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Abstract Novel observation techniques (e.g., smart tracers) for characterizing coupled hydrological
and biogeochemical processes are improving understanding of stream network transport and
transformation dynamics. In turn, these observations are thought to enable increasingly sophisticated
representations within transient storage models (TSMs). However, TSM parameter estimation is prone to
issues with insensitivity and equifinality, which grow as parameters are added to model formulations.
Currently, it is unclear whether (or not) observations from different tracers may lead to greater process
inference and reduced parameter uncertainty in the context of TSM. Herein, we aim to unravel the role of
in‐stream processes alongside metabolically active (MATS) and inactive storage zones (MITS) using
variable TSM formulations. Models with one (1SZ) and two storage zones (2SZ) and with and without
reactivity were applied to simulate conservative and smart tracer observations obtained experimentally for
two reaches with differing morphologies. As we show, smart tracers are unsurprisingly superior to
conservative tracers when it comes to partitioning MITS and MATS. However, when transient storage is
lumped within a 1SZ formulation, little improvement in parameter uncertainty is gained by using a smart
tracer, suggesting the addition of observations should scale with model complexity. Importantly, our work
identifies several inconsistencies and open questions related to reconciling time scales of tracer
observation with conceptual processes (parameters) estimated within TSM. Approaching TSM with
multiple models and tracer observations may be key to gaining improved insight into transient storage
simulation as well as advancing feedback loops between models and observations within
hydrologic science.

Plain Language Summary Solute experiments and transport models, called commonly tracer
experiments, are used to understand the relative importance of different stream processes, especially those
that influence water, solutes, and nutrients as they move through a stream network. Within these tracer
experiments, there are processes that exchange mass beyond the main stream channel to other parts of the
river valley bottom environment. Sometimes, there are single or multiple types of tracers used and modeled
to try to understand this exchange. There are also multiple models with different equations and structures
to simulate these tracers. This study shows that what you can learn about these stream processes depends on
experiment choices and whichmodel you use. Hence, refining futuremultiple tracer experiments andmodels
is needed to determine how we best obtain consistent measurements of key stream processes.
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1. Introduction

The last decade has seen an explosion of novel techniques for collecting data used to characterize dynamic
hydrologic systems. Tools and techniques that fall under this umbrella include the burgeoning field of
hydrogeophysics (e.g., St Clair et al., 2015; Ward et al., 2010), the use of unoccupied aerial vehicles (e.g.,
Brenner et al., 2017; Vivoni et al., 2014), high space‐time resolution sensing systems (e.g., Blaen et al.,
2016; Khamis et al., 2016), and the growing use of smart and conservative tracers in the environment
(e.g., Blaen et al., 2017; González‐Pinzón et al., 2012; Haggerty et al., 2008; Knapp et al., 2017; Runkel,
2015). Observational data obtained from these techniques have been used to reveal new process dynamics
and to refine current understanding of hydrological systems. These techniques have also advanced
process‐based mathematical representations within computational models as well as new approaches to
assess whether model frameworks ensure model realism (e.g., Clark et al., 2017; Li et al., 2015; Seibert &
McDonnell, 2002). Furthermore, research communities have developed approaches for testing multiple
model frameworks that explore different mathematical representations of hydrological processes (e.g.,
Clark et al., 2015a, 2015b) as well as approaches for comparing the performance of different models applied
to a variety of systems (e.g., Best et al., 2015; Butts et al., 2004). Our goal herein is to build on recent progress
made by these communities to explore the relationship between empirical observations, model performance,
and model complexity to inform the value of new information for addressing historic limitations. We use the
example of stream solute transport, transient storage, and solute transformation as a study topic.

In the field of groundwater‐surface water interactions, hyporheic exchange remains one of the most difficult
processes to quantify (Boano et al., 2014; Gooseff, 2010; Orghidan, 1959; Triska et al., 1989). The hyporheic
zone, although defined in a variety of contexts (Krause et al., 2011), is often described as a region both
beneath and surrounding the stream channel containing sediments, microbes, and benthic organisms where
water and nutrient exchange with the main stream channel occurs (Gooseff, 2010; Orghidan, 1959; Ward,
2016). Identifying this zone and characterizing the relative rates and spatial extent of hyporheic exchange
with the nearby stream channel has been and continues to be an area of ongoing research (e.g., Boano
et al., 2014; Caruso et al., 2016; Knapp et al., 2017; Schmadel et al., 2017; Storey et al., 2003; Triska et al.,
1989). While quantifying the role of the hyporheic zone in relation to solute transformations and ecosystem
processes has remained elusive, the use of multiple tracers, specifically the emerging smart tracer (i.e., resa-
zurin; Raz) technique, has shown promise for characterizing stream reactivity and functioning by enabling
researchers to quantify the portion of the transient storage that is metabolically active (Argerich et al., 2011;
Haggerty et al., 2009; Karakashev et al., 2003; Knapp et al., 2018). Resazurin decays when in the presence of
respiring cells typically found in the hyporheic zone (e.g., González‐Pinzón et al., 2012), producing a new
chemical, resorufin (Rru). Following this transformation, as water is exchanged across the streambed inter-
face, Rru is exchanged back to the main channel and can be detected downstream. Thus, releasing Raz into a
stream reach produces two time series of concentration, referred to as breakthrough curves (BTCs), that may
be sensitive to different types of either metabolically active (MATS) or inactive storage (MITS). Beyond
hyporheic exchange, decay of Raz to Rru is being widely used to characterize MATS, stream reactivity,
and ecosystem respiration in many different transient storage zones (Knapp et al., 2018), including biofilms
(Haggerty et al., 2014), the benthic zone (Knapp et al., 2017), vegetation beds (Kurz et al., 2017), and around
woody debris (Blaen et al., 2019). In contrast to MATS, MITS may correspond to portions of a stream reach
with a high volume of water and conversely low contact with sediment (e.g., in‐stream dead zones).

While MATS and MITS are recognized as having two very different effects on stream nutrient exchange,
there are few examples of transient storage model (TSM) applications to reactive solutes (e.g., Gooseff
et al., 2005; Knapp & Cirpka, 2017). Commonly, quantifying reach‐scale transient storage has drawn upon
parameter estimation with TSM representing the lumped effects of transient storage via MATS and MITS
alongside advective in‐channel processes such as advection and dispersion (Bencala & Walters, 1983;
Valett et al., 1996). When combined with field observations of tracers in the form of a BTC, estimates of
model parameters representing the temporal (i.e., rate of exchange) and spatial scales (i.e., size) of reach‐
averaged transient storage zone exchange can be obtained via inverse modeling (Runkel, 1998). This is done
by employing one of many methods (e.g., Runkel, 1998; Wagener et al., 2002; Kelleher et al., 2013; Knapp &
Cirpka, 2017) to search the parameter space for a parameter set that produces the simulation with lowest
model error, assessed between a simulated and observed BTC for a given stream reach (Runkel, 1998;
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Ward et al., 2017). There are several recognized limitations to the time scales of transient storage zone
exchange that may be assessed using TSM (e.g., Harvey et al., 1996) as well as accounting for spatial hetero-
geneity that exists at subreach scales (Harvey et al., 1996; Knapp et al., 2017). Despite these limitations, TSM
remains a popular approach that can provide an assessment of the relative roles of different in‐ and near‐
stream processes.

The most commonly applied TSM (known as the One‐Dimensional Transport with Inflow and Storage
model, or “OTIS”, Runkel, 1998) uses four parameters to simulate transport of a conservative tracer (five
for a nonconservative tracer, e.g., Raz transforming to Rru) with a single transient storage zone and is avail-
able as open‐source software from the U. S. Geological Survey. However, this single storage zone representa-
tion is inconsistent with current understanding of transient storage (Briggs et al., 2009), as there are multiple
dominant domains of transient storage that may alter the flow of water and nutrients in different ways. As a
result, several other structural forms of the solute transport equations have been proposed (e.g., Bencala &
Walters, 1983; Briggs et al., 2009; Lees et al., 2000; Liao & Cirpka, 2011; Marion et al., 2008; Runkel, 1998;
Ward et al., 2015). One recent iteration of this model separates the effects of transient storage into two zones
described by parameters in terms of size and exchange rate with the main channel (Briggs et al., 2009).
Generally, we desire models with process representations that most closely match our understanding of
streams (e.g., Briggs et al., 2009). This desire often results in the addition of model parameters, with the
trade‐off of introducing additional uncertainty and equifinality due to parameter interactions (Beven,
1993, 2006; Butts et al., 2004). This must also be balanced against the addition of observations to vet simula-
tions and constrain realistic parameter estimates. For instance, as shown by Briggs et al. (2009), the addition
of model parameters to segment transient storage was accompanied by additional BTC observations from in‐
channel dead zones. Though numerous TSM studies exist, there is a broad need to better understand the
trade‐offs between parameter uncertainty and choices that determine the number of estimated model para-
meters (i.e., model complexity, motivated by more realistic representation of dominant processes) alongside
the addition of field observations for estimating parameter values (i.e., smart tracers).

An added challenge to quantifying stream reach transient storage is the growing body of evidence that has
shown that TSMs are susceptible to parameter equifinality (e.g., Choi et al., 2000; Kelleher et al., 2013), such
that parameter determinations may be uncertain and therefore uninformative for assessing the role of tran-
sient storage in physical and ecological river processes (Wagener et al., 2002; Wagner & Harvey, 1997; Ward
et al., 2017). Existing studies suffering from equifinality issues have typically assessed parameter estimates
and uncertainty through inverse modeling of a single conservative tracer. When used, as shown in a small
but growing number of studies, smart tracers provided different estimates for dispersion and transient sto-
rage parameter values (Lemke et al., 2013). Adding observations to constrain models is often viewed as an
approach for reducing parameter uncertainty (e.g., Nearing et al., 2016; Nearing & Gupta, 2015). In practice,
this requires that the observations in question contain nonredundant information. If new or more observa-
tions lead to the same parameter estimates, or similar levels of parameter uncertainty, the added information
is not useful in reducing parameter uncertainty. As parameter estimates are often used to characterize sys-
tems, collecting data sets that can reduce this uncertainty is a common goal. Consequently, there is a need to
explore how equifinality and process inference may vary with multiple tracer observations, across different
types of stream reach morphologies and across model formulations of varying complexity.

Within the context of TSM, we explore whether conservative and nonconservative smart tracers may better
constrain different TSM parameters, providing alternative but potentially complementary information.
Furthermore, we offer a unique comparison of constraints on parameter uncertainty arising from estimation
of parameters by fitting to different tracer BTCs across model frameworks of varying complexity (e.g., con-
servative and nonconservative tracers and single versus multiple storage zone models). We aim to address
the following two fundamental questions in the context of TSM parameter estimation: (1) when are multiple
tracers useful?, and (2) when is increasing model complexity beneficial? Drawing from several growing
efforts in the land surface and watershed modeling communities, we take a model intercomparison‐based
approach (e.g., Best et al., 2015; Clark et al., 2017, 2015a, 2015b), treating these TSM model formulations
as different testable hypotheses, comparing the performance and parameter uncertainty associated with
each uniquemodel formulation.We test this approach using data from conservative (uranine; Ura) and reac-
tive (Raz, Rru) solute tracer experiments performed in two lowland stream reaches with distinct
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morphological settings located in the Hammer Stream, in West Sussex, UK. To evaluate the addition of
observations alongside changes to model complexity, we test four different formulations of the TSM, ranging
in complexity from four to seven parameters. While we expect that inverse models constrained by Raz and
Rru will reduce uncertainty and yield similar parameter estimates for active and inactive storage zone para-
meters, we speculate that uncertainty in main channel parameters may grow in the more complex model
framework associated with two storage zones.

2. Study Area

Field experiments were conducted in the Hammer Stream (West Sussex, UK; 51°0′N 0°47′W; Figure S1 in
the supporting information). The 2,640‐ha catchment drains mixed land use and is primarily underlain by
sandstone and mudstone. We identified two study reaches located upstream and downstream of Hammer
Lake. Upstream of the lake the streambed material is sandy (hereafter the sand reach), whereas the reach
downstream of the lake is armored gravel (hereafter the gravel reach) as result of the sand and other fine
sediment having been trapped in Hammer Lake. Both reaches include large woody debris in the stream
channel (Blaen et al., 2018; Shelley et al., 2017). For the sand reach, we established a study reach along
760 m of channel (mean width 5.3 m, mean depth 0.42 m). For the gravel reach, we established a study
reach of 683 m immediately downstream of Hammer Lake (mean width 6.35 m, mean depth 0.28 m). In
each reach, a combination of Ura and Raz was injected as an instantaneous pulse about 150 m upstream
of the start of the study reach to ensure complete mixing, even at the start of the study reach. All injec-
tions occurred in late afternoon/evening to minimize the effect of tracer mass photodegradation. In situ
field fluorometers (GGUN‐FL30, Albillia Sàrl, Switzerland) were used to monitor the fluorescence signals
of all three tracers at 10‐s time intervals at each end of the study reach. Discharge was 73.2 L/s at the
upstream end of the sand reach and 86.5 L/s at the upstream end of the gravel reach and calculated using
dilution gaging with Uranine at the upstream end of the study site. Additional details regarding the sand
reach and injection are provided by Blaen et al. (2018); the gravel reach injection replicated the same
experimental methods.

3. Transient Storage Modeling
3.1. Model Formulation

We derive models representing transport and transformation of solute tracers following closely after the
TSM (Bencala & Walters, 1983; Thackston & Schnelle, 1970) and integrate several subsequent extensions
such as multiple storage zones (e.g., Briggs et al., 2009; Kerr et al., 2013), reactivity (e.g., Haggerty et al.,
2009; Lemke et al., 2013), and transport of multiple interacting solutes (Keefe et al., 2004; Ward et al.,
2015). While many TSM formulations have partitioned transient storage using location (e.g., surface
and subsurface transient storage; Briggs et al., 2009; Kerr et al., 2013), MATS and MITS formulations
separate transient storage based on the apparent presence or absence of metabolic activity (Argerich
et al., 2011).

In this TSM formulation, we simulate concentration in the main channel, the MITS domain, and the MATS
domain via three equations with flexibility to vary up to seven different parameters. Concentrations in the
stream domain are described according to

∂C
∂t

¼ −
Q
A
∂C
∂x

þ D
∂2C
∂x2

þ qL;inCL

A
−
qL;outC

A
þ αMATS CMATS−Cð Þ þ αMITS CMITS−Cð Þ (1a)

where C is solute concentration (g/m3), t is time (s), Q is discharge (m3/s), A is cross‐sectional area of the
stream (m2), D is the longitudinal dispersion coefficient (m2/s), qL,in is the lateral inflow per meter of stream
(m2/s), CL is the concentration of the solute in the lateral inflow (g/m3), qL,out is the lateral outflow per meter
of stream (m2/s), and α describes the exchange rate between the stream and transient storage zones (s−1).
Inflows and outflows to the system simulated as occurring in the stream instead of the hyporheic zone, con-
sistent with TSM conceptualization (Bencala &Walters, 1983). For the purposes of this experiment, both qL,
in and qL,out were set to 0 on the basis of minimal changes in discharge and the absence of known surface
outflows along the study reach and to minimize the number of free parameters. Furthermore, surface
inflows do not contain the tracers Raz, Rru, or Ura (i.e., CL is also zero).
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Within the MATS domain (denoted by subscript MATS), the mass balances for Raz, Rru, and Ura (denoted
by subscripts) are calculated as

∂CMATS;Raz

∂t
¼ αMATS

A
AMATS

CRaz−CMATS;Raz
� �

−kCMATS;Raz (1b)

∂CMATS;Rru

∂t
¼ αMATS

A
AMATS

CRru−CMATS;Rru
� �þ kCMATS;Raz (1c)

∂CMATS;Ura

∂t
¼ αMATS

A
AMATS

CUra−CMATS;Ura
� �

(1d)

where k (s−1) is a reactive rate constant that describes the transformation of the parent (Raz in our study) to
product (Rru in our study) and CUra, CRaz, and CRru are the in‐stream concentrations of Uranine, Resazurin,
and Resorufin based on solving equation (1a) for each solute. Similarly, in the MITS domain (denoted by
subscript MITS) the concentrations of Raz, Rru, and Ura are calculated as

∂CMITS

∂t
¼ αMITS

A
AMITS

CRaz−CMITS;Raz
� �

(1e)

∂CMITS

∂t
¼ αMITS

A
AMITS

CRru−CMITS;Rru
� �

(1f)

∂CMITS;Ura

∂t
¼ αMITS

A
AMITS

CUra−CMITS;Ura
� �

(1g)

Simulations are performed through forward modeling based on the stream (1a), MATS ((1b)–(1d)), and
MITS ((1e)–(1g)) equations for Ura, Raz, and Rru. Critical to this study is that all three equations are solved
using the same physical transport parameters (A,D, AMATS, AMITS, αMITS, αMATS), allowing for simulation of
dynamic parent‐to‐product transformations. This solution allows the simultaneous transport and interac-
tion of both conservative and interacting reactive solutes (after Ward et al., 2015). Model equations for all
solutes were solved simultaneously using a Crank‐Nicolson solution scheme, common for TSM applications
(e.g., Runkel, 1998; Ward et al., 2015). Models were implemented using measured discharge at the upstream
end of each study reach, with observed BTCs used as upstream boundary conditions. Spatial and temporal
steps for the simulations were fixed at 5 m and 10 s, respectively. Important and commonly used assump-
tions of the model include laterally and vertically well mixed domains, exponential residence time distribu-
tions within transient storage zones, temporal constancy for transient storage zone model parameters,
perfect conversion of Raz to Rru, no retardation (sorption), and no additional transformation pathways
for any solutes.

As derived, the model is flexible in that it can represent both one storage zone (1SZ) and two storage zone
(2SZ) realizations of the TSM (Figure 1a). Within this framework, we test the following model‐tracer com-
binations (Figure 1b):

1. A one storage zone model fit to a conservative tracer (Ura), where transient storage combines MATS and
MITS (four parameters; A, D, As, and αS)

2. A two storage zone model fit to a conservative tracer (Ura), where MITS and MATS do not distinguish
active storage but instead represent two different storage zones (six parameters; A, D, AMATS, αMATS,
AMITS, and αMITS)

3. A one storage zone model fit to smart tracer (Raz) and biproduct (Rru), where transient storage refers to
MATS, and MITS is effectively incorporated into the dispersion term (D; five parameters; A, D, AMATS,
αMATS, and k)

4. A two storage zone model fit to smart tracer (Raz) and biproduct (Rru) (seven parameters; A, D, AMATS,
αMATS, AMITS, αMITS, and k).

While comparison (2) is included in this study to assist with interpretation, this combination of a two storage
zone model fit with a conservative tracer is not expected to yield useful storage zone parameter estimates.
Each tracer was independently tested as a source of parameter information for each tracer‐model combina-
tion listed above. Importantly, MATS and MITS, as visualized in Figure 1a, are integrations of transient
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storage along the channel that may either be reactive or inactive, respectively. MATS and MITS, in our
formulation, do not represent physical zones such as the hyporheic zone, as many of these physical
locations may include zones of both active and inactive storage. For 1SZ models, the exchange coefficient
αMITS is set to 0, which eliminates any exchange between the stream and MITS. For Ura, this represents a
1SZ model identical in formulation and implementation to the broadly used U. S. Geological Survey OTIS
model (Runkel, 1998). For Raz and Rru, the MATS storage retains the ability to simulate transformations
in the storage zone and assumes that all transient storage is metabolically active (i.e., with αMITS = 0,
AMITS cannot affect concentrations in the model). We do assume Ura to be a conservative tracer (see
supporting information), though it may decay in direct sunlight. Notably, Rhodamine WT is also
nonconservative (Runkel, 2015), highlighting that there is no single perfect conservative tracer.

Conceptually, the combinations of observations and model formulations listed in Figure 1b also represent
four different scenarios for gaining insights regarding parameter importance. Though we assess parameter
sensitivity and uncertainty per tracer and per model, we do not expect all parameter estimates to be sensitive
to all tracers and seek to test these potential relationships. In this same vein, certain tracers are likely to be
more or less informative for different parameters. We expect that Ura, as a conservative tracer, will yield the
most physically representative parameter distributions for A and D. Similarly, we do not expect that Ura is
capable of separating the influence of MATS andMITS and are uncertain as to whetherA andD are sensitive
to Raz or Rru, given these tracers are nonconservative.

Importantly, parameters estimated via different tracers represent different processes. Within the 1SZ formu-
lation, storage zone parameters estimated via Ura assume the transient storage zone combines both MATS
and MITS, while storage zone parameters estimated via Raz estimate transient storage zone size for MATS,
assuming MITS is incorporated into the dispersion term. Thus, we may not necessarily expect distributions
of D or storage zone parameters to be similar when fitting to Ura versus Raz with the 1D model.

3.2. Computational Experiments

We performed several computational experiments with inputs (parameters) to and outputs (errors and simu-
lations) from models of varying complexity. Simulations and parameter sets were constrained to match dif-
ferent observations, including conservative (Ura) and nonconservative (Raz and Rru) BTCs. Model
formulations used in these experiments are outlined in Figure 1b. To interrogate parameter uncertainty
and equifinality, we used a Latin Hypercube approach to sample the model parameter space (N = 27,000
runs; e.g., Pianosi et al., 2015). All parameters and associated ranges are listed in Table 1.

Within the 2SZ model formulation, we sampled total area (ATOT), representing the combined area of the
advective channel and the area of MITS. For this formulation,

Figure 1. Model framework displaying (a) model parameters and the hypothetical compartments within the stream reach they are associated with (MC = main
channel) for both one storage zone (1SZ) and two storage zone (2SZ) models and (b) the multiple model formulations utilized within this study (and correspond-
ing numbers of parameters). In particular, we compare across the number of transient storage (TS) zones (one vs two), as well as parameter estimates with
respect to both conservative (Ura) or nonconservative (Raz, Rru) tracer dynamics. By combining these formulations and observations, we tested four differentmodels
ranging from four to seven model parameters (P). Additional figure abbreviations include metabolically inactive storage (MITS), metabolically active storage
(MATS), and parameters main channel area (Figure 1a), dispersive coefficient (D), transient storage zone exchange (αS), transient storage zone size (As), conversion
of Raz to Rru (k), MATS cross‐sectional area (AMATS), MATS exchange rate (αMATS), MITS cross‐sectional area (FMITS), and MITS exchange rate (αMITS).
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A ¼ ATOT· 1−FMITSð Þ (2a)

AMITS ¼ ATOT·FMITS (2b)

where FMITS describes the fraction of the stream channel that is metabolically inactive. To enable compar-
isons across model formulations, all results are presented in terms ofA andAMITS. This does result in slightly
wider bounds for A for the 2SZ model and narrower bounds for A for the 1SZ model but, otherwise, is purely
a function of model formulation.

Model complexity, defined by the number of parameters, ranged from four to seven parameters. We tested a
1SZ model (Figure 1b, 1) and 2SZ model (Figures 1b, 2) constrained by observations from only Ura. We also
tested a 1SZ (Figure 1b, 3) and a 2SZ (Figures 1b, 4) with an added parameter representing reactive decay
constrained by BTCs for Raz and for Rru. All computational experiments were performed using the same
structural model equations (equations (1a)–(1d)). For model formulations 1 and 3, we use a model formula-
tion that has a single transient storage zone (i.e., αMITS = 0). To model this, we sampled the first five para-
meters, setting values for the fraction of stream area as MITS and the MITS exchange rate to small
nonzero values (10−10). For model formulations 2 and 4, we sampled all seven parameters across
feasible ranges.

3.3. Model Performance

For each of the 27,000 runs, we calculated model fits in terms of a normalized root‐mean square error
(nRMSE) for each BTC (Ura, Raz, and Rru) independently, according to

nRMSE ¼ 1
Cp

∑n
t¼1 Ot−Stð Þ2

n

 !0:5

(3)

where Ot and St correspond to observations and simulations at a given time step, n is the total number of
observations, and Cp is peak concentration for each tracer (employed to normalize RMSE values across tra-
cers; g/m3). RMSE (and close variants) remains one of the key objective functions used to assess BTC errors
(Runkel, 1998; Ward et al., 2017). We also calculated a log‐transformed root‐mean square error (LRMSE;
similar to a weighted RMSE), where the observed and simulated time series were log‐transformed prior to
applying equation (3) above. Past work has shown log‐transformed error metrics can be particularly useful
for obtaining reliable TSM parameter estimates (e.g., Ward et al., 2017; Wörman & Wachniew, 2007).

Our analysis relies on the use of behavioral thresholds to segment populations of error and parameter esti-
mates (e.g., Hornberger & Spear, 1980; Spear & Hornberger, 1980). We employ a behavioral threshold to
identify a subset of simulations and parameter sets that closely match BTCs by achieving low errors.
Instead of selecting a single best simulation and parameter set, the use of behavioral thresholds allows us
to identify a distribution of these values. Behavioral thresholds may be implemented by identifying para-
meter sets and simulations below a certain error value or by identifying those with errors below some per-
centage criterion (i.e., top 10% of errors). We use the latter (thresholds of 10% and 1%) to compare error,
simulations, and parameter estimates across different tracers and models.

Table 1
Parameter Names, Abbreviations, and Ranges for Sensitivity and Uncertainty Analysis Applied to Variable TSM Formulations (Figure 1)

Abbrev. Parameter Model Tracer Units Lower bound Upper bound

D Dispersion coefficient 1SZ, 2SZ All m2/s 0.001 10
A Advective channel cross‐sectional area 1SZ All m2 1 3
ATOT Total area 2SZ All m2 1 3
AS Transient storage cross‐sectional area 1SZ All m2 0.01 1
αS Transient storage exchange rate 1SZ All s−1 10−6 10−2

k Conversion, Raz to Rru 2SZ Raz, Rru s−1 10−5 10−1

AMATS MATS cross‐sectional area 2SZ All m2 0.01 1
αMATS MATS exchange rate 2SZ All s−1 10−6 10−2

FMITS Fraction of stream area as MITS 2SZ All — 0.01 0.5
αMITS MITS exchange rate 2SZ All s−1 10−5 10−1

Note. MITS = metabolically inactive storage; MATS = metabolically active storage; TSM = transient storage model.
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3.4. Parameter Sensitivity and Uncertainty

For an ideal TSM inverse modeling exercise there is a unique best estimate for each parameter, such that
behavioral parameter values occupy a defined and narrow area of the parameter space (Kelleher et al.,
2013;Wagener et al., 2002). However, parameters are often insensitive or uncertain. This may be represented
as wide distributions of behavioral parameter values spanning the entire parameter range, or by no differ-
ence between parameter distributions between the best and worst simulations. The former may also occur
when a parameter is largely unimportant or due to interactions with other parameters. To understand the
influence of model complexity and different tracer observations on parameter estimates, we assessed para-
meter sensitivity, parameter uncertainty, and parameter interactions for all model‐tracer combinations.
While some studies have estimated parameters by first fitting parameters associated with conservative trans-
port, and then fitting nonconservative parameters (e.g., Gooseff et al., 2005), we treat all BTCs as indepen-
dent sources of information for assessing parameter sensitivity and uncertainty. Our goal is to avoid
making assumptions about which BTCs may contain information regarding certain parameters and instead
to use the analysis presented here to more thoroughly assess how parameter estimates are impacted by fit-
ting to different BTCs.

Approaches to obtain parameter estimates include the use of optimization algorithms (e.g., Briggs et al.,
2009; Kerr et al., 2013; Runkel, 1998), Markov Chain Monte Carlo approaches (e.g., Knapp & Cirpka,
2017; Lemke et al., 2013), and Monte Carlo approaches coupled with behavioral thresholds (e.g., Kelleher
et al., 2013; Wagener et al., 2002), as well as a broad literature on approaches to parameter sensitivity (see
Pianosi et al., 2015). In this study, we employed approaches based onMonte Carlo methods to enable a tiered
assessment that draws on both the very best and worst simulations and corresponding parameter estimates.
To provide a global assessment of parameter sensitivity, we generated regional sensitivity analysis (RSA)
plots for each parameter based on errors associated with nRMSE calculated from simulations and observa-
tions of Ura, Raz, and Rru (Figure 2a). RSA is a useful technique for mapping portions of the parameter
space corresponding to either best or worst errors (e.g., Freer et al., 1996; Pianosi et al., 2016) and has been
commonly applied to assess TSM parameter sensitivity (e.g., Wagener et al., 2002; Wlostowski et al., 2013).
To apply RSA, we identified the top (best) 10% of errors and the bottom (worst) 10% of errors for Ura, Raz,
and Rru across all simulations. Parameter values corresponding to these best and worst 10% of simulations
were transformed into marginal empirical cumulative distribution functions (CDFs; Freer et al., 1996;
Pianosi et al., 2016; Wagener et al., 2002). Sensitive parameters satisfied two criteria: parameter CDFs corre-
sponding to the top 10% of all error values (1) deviated from the 1:1 line (representing a purely uniform dis-
tribution), assessed by visual inspection, and (2) deviated from parameter CDFs corresponding to the worst
10% of all errors (Figures 2a and 2b).

We assessed parameter uncertainty and model performance comparing the top 1% of all simulations per
error metric. To test whether the parameter values corresponding to the lowest model errors converged,
we applied a visualization based on the widely used dotty plot (e.g., Wagener & Kollat, 2007). Dotty plots
visualize model error plotted against model parameter values for all simulations meeting a given behavioral
threshold (Figures 2c and 2d). To summarize the distribution of optimal parameter values (those corre-
sponding to the lowest error) across each dotty plot, we identified the single best parameter value (with low-
est error) within a moving window (1/20th the width of parameter range) incremented across each
parameter range (1/40th the width of the parameter range). This distribution of optimal errors was then nor-
malized to a cumulative value of one (Figures 2c and 2d). We report all dotty plots in the supporting infor-
mation (Figures S1–S4). Optimal parameter values and 90% confidence intervals are also reported. Finally,
we also investigated parameter interactions via scatterplots of parameter values to assess the dependency
between parameters and how this changes for subsets of the very best simulations. Together, these assess-
ments yield transferable approaches for assessing parameter sensitivity and uncertainty within environmen-
tal models, and for comparing these outcomes across 1SZ and 2SZ models and error metrics.

4. Results
4.1. Model Errors and Simulations

Tracer observations obtained from the two reaches are shown in Figure 3.While peak concentrations for Ura
and Raz are coincident, peak concentrations for Rru occur at a later time, representing a temporal lag as Raz
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is converted to Rru in the presence of aerobic respiration. All tracers are capably simulated by one and two
storage zone models (Figure 4). As we show, a behavioral threshold of 1% yielded envelopes of simulations
that bracketed observations for all tracers. Upper and lower bounds, representing the range of the 270
simulations with lowest error, were nearly identical for the 1SZ and 2SZ models. Information on mass
recovery is included in the supporting information (Text S2) and demonstrated acceptable levels of mass
recovery conforming to model assumptions.

Model errors corresponding to the top 1% of all model simulations are visualized for nRMSE in Figure 5.
Comparing distributions of error across tracers, nRMSERaz had the lowest overall error across both reaches,
though medians and ranges of error between tracers were similar for all but nRMSERru. Minimum and med-
ian errors for Rru were larger for the 2SZ as opposed to 1SZ model, and nRMSERru had larger errors than

Figure 2. Interpretation and approaches for (a, b) sensitivity analysis and (c, d) uncertainty analysis. Regional sensitivity analysis is used to assess parameter sen-
sitivity for parameter values with the best (top 10%) andworst (lowest 10%) errors, compared to a uniform distribution (1:1) line. Conceptual examples of cumulative
distribution functions can be used to interpret whether parameters are insensitive (Figure 2a), due to either falling along the 1:1 line or CDFs indistinguishable
between parameter values corresponding to the best and worst error values, or sensitive (Figure 2b), where the CDF of parameter values corresponding to the best
errors are clearly distinguishable from the 1:1 line and the CDF corresponding to the worst errors. To complement RSA, uncertainty is assessed by translating dotty
plots to empirical probability density functions (PDFs) of optimal model errors across feasible parameter ranges. Optimal parameters (red) represent those with
the lowest error for a narrow moving window along the parameter space. We display two hypothetical examples for a parameter with high uncertainty (Figure 2c)
and low uncertainty (Figure 2d). Peaky distributions, found for a parameter with low uncertainty, indicate that certain regions of the parameter space yield
better performance, while a flat distribution, corresponding to the parameter with greater uncertainty (Figure 2d), suggests that all parameter values yield similar
model performance. CDF = cumulative distribution function; nRMSE = normalized root‐mean‐square error; RSA = regional sensitivity analysis.

10.1029/2018WR023585Water Resources Research

KELLEHER ET AL. 3489



nRMSERaz and nRMSEUra. Comparing errors across models, we found
that median errors for 2SZmodels were slightly higher thanmedian errors
for 1SZ models for nearly all reach‐tracer combinations. Though the
ranges of error were found to be wider for 2SZ as opposed to 1SZ models,
2SZ models still yielded the simulation with the single lowest error across
all parameter sets for nRMSERaz for both reaches and nRMSEUra for the
gravel reach (Figure 5).

4.2. Parameter Sensitivities

Interpretation of global parameter sensitivities assessed via RSA is shown
in Figure 6. A select number of RSA plots are included for the 2SZmodels,
with all plots included in the supporting information (see Figure S8). In
general, D, A, and ∝MATS were globally sensitive across tracers.
Distributions for D differed between tracers. For the gravel reach, lower
errors for nRMSEUra corresponded to larger values for D but smaller
values ofD for nRMSERaz and nRMSERru. AS (1SZ) and AMATS (2SZ) were
both sensitive, the latter to nRMSEUra and nRMSERaz and the former to
nRMSERaz and nRMSERru. Estimates for AMITS and ∝MITS were difficult
to interpret, in part, because CDFs corresponding to both best and worst
performing parameter values were similar, likely indicating that these
parameters are influenced by interactions with other parameters.
Finally, k was globally insensitive across all models and
performance metrics.

4.3. Parameter Uncertainties

Parameter estimates corresponding to the top 1% of nRMSE values for
each tracer are summarized as distributions in Figure 7 (parameter values
and confidence intervals are reported in Table S2). In general, flatter dis-
tributions indicate that all values across the parameter range produce
equal model errors, while the presence of peaks indicates certain areas

of the parameter space produce higher or lower errors, suggesting that there are optimal values that better
simulate observations. Comparisons of distributions were informative for testing whether conservative ver-
sus smart tracer errors yielded differences in parameter uncertainty as well as whether regions of the para-
meter space corresponding to the best simulations and therefore minimum error were similar across tracers.

Across models and reaches, parameter estimates were peaked for A and D, and narrower for the 1SZ (vs.
2SZ) errors. Within the 1SZ models, parameter estimates were uncertain for lumped transient storage size
(AS) for all tracers (note that parameter values with lowest error were distributed across the entire parameter
range, spanning 2 orders of magnitude). In contrast, probability density functions (PDFs) for ∝S were peaky
for nRMSEUra and nRMSERru (Figure 7).

Separating transient storage into two storage zones (two indiscernible zones for Ura; MATS and MITS for
Raz and Rru) introduced different patterns of parameter uncertainty. PDFs for AMATS were wide for all
reach‐tracer combinations. Empirical PDFs of ∝MATS suggest better estimates for this parameter correspond
to lower values when fitting to Ura and Raz, and better estimates correspond to higher values when fitting to
Rru. MITS parameters (AMITS and ∝MITS) were best constrained by nRMSERru (Figure 7).

