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ABSTRACT. In this article we propose a new formulation of the equations of the humid
atmosphere with a multi-phase saturation generalizing thus the model introduced in
[TWul5] and [TWalb]. More precisely, we consider the more realistic situation where
the humid atmosphere comprises these components, namely water vapor, liquid water
and cloud condensates and furthermore the saturation concentration is not constant.
With the additional constraint that the vapor mass ratio g, is less than the saturation
concentration ¢,, which depends itself on the state, we are led, from the mathematical
point of view, to introduce and handle a system of equations and inequations involving
some quasi-variational inequalities for which we prove the existence of solutions.

1. INTRODUCTION

A phenomenon as common as the clouds is nevertheless far to be understood from
the physical point of view and the specialists believe that the clouds (and the aerosols
participating in their formation and evolution) is the greatest source of uncertainty
regarding the current numerical simulations for weather and climate predictions.

Clouds are made of many components, air, water, liquid water, ice, pollutants, etc.

The mathematical theory of the equations of the humid atmosphere [Gil82], [Ped87]
has been initiated in [LTW92] and more recently in [GH06, GH11]. However, in these
references, the humidity is only accounted for through the mass fraction ¢ of air vapor; in
addition the saturation of water vapor in the air is not accounted for, so that the equation
for the concentration ¢ of water vapor in the air is a mere transport equation. To the
best of our knowledge the first articles accounting for the water saturation are [CT12],
[CEFTT13], and [BCT14]. In these articles the existence of a change of phase leads to the
introduction of a Heaviside function, so that the equations for ¢ and 7' (the temperature)
appear as nonlinear, discontinuous and non-monotone. Nevertheless results of existence,
uniqueness, maximum principle and regularity of solutions were established. For other
equations involving a discontinuous Heaviside function in geophysics see e.g. [Dia93,
DT99], and [Fei91, FN91, Gil82] in more general contexts.
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Two simplifying assumptions were made in the references [BCT14, CFTT13, CT12]:
namely that the velocity of the fluid u is known and that the saturation concentration
Qvs 18 constant. In [CHKTZ], the authors removed the hypothesis that the velocity is
known and they studied the coupled system for ¢, T, u, thus combining the methods
in [CFTT13, CT12] with the methods for the 3-dimensional primitive equations (PEs),
[CT07], [Kob06].

In the article [TWul5] the authors assumed again that the velocity u is prescribed
but they also assumed, for simplicity, that the saturation concentration ¢, is constant.
They then observed that the basic equations for g and T as reported e.g. in the classical
references [Hal71, HW80, RY89] are inconsistent for the limit values ¢ = 0 and ¢ = 1.
This difficulty was reported in the geophysics literature in [TT16], and, in [TWul5] and
[TT16] the authors propose to resolve the contradiction in the equations by introducing a
unilateral equation (an inequality) valid for ¢ = 0 and ¢ = 1, and then the whole problem
is set as a variational inequality. For general results on variational inequalities and their
utilization in mechanics and physics, see e.g. [Bre72, DL76, Fre02, KS80, ET76].

In the present article, we generalize the work of [TWul5] (see also [TWal5]) by con-
sidering a more detailed description of the humid atmosphere, namely we assume that
the humid quantities comprise the water vapor, the cloud-condensates, and rain water
with respective mass densities ¢, g. and ¢,.. In the earlier works ([TWul5], [TWal5] and
before) ¢, is the quantity which was called ¢ (and ¢,s was called ¢,s) . Because of the
increased complexity of the model we first recall in Section 2 all the equations, mostly
based on the references [Gra9d8, Hal7l, KW78, KBH98, RY89, Xue89] in view also of
setting the notations, and putting the equations in a form suitable for mathematical
treatment. The mathