteria for mass loss can be

Figure 6. This figure shows mass-loss histories from a variety of environments using the full N-body simulations (circles). They are compared to our proposed mass-
loss model (lines). Filled circles show when the dominant tidal mode is extensive, and open circles when it is compressive. Most of the clusters, as illustrated by Sinks
11, 44, 53, 63, and 68, undergo fairly uniform mass loss and are tracked exceptionally well by the model. Some others experience short bursts of rapid mass loss, and
these are typically not as well captured in the model; an example is sink 244 at around =t t4.5 rh.

7 As mentioned before, the input is a time series of the diagonalized form of
the tidal acceleration tensor.
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expressed as

( )a
a

> >
d

dt
0 and 0. 431

1

With these caveats, Equation (42) becomes

( ) ( )a
a a

a
D = D +

- ¢
D

⎛
⎝⎜

⎞
⎠⎟M A t B M t

max , 0
, 441

1 1

1

where a ¢1 is the value from the previous step and the numerator
is recast for cases when the value of α1 changes sign from
negative to positive. The max function ensures that only
differences between positive tidal accelerations contribute to
the mass loss.

In order to calibrate and validate the model, we performed
detailed dynamical simulations with KIRA—enhanced with the
prescription of Section 2—for a sample of a few dozen tidal
histories obtained in Section 4 (including both compressive and
extensive tides) and compared the resulting mass-loss curves to
those predicted by Equation (42).

The N-body simulations were initialized with a Plummer
model of 16384 particles, as described in Section 3. The tidal
histories were scaled as described in Section 5 so that
tdv=1Myr. This is ultimately an arbitrary choice that allows
us to compare tidal histories by relative mass loss.

We now describe the procedure we used to estimate the
constants A and B, Equation (42), for the type of cluster we
have simulated. Further work will be required to determine
how universal these constants are. We varied the constants for
multiple runs, gauging by eye the closeness of the model to the
run. Since A describes two-body relaxation under the influence
of an external tidal field, we fixed the value of A by considering
a cluster in a constant tidal field, such as in Figure 7, and
comparing the slope predicted by the model to that from the
actual N-body simulation. It appeared that the value
A≈3.4M☉ worked well for a range of tidal field strengths.
Having settled on the value for A, we compared the model to a
series of simulations with time-varying Jacobi radii, and found
B≈0.135. Our quoted values of A and B have a number of
significant figures reflective of the level at which we could see
variations in the goodness of fit. The panels in Figure 6 show

the comparison of the model with these values for a selection of
N-body simulations.
To gain a more statistical view of the accuracy of the model,

we also compared the mass of each cluster at the end of the
simulation8 to that predicted by the model at the same time; this
is shown in Figure 8. There is more scatter for clusters that
underwent more severe mass loss, and this is consistent with
the analysis in Section 7. However, there are also more points
in that region of the plot because sink particles were more
likely to form in violent regions and thus suffer more severe
mass loss during their early lives.
The figure, however, somewhat understates the accuracy of

the model by only comparing the masses at the final state, by
which point differences have accumulated. This is easily seen
in Figure 9, where the model is fairly accurate for most of the
run, but differences grow toward the end.

7. Discussion and Summary

The proposed model seems to capture the complex
dynamical process of mass loss under arbitrary time-variable
tidal fields fairly accurately; this is demonstrated by Figures 6
and 8. The savings in computational requirements allow us to
perform the equivalent of millions of full dynamical simula-
tions in minutes.

7.1. Comparison with Related Work

A few investigations have addressed questions similar to those
investigated in this paper. Renaud et al. (2011) investigated a
very similar scenario, sampling the tidal acceleration from a
galactic merger simulation. We find that when the gravitational
effects of dense regions of interstellar gas and newly formed star

Figure 7.Mass loss under a constant tidal field with a range of values, from top
to bottom, of -t0.0015625 dv

2 to -t0.05 dv
2. Open circles show the results of actual

dynamical simulations, while lines are predictions from Equation (31). Since
the relaxation piece of the model has no mechanism for the initial escape of
stars outside of the newly imposed Jacobi radius, the solid curves have been
lowered for easier comparison of the slopes.

Figure 8. Final cluster masses for a series of full dynamical simulations are
compared to the predicted masses from iterating Equation (42). The model
tends to be more accurate for clusters with weaker external tidal fields, which
lose less mass.