Employing a nonconservative tracer (e.g., Raz) introduced an additional parameter k to describe the rate of
transformation from Raz to Rru within the 1SZ and 2SZ models. This implies that fitting to one or both of
these smart tracers should reduce uncertainty in this value. Global sensitivity analyses suggest that k is less
sensitive than some storage zone parameters (e.g., Figures 6 and 7). However, dotty plots of k for both
reaches (Figure S7) do suggest that this parameter is both sensitive (i.e., errors vary across the parameter
range) and unique (such that a single best value exists within the parameter range). Within these dotty plots,
values for k appeared insensitive to Raz, suggesting that Rru may contain more information for estimating
this parameter.

Figure 3. Observed breakthrough curves (concentration through time) for a
conservative tracer (Ura) and nonconservative tracer Raz and biproduct Rru
for (a) sand and (b) gravel reaches.
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Our results also underscore the importance of considering alternative objective functions. While not the pri-
mary focus of this manuscript, we include an additional assessment of parameter uncertainty with respect to
log‐transformed nRMSE (LRMSE) for both reaches. PDFs for the gravel reach were generally wide across
parameters, suggesting that nRMSE was a more informative error metric in this reach (Figure S4). In con-
trast, empirical PDFs for the top 1% of errors by LRMSE were peaked for nearly all sand reach parameter
values (Figures S6 and S7). These results demonstrate potential value added by considering alternative error
formulations in assessments of parameter uncertainty.

4.4. Joint Distributions

Given past work suggesting that TSM parameters are influenced by interactions, we examined joint distribu-
tions of parameter values to explore how the interactive nature of TSMmay impact parameter estimates and
parameter uncertainty (Figures 8 and 9). While some parameters may be globally insensitive (Figure 6) or
exhibit flat parameter distributions (Figure 7), visualizing joint distributions can reveal the presence of more
complex relationships as well as the value of different tracers to discern these relationships. Figure 9 displays
how parameter estimates and joint distributions varied with model complexity. Joint distributions of A and
D were bimodal and widened for the 2SZ model. Similar patterns were also observed between AS (1SZ) and
AMATS (2SZ). In particular, these plots display that estimates for∝Swere best constrained by Ura and Rru for
the 1SZmodel, but Rru for the 2SZmodel, shown by the shrinking 2‐D boundary of highest performing para-
meter combinations. While PDFs of parameter estimates for k did not reveal any strong patterns, joint dis-
tributions suggest lower errors are concentrated in a distinct portion of the parameter range for k (Raz,
1SZ; Rru, 2SZ). Last, we explored joint distributions between parameters only present in the 2SZ model,
AMITS, and∝MITS (Figure 9). In particular, these joint distributions display the importance of Rru for refining
estimates of MITS parameters. We note that Figures 8 and 9 display results for the gravel reach, with

Figure 4. Upper and lower bounds for the 270 simulations corresponding to the minimum 1% of RMSE values for the
(a) gravel and (b) sand reaches. These bounds represent the envelope encompassing the range of all simulations corre-
sponding to the top 1% of values by nRMSE, per tracer and per model. Bounds are shown relative to observations. All
simulations are included as ensemble averages in Figure S2. RMSE = root‐mean‐square error.
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visualizations for the sand reach included in supporting information
(Figures S11 and S12), as the patterns of these joint distributions were
similar between the reaches.

5. Discussion
5.1. Model Complexity and Conceptualization, Simulations,
and Errors

Behavioral simulation bounds (Figures 4 and S2) and model errors
(Figure 5) indicate that, regardless of the tracer error or model framework
used to constrain behavioral simulations, observations of all tracers were
simulated to a reasonable degree of accuracy. Average errors for beha-
vioral simulations were similar between 1SZ and 2SZ models. However,
it is important to note that accurate simulation from an inverse model
do not necessarily indicate meaningful information was gained from para-
meter values. Parameters that are not identifiable may provide a good
inverse model fit without characterizing system processes and should
not be overinterpreted (e.g., by comparing or interpreting values of insen-
sitive or uncertain parameters). Thus, we echo calls for assessment of
model parameter uncertainties, interactions, and identifiability as a requi-
site step prior to their interpretation (Kelleher et al., 2013; Wagener et al.,
2002; Wagner & Harvey, 1997; Ward et al., 2017).

For the stream reaches analyzed in this study, we found that employing a
more complex model did not necessarily yield simulations that better
approximated tracer observations. Given the increased degrees of freedom
in a 2SZ (as opposed to 1SZ) model, we expected 2SZ models to display
smaller magnitude and range of errors than the 1SZ formulation errors
calculated between measured and simulated BTCs. Instead, 1SZ versus
2SZ model errors were similar (and even notably larger for Rru), though
the simulation with the lowest error was almost always generated with a
2SZ model (Figure 5). We do not believe that these similarities in error
indicate that the model is a poor representation of reality, as simulations
well approximated observations (Figure 4). Instead, we postulate that this
shows that adding additional parameters introduces further uncertainty
in addition to degrees of freedom, yielding similar model fits. It is also pos-
sible that a more complex or alternative model formulation could lead to
improvements in error and potentially a better representation of reality.

Given the many iterations of TSM formulations (e.g., Gooseff et al., 2003; Gooseff et al., 2007; Kerr et al.,
2013), we advise that future work is needed to perform TSM model intercomparison with respect to both
conservative and smart tracer BTCs.

While we sought to compare parameter inference through uncertainty assessment across multiple models
and tracers, this introduces some challenges in interpretation. This is because transient storage parameters
conceptually represent different processes when inverse modeling is performed with respect to different tra-
cers. Transient storage zones cannot be partitioned into MATS or MITS through inverse modeling to simu-
late Uranine. Instead, transient storage zone parameters estimated via fitting a 2SZ model to Uranine
assumed these parameters represent two independent storage zones with no association with MATS or
MITS. Therefore, parameter distributions for storage zone parameters represent fundamentally different
processes when fitting to Ura versus Raz and Rru, and as such, are not expected to be comparable. For this
reason, we do not recommend estimating 2SZ MATS and MITS parameters by fitting to Ura but include this
comparison to emphasize that combining different model formulations and tracers can lead to fundamen-
tally different conceptual representations of a system. Likewise, in the 1SZ formulation, storage parameters
are assumed to represent MATS processes when fitting to Raz, with MITS lumped with dispersion.
Therefore, we did not expect empirical PDFs for these parameter values to be similar. Indeed, these

Figure 5. Distributions of model error shown for the top 1% of nRMSE
values for all tracers and for a combined tracer metric for the (a) sand and
(b) gravel reaches. Results are shown for the one (1SZ) and two storage
zone models (2SZ). nRMSE = normalized root‐mean‐square error.
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differences likely explain why fitting to Ura versus Raz yields such different empirical PDFs for∝S (Figure 7).
These differences also show that parameter estimates obtained by fitting a 1SZ model to Ura are not
comparable to parameter estimates obtained by fitting a 1SZ model to Raz.

5.2. How Do Conservative Versus Nonconservative Tracers Affect Parameter Uncertainty?

In contrast to the expectation that conservative tracers may not always provide meaningful parameter esti-
mates, our results show that conservative tracer BTCs do contain useful information for estimating TSM
parameter values. In support of this, we found parameter uncertainty tended to be lower for parameters
fit to conservative tracer BTCs (i.e., black distributions are narrower than blue or red distributions in
Figure 7). Encouragingly, we found that relatively narrow estimates for α could be achieved using a conser-
vative tracer with either a 1SZ or a 2SZmodel. This is in contrast to studies that have concluded α is typically
highly uncertain (Kelleher et al., 2013; Wagener et al., 2002; Wlostowski et al., 2013). Thus, estimates of α
with low uncertainty can be achieved, but this model result may be dependent upon the system and tracers.
Overall, using multiple tracers allowed us to estimate and evaluate BTC parameters to a higher degree than
could be achieved by using a single tracer, with consistency in findings across both reaches. We therefore
recommend TSM parameter estimates, and subsequent process‐based interpretation should be based on
the combination of conservative and nonconservative tracers.

