Abstract

Ponderosa pine (PP) is the most common and widely distributed pine species in the western United States, spanning from southern Canada to the United States–Mexico border. PP can be found growing between sea level and 3000 meters elevation making them an ideal species to assess the effects of changing climatic conditions at a variety of elevations. Here we compare PP standardized and raw growth responses to climate conditions along an elevational transect spanning 1000 meters in western Montana, U.S.A., a region that experienced a 20th century warming trend and is expected to incur much warmer (3.1–4.5 °C) and slightly drier summers (~0.3 cm decrease per month) by the end on the 21st century. Specifically, we assess if there are climate/growth differences based on relative (i.e., site-specific) and absolute (i.e., combined sites) elevation between groups of trees growing in different elevational classes. We find that values of the Palmer drought severity index (PDSI) in July are most strongly related to radial growth and that within-site elevation differences are a poor predictor of the response of PP to either wet or dry climatic conditions (i.e., years with above or below average July PDSI values). These results suggest that any generalization that stands of PP occurring at their elevational margins are most vulnerable to changing climatic may not be operative at these sites in western Montana. Our results show that when using standardized ring widths, PP growing at the lowest and highest elevations within western Montana exhibit differential growth during extreme climatological conditions with lower-elevation trees outperforming higher-elevation trees during dry years and vice versa during wet years.

Details

Statistics

from
to
Export