8 The end of a simulation did not necessarily correspond to full dissolution or
the end of tidal data. A few runs slowed down substantially due to pathological
hard binaries and were terminated, a problem faced by all N-body simulations.
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clusters are taken into account, the result is a marked increase in
the mass loss and dissolution rates of our model clusters.
However, we focus in this work on a semianalytic approx-
imation that will in future work allow for the results of many
more tidal histories to be examined. Rieder et al. (2013) obtained
their tidal accelerations from a cosmological model at much
lower resolution and thus found correspondingly lower varia-
tions in the tidal field. They also did not propose a semianalytic
approximation. We expect discontinuities of tidal histories, like
those in Figure 5, to become more dramatic as the resolution of
galactic simulations increases.

The conceptual approach of considering the changing tidal
radius contrasts with the semianalytic approach proposed by
Kruijssen et al. (2012), where tidal heating—that is, energy
input due to the changing tidal field—is seen as the driving
cause of mass loss. However, we argue that the role of tidal
heating is secondary since we are able to account for mass loss
without taking energy input into account.

7.2. Limitations

It is important to consider the model’s limitations. One is
that we did not vary the initial structure of the cluster under

consideration to see whether the constants derived for the
model might vary based on that. Another limitation is
immediately apparent from Figure 6 at points where clusters
experience rapid mass loss due to large spikes in the tidal
acceleration. Examples of this are evident in the mass-loss
curve of Sink 244 at »t t4.5 rh or Sink 288 at »t t3.2 rh. In
both cases, the model underestimates the effect of sudden
contractions of the tidal radius probably because mass loss due
to large fluctuations in the tidal radius is more sensitive to
structural parameters, which we do not take into account.
Furthermore, large fluctuations in the tidal radius will render
the linearization in Equation (34) inaccurate.
Another unaccounted-for phenomenon occurs when a cluster

substantially overfills its initial Jacobi radius. This is visible to
various degrees with Sinks 53, 247, 269, and 288. For clusters
initially underfilling their Jacobi radii, like 11 or 63, the model
accurately tracks the mass loss of full simulations.
We decided to investigate this phenomenon further and

artificially increased the tidal field in order to prompt more drastic
mass loss. Figure 9 shows two sink particles under the following
setup. Each panel is dedicated to a cluster that was simulated with
(a) its natural tidal history, and (b) one that was arbitrarily
increased by a factor of 4. For Sink 56, this increase causes a more

Figure 9. Mass loss curves for two sample clusters obtained from full dynamical simulations (circles) are compared to those predicted by iterating Equation (42)
(lines). Two sets of simulations were run for each sink particle: one set (top curves) was scaled as described in Section 5, such that tdv=1 Myr; for the other, however,
the strength of the tidal field was artificially increased by a factor of 4 (bottom curves) to examine how the model begins to break down as the assumption of small
perturbations is violated.
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rapid mass loss, and the model’s agreement deteriorates somewhat
as compared with the natural tidal history. The difference is most
dramatic in the very beginning because a substantial mass fraction
lies outside the tidal radius, something the model has no provision
to handle. The situation is far more spectacular for Sink 283, which
starts so far out of equilibrium that it lost 70% of its mass within
one initial half-mass relaxation time.

The particular issues described in this section highlight two
assumptions: (a) the tacit assumption of initial equilibrium, and
(b) the explicit assumption that individual changes in the Jacobi
radius be small. Cases where the model underperformed, as
demonstrated in Figures 6 and 9, violated at least one of these
assumptions. It might also be possible to better calibrate the
constants in Equation (42), in particular B, which controls the
reduction of mass at times of shrinking Jacobi radius.

Nevertheless, there is substantial agreement between the
model and a wide range of tidal histories, and even in its
current preliminary state, this allows for statistical studies that
previously were computationally unfeasible. Ultimately, our
approximation, which is based on models of a single cluster,
will need to be refined with simulations of clusters with a wide
range of structural parameters such as initial density profile in
order to understand the dependence on them. In this study, we
have taken the first step of investigating the mass loss resulting
from various tidal histories acting on a single cluster.

We thank D. Kruijssen for useful discussions, and Y. Li for
assisting with the use of her merger simulations. E.M. and S.M.
acknowledge support from grant NSF grant AST-0959884. M.-
M.M.L. was partly supported by NSF grant AST-1109395 and
the Humboldt Foundation, and thanks the Aspen Center for
Physics, supported by NSF Grant PHY-1066293, for hospital-
ity during some of the work on this paper. Support from grant
HST-AR-11780.01 is acknowledged. We thank the anonymous
referee for a detailed report that resulted in a stronger paper.