The parameter we found most problematic to estimate was k, which describes the transformation of Raz to
Rru and effectively determines mass balance. As shown in Figures 8 and 9, we found k to be highly interac-
tive, which may explain apparent insensitivity and uncertainty for this parameter (Figures 6 and 7 and

Figure 6. Analysis of parameter sensitivities including (a) interpretation of sensitivities across 1SZ and 2SZmodels, reaches, and tracers, and (b) select RSA plots for
2SZ gravel and sand reaches forD, AMATS,∝MATS, AMITS, and∝MITS. Interpretation of Figure 6a is based on Figure 2a, with sensitive parameters deviating from a
uniform CDF and from the CDF corresponding to the worst 10% of error values. A color shown in Figure 6a indicates interpretation based on Figure 6b that a
parameter is sensitive. RSA plots compare empirical CDFs corresponding to the top 10% and worst 10% of all model simulations per tracer error metric.
RSA = regional sensitivity analysis; CDF = cumulative distribution function.
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Table S1). Furthermore, dotty plots (Figure S7) between k and objective functions (nRMSERru, LRMSERru)
show that k is indeed sensitive; it is just less sensitive than other model parameters. While only a few
studies exist that employ formulations of MITS and MATS alongside smart tracer observations, some have
concluded, similar to our study, that k may be highly uncertain (Yakirevich et al., 2017). Others have
found low uncertainty for k through joint fitting of multiple tracers (Lemke et al., 2013). As this value is
of particular interest to biogeochemists, future research with paired conservative and nonconservative
tracer experiments will be needed to identify conditions that may lead to more (or less)
uncertain k estimates.

In a similar vein, parameters AS (1SZ) and AMATS (2SZ) were also uncertain across study reaches (Figure 7).
Though we observed some organization between the structure of first‐order parameter interactions and
model errors, our work suggests that these processes were difficult to estimate in this particular system.
While not performed here, other analyses of parameter sensitivity and uncertainty (e.g., Kelleher et al.,
2013) have shown that sometimes nested sampling schemes (narrowing bounds on certain parameters
before completing additional analysis) can improve estimates of parameter values and associated uncer-
tainty. This is because fitting to all BTCs is likely to be dominated by first finding best estimates for A and
D. Fixing these values to narrow ranges, thereby reducing degrees of freedom, enables the importance of

Figure 7. PDFs of the top 1% of RMSE values plotted across log‐transformed parameter values for the 1SZ and 2SZ models of the (a) sand and (b) gravel reaches.
Results were independently generated for each of three tracers (Figure 2). Dotted lines indicate parameters that we do not expect to be physically related to or
informed by a given tracer. PDFs = probability density functions; RMSE = root‐mean‐square error.
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Figure 8. Joint distributions of 1SZ and 2SZ model parameters for the gravel reach. Black lines indicate the boundary of the top 0.2% of parameter sets (by nRMSE
per tracer). Colors indicate different percentiles of performance corresponding to the top 2% of all parameter sets. nRMSE = normalized root‐mean‐square error.

Figure 9. Joint distributions for the 2SZ gravel reach parameter sets. Black lines indicate the boundary of the top 0.2% of parameter sets (by nRMSE per tracer).
Colors indicate different percentiles of performance corresponding to the top 2% of all parameter sets. nRMSE = normalized root‐mean‐square error.
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other parameters less sensitive than A and D to be identified and may be an approach for obtaining more
reliable estimates of problematically uncertain parameters.

Consistent with several recent studies using reactive tracer systems and TSM, we broadly found improved
parameter constraints for some, but not all parameters associated with inclusion of reactive tracers (e.g.,
Lemke et al., 2013; Yakerivich et al., 2017) or additional experimental observations (e.g., Briggs et al.,
2009; Neilson et al., 2010). Transient storage parameter uncertainties were minimized when a more complex
model was used, most likely because this leads to greater degrees of freedom for fitting observations. For
researchers who wish to separate the relative influences of transient storage between MITS and MATS, a
2SZ model simulating both conservative and smart tracer BTCs was capable of narrowing nearly all para-
meter estimates. We did find variations in parameter sensitivity and uncertainty across reaches. This is
not surprising, given that the relative importance of different processes varies at the reach scale and will
determine parameter sensitivity and uncertainty within TSM applications. Though smart tracers are unsur-
prisingly superior to conservative tracers when it comes to partitioning MITS and MATS, little improvement
in parameter uncertainty was gained for 1SZ model formulations by using a smart tracer.

5.3. Is Information Obtained From Conservative and Smart Tracers Complementary
or Redundant?

For 1SZ models of conservative and smart tracers, a similar number of sensitive parameters were identified,
illustrating that both tracer types contain valuable and potentially complementary information.
Furthermore, parameter estimates obtained with respect to all tracers were similar but differed in some
cases. On one hand, some tracers are likely to be more sensitive to main channel (e.g., Ura) versus storage
zone (e.g., Rru) parameters and corresponding processes. This is a likely explanation for the difference in
the empirical PDFs obtained for A and D fitting to Ura and Rru. As we would not expect fitting to Rru would
contain information about main channel processes, this is unsurprising. A further explanation for the non-
ideal estimation of A and D may be its sorption behavior in the subsurface (e.g., Lemke et al., 2014).
Conversely, Raz and Ura may both provide similar information regarding A and D. Therefore, our work
shows that even nonconservative tracers like Raz may still be useful for estimating parameters conceptualiz-
ing main channel processes.

In contrast, we also found differences in parameter estimates for transient storage exchange rate, αs, when
fitting to different tracers. This outcome was also mirrored within the 2SZ formulation for MATS exchange
rates and similar to findings from Lemke et al. (2013). These differences in estimates of transient storage
parameters indicate that conservative and smart tracers may be sensitive to different time scales of transient
storage. It is not clear why Raz and Rru would lead to different empirical PDFs and therefore different para-
meter estimates but merits future work to explore why this may arise. As we only consider one objective
function in this analysis, and we do not combine and propagate these parameter estimates back into the
observation space, we can only speculate on how these findings may lead to improved calibration strategies.
We do note that our findings challenge a common approach where some model parameters are constrained
first using a conservative tracer and then fixed and others constrained in a second step using a reactive tracer
(e.g., Claessens et al., 2010; Keefe et al., 2004; Yakirevich et al., 2017). Lemke et al. (2013) also found differ-
ences in optimized parameters for transport when a conservative tracer was fitted alone or jointly with Raz.
Thus, our results demonstrate that improved interpretation of BTCsmay be aided by fitting conservative and
nonconservative tracers separately and comparing parameter estimates, instead of using conservative tracers
to constrain parameters associated with nonconservative behavior.