References

Aarseth, S. J. 2003, Gravitational N-Body Simulations (Cambridge: Cambridge
Univ. Press)

Aarseth, S. J., & Heggie, D. C. 1998, MNRAS, 297, 794
Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362
Baumgardt, H. 2001, MNRAS, 325, 1323

Baumgardt, H., & Makino, J. 2003, MNRAS, 340, 227
Bertin, G., & Varri, A. L. 2008, ApJ, 689, 1005
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (Princeton, NJ: Princeton

Univ. Press)
Chernoff, D., Kochanik, C., & Shapiro, S. 1986, ApJ, 309, 183
Elmegreen, B. G., & Hunter, D. A. 2010, ApJ, 712, 604
Gaburov, E., Harfst, S., & Portegies Zwart, S. F. 2009, NewA, 14, 630
Gieles, M., & Baumgardt, H. 2008, MNRAS, 389, L28
Giersz, M., & Heggie, D. C. 1994, MNRAS, 268, 257
Hartle, J. B. 2003, Gravity—An Introduction to Einstein’s General Relativity

(San Francisco, CA: Addison Wesley)
Heggie, D., & Hut, P. 2003, The Gravitational Million-Body Problem

(Cambridge: Cambridge Univ. Press)
Heggie, D. C., & Mathieu, R. D. 1986, in The Use of Supercomputers in Stellar

Dynamics, ed. P. Hut & S. L. W. McMillan (Berlin: Springer)
Heggie, D. C., & Ramamani, N. 1995, MNRAS, 272, 317
Kennicutt, R. C., Jr. 1998, ApJ, 498, 541
Kruijssen, J. M. D., Pelupessy, F. I., Lamers, H. J. G. L. M., et al. 2012,

MNRAS, 421, 1927
Lee, H. M., & Ostriker, J. P. 1987, ApJ, 322, 123
Li, Y., Haiman, Z., & Mac Low, M.-M. 2007, ApJ, 663, 61
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2004, ApJL, 614, L29
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2005, ApJ, 626, 823
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2006, ApJ, 639, 879
Makino, J. 1991a, ApJ, 369, 200
Makino, J. 1991b, PASJ, 43, 859
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003, PASJ, 55

1163
McMillan, S. L. W. 1986, in The Use of Supercomputers in Stellar Dynamics,

ed. P. Hut & S. L. W. McMillan (Berlin: Springer)
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A,

48, 431
Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., & Makino, J. 2001,

MNRAS, 321, 199
Renaud, F., Boily, C. M., Fleck, J.-J., Naab, T., & Theis, Ch. 2008, MNRAS,

391, L98
Renaud, F., Bournaud, F., Kraljic, K., & Duc, P.-A. 2014, MNRAS,

442, L33
Renaud, F., & Gieles, M. 2013, MNRAS, 431, L83
Renaud, F., Gieles, M., & Boily, C. M. 2011, MNRAS, 418, 759
Rieder, S., Ishiyama, T., Langelaan, P., et al. 2013, MNRAS, 436, 3695
Spitzer, L., Jr. 1987, Dynamical Evolution of Globular Clusters (Princeton, NJ:

Princeton Univ. Press)
Springel, V., Yoshida, N., & White, S. D. M. 2001, NewA, 6, 79
Varri, A. L., & Bertin, G. 2009, ApJ, 703, 1911
Vesperini, E., & Heggie, D. C. 1997, MNRAS, 289, 898
Weinberg, M. D. 1994a, AJ, 108, 1398
Weinberg, M. D. 1994b, AJ, 108, 1403
Weinberg, M. D. 1994c, AJ, 108, 1414
Whitmore, B. C., & Schweizer, F. 1995, AJ, 109, 960
Whitmore, B. C., Zhang, Q., Leitherer, C., et al. 1999, AJ, 118, 1551

12

The Astrophysical Journal, 837:70 (12pp), 2017 March 1 Mamikonyan et al.