Within our exercise, the tracer that provided the least redundant information was Rru, which contained
unique information regarding MITS processes (∝MITS and AMITS). While we anticipated differences between
empirical PDFs fit to conservative versus nonconservative tracers, differences were especially pronounced
between empirical PDFs for Raz versus Rru. This difference suggests that smart tracers may be more useful
than conservative tracers for separating the hydrological and biogeochemical impacts of transient storage.

While our study suggests that Raz and Ura provide in part redundant information, we caution that this may
not be the case for all systems. Making such a claim of redundancy based on amodeling exercise considering
two stream reaches is unrealistic; more studies are needed to resolve questions of redundancy between tra-
cers and parameter information content. Future work, especially experimental observations of transient
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storage processes (e.g., Knapp et al., 2017), is needed to clarify and investigate time scales of MATS and
MITS, and whether these tracers are truly redundant when it comes to estimating parameter values. This
ultimately relies on improved reconciliation by the TSM community of what is captured by a tracer versus
what is represented within a given TSM formulation. At this stage, we do not have enough information to
assess whether tracer observations may provide complementary or redundant information, as such an
assessment should be based on numerous paired conservative and nonconservative tracer observations
coupled with TSM.

5.4. How Does Model Complexity Impact Parameter Estimates and Uncertainty?

Regardless of model complexity, the goals of tracer experiments are often to obtain reliable estimates with
low uncertainty for parameters describing the influence of transient storage. Our results demonstrate that
achieving this objective will ultimately be affected by the choice of tracer(s) (e.g., Abbott et al., 2016) and
the choice of model framework, including the level of process representation. Increasing model complexity
through the addition of model parameters may allow more realistic representation of in‐ and near‐stream
processes and also has important implications for parameter uncertainty. In our analysis, we found that
parameters typically well estimated by TSM, A and D, saw wider uncertainty bounds moving from a 1SZ
to 2SZ formulation (Figure 6). This is likely due to increased degrees of freedom and interactions with added
parameters in the 2SZ formulation (Figure 8). As with our analysis, other studies have found A and D to be
the most sensitive parameters with narrow ranges of uncertainty across many TSM applications (Kelleher
et al., 2013; Wagener et al., 2002; Ward et al., 2017). These studies have also found strong interactions
between A and D, likely the cause of the bimodal behavior observed in Figure 8. Our work adds to this exist-
ing body of literature by demonstrating how uncertainty in these well‐estimated parameters changes along-
side model complexity. When considering these uncertainty bounds in the context of uncertainty for other
parameters, differences in these uncertainty bounds were still relatively small, leading us to conclude that
only minor inference was lost with increased model complexity. Regardless, this outcome is a good reminder
that as parameters are added to a model framework, uncertainty for some parameter estimates is likely to
grow, even with additional information in the form of added tracer observations.

Our study offers cautious optimism regarding the use of 2SZ models to infer process‐based understanding of
solute transport. As we show, 2SZ models, while more complex than 1SZ counterparts, produced narrow
estimates of transient storage parameters and showed promise for separating the effects of MITS and
MATS. Though parameters were highly interactive within the 2SZ model formulation (Figures 8 and 9),
we encouragingly found that we could obtain consistent and precise estimates of transient storage zone para-
meters (e.g., αMITS and αMATS) that are traditionally dominated by interactions and therefore have proved
difficult to estimate in the past studies (Kelleher et al., 2013; Wagener et al., 2002; Wagner & Harvey,
1997; Ward et al., 2017). However, our results also demonstrate that with increased complexity comes
increased uncertainty with respect to other model parameters. Studies utilizing 2SZ models, or any TSM
for that matter, should ultimately evaluate the uncertainty associated with parameter estimates (echoing
past recommendations; Kelleher et al., 2013; Wagener et al., 2002; Ward et al., 2017). This need for uncer-
tainty evaluation is especially clear in our analysis, in that we demonstrate that while this uncertainty
may be reduced for 2SZ as compared to 1SZ models for some scenarios and parameters, uncertainty can still
increase for other scenarios and parameters.

6. Conclusions

While researchers may wish to estimate the size and exchange rates associated with transient storage in
streams, and further to separate the effects of different transient storage zones, these goals rely on parameter
estimation within a TSM framework. Within this context, we explored the trade‐offs between model com-
plexity and utility of novel observations to estimate the effects of transient storage within stream reaches.
Our results were consistent across two stream reaches with distinct morphologies; they suggest that model
complexity and the necessity for new tracer observations are highly connected. For a 1‐DTSM, we found that
parameter estimates were well constrained by conservative tracer BTCs, but that fitting TSM simulations to a
nonconservative tracer (Raz) yielded minimal additional gains in parameter inference. Thus, if using only a
conservative tracer, a simpler model may yield more informative parameter estimates. In contrast, estimat-
ing parameters within a more complex 2SZ formulation from both conservative and smart tracer BTC error
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metrics produced complementary insights, suggesting that (if the goal of a given study is to characterize both
MITS and MATS) conservative and smart tracers should be used in tandem. Our findings suggest cautious
optimism that nearly all parameters in 2SZ TSM formulations may be capably estimated by jointly fitting
simulations to both conservative and smart tracer observations. Though our study represents a first step
toward this goal, future work is needed to translate evaluations of parameter sensitivity and uncertainty into
robust approaches to fitting multiple BTCs.

Thoughwe show smart tracers have value for improving TSM approaches, wemust ultimately reconcile how
different process representations within TSM and tracer observations can be used to better quantify and
understand specific stream transport processes. This is highlighted by the fact that experiments conducted
with smart tracers, compared to conservative single tracer studies, require additional instrumentation, con-
sumable costs, field time, and expertise. It remains to be seen whether smart tracers provide enough extra
information to warrant their use within TSM, given our study solely demonstrates this outcome for two
reaches with data collected at a single flow state. This detailed model assessment of multiple tracer types
from two morphologically distinct stream reaches gives future stream investigators some insights, but, more
importantly, quantitatively demonstrates that there are difficult trade‐offs each researcher will face (e.g.,
trade‐offs between tracer observations and model process representation efforts) when conducting stream
tracer experiments. Furthermore, if unique information from tracers does not improve our current modeling
tools, this may also suggest we need to interrogate and refine our perceptual models of these processes with
the goal of improving numerical modeling tools.

The caution we offer, and are even prone to in this work, is that so many TSM analyses are treated as case
studies, and there are few TSM synthesis efforts that have examined model frameworks, approaches, and
outcomes across multiple sites, flow states, and physical representations of transient storage, let alone
streams with different types of MATS and MITS. We note that our conclusions are specific to stream setting
and flow state and that there are likely other settings where these findings may differ. Continued discussion
and evaluation of TSM formulations applied to conservative and nonconservative BTCs is therefore needed
to refine the inference we can gain from tracer experiments across different environments and to deliver a set
of defensible recommendations regarding what can be achieved via TSM to the community of ecologists,
hydrologists, and biogeochemists that apply these models.

Overall, our results validate that novel techniques for hydrologic data collection can help constrain para-
meter estimates within more complex and potentially more physically realistic models. This progress moves
us toward improved process inference within hydrologic modeling of streams. More broadly, the approach
we have taken of using gradients of both model complexity and observations is one that could be adapted
and utilized for other hydrological model‐based investigations. By continuing to interrogate the relation-
ships between observations and model outcomes, we ultimately have great potential to improve our under-
standing of reactivity and transport within streams, especially when and where disconnects between
modeled processes and observed processes occur.
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