https://doi.org/10.1046/j.1365-8711.1998.01521.x
http://adsabs.harvard.edu/abs/1998MNRAS.297..794A
https://doi.org/10.1093/mnras/277.2.362
http://adsabs.harvard.edu/abs/1995MNRAS.277..362B
https://doi.org/10.1046/j.1365-8711.2001.04272.x
http://adsabs.harvard.edu/abs/2001MNRAS.325.1323B
https://doi.org/10.1046/j.1365-8711.2003.06286.x
http://adsabs.harvard.edu/abs/2003MNRAS.340..227B
https://doi.org/10.1086/592684
http://adsabs.harvard.edu/abs/2008ApJ...689.1005B
https://doi.org/10.1086/164591
http://adsabs.harvard.edu/abs/1986ApJ...309..183C
https://doi.org/10.1088/0004-637X/712/1/604
http://adsabs.harvard.edu/abs/2010ApJ...712..604E
https://doi.org/10.1016/j.newast.2009.03.002
http://adsabs.harvard.edu/abs/2009NewA...14..630G
https://doi.org/10.1111/j.1745-3933.2008.00515.x
http://adsabs.harvard.edu/abs/2008MNRAS.389L..28G
https://doi.org/10.1093/mnras/268.1.257
http://adsabs.harvard.edu/abs/1994MNRAS.268..257G
https://doi.org/10.1093/mnras/272.2.317
http://adsabs.harvard.edu/abs/1995MNRAS.272..317H
https://doi.org/10.1086/305588
http://adsabs.harvard.edu/abs/1998ApJ...498..541K
https://doi.org/10.1111/j.1365-2966.2012.20322.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.1927K
https://doi.org/10.1086/165709
http://adsabs.harvard.edu/abs/1987ApJ...322..123L
https://doi.org/10.1086/518398
http://adsabs.harvard.edu/abs/2007ApJ...663...61L
https://doi.org/10.1086/425320
http://adsabs.harvard.edu/abs/2004ApJ...614L..29L
https://doi.org/10.1086/430205
http://adsabs.harvard.edu/abs/2005ApJ...626..823L
https://doi.org/10.1086/499350
http://adsabs.harvard.edu/abs/2006ApJ...639..879L
https://doi.org/10.1086/169751
http://adsabs.harvard.edu/abs/1991ApJ...369..200M
http://adsabs.harvard.edu/abs/1991PASJ...43..859M
https://doi.org/10.1093/pasj/55.6.1163
http://adsabs.harvard.edu/abs/2003PASJ...55.1163M
http://adsabs.harvard.edu/abs/2003PASJ...55.1163M
https://doi.org/10.1146/annurev-astro-081309-130834
http://adsabs.harvard.edu/abs/2010ARA&amp;A..48..431P
http://adsabs.harvard.edu/abs/2010ARA&amp;A..48..431P
https://doi.org/10.1046/j.1365-8711.2001.03976.x
http://adsabs.harvard.edu/abs/2001MNRAS.321..199P
https://doi.org/10.1111/j.1745-3933.2008.00564.x
http://adsabs.harvard.edu/abs/2008MNRAS.391L..98R
http://adsabs.harvard.edu/abs/2008MNRAS.391L..98R
https://doi.org/10.1093/mnrasl/slu050
http://adsabs.harvard.edu/abs/2014MNRAS.442L..33R
http://adsabs.harvard.edu/abs/2014MNRAS.442L..33R
https://doi.org/10.1093/mnrasl/slt013
http://adsabs.harvard.edu/abs/2013MNRAS.431L..83R
https://doi.org/10.1111/j.1365-2966.2011.19531.x
http://adsabs.harvard.edu/abs/2011MNRAS.418..759R
https://doi.org/10.1093/mnras/stt1848
http://adsabs.harvard.edu/abs/2013MNRAS.436.3695R
https://doi.org/10.1016/S1384-1076(01)00042-2
http://adsabs.harvard.edu/abs/2001NewA....6...79S
https://doi.org/10.1088/0004-637X/703/2/1911
http://adsabs.harvard.edu/abs/2009ApJ...703.1911V
https://doi.org/10.1093/mnras/289.4.898
http://adsabs.harvard.edu/abs/1997MNRAS.289..898V
https://doi.org/10.1086/117161
http://adsabs.harvard.edu/abs/1994AJ....108.1398W
https://doi.org/10.1086/117162
http://adsabs.harvard.edu/abs/1994AJ....108.1403W
https://doi.org/10.1086/117163
http://adsabs.harvard.edu/abs/1994AJ....108.1414W
https://doi.org/10.1086/117334
http://adsabs.harvard.edu/abs/1995AJ....109..960W
https://doi.org/10.1086/301041
http://adsabs.harvard.edu/abs/1999AJ....118.1551W

	1. Introduction
	2. Approximating Tidal Effects
	3. Stellar Dynamics
	3.1. Circular Orbit in Point-mass Potential

	4. Galactic Merger Simulations
	4.1. Tidal Histories

	5. Scaling N-body Simulations
	6. Mass-loss Model
	6.1. Two-body Relaxation
	6.2. Fluctuations in the Jacobi Radius

	7. Discussion and Summary
	7.1. Comparison with Related Work
	7.2. Limitations

	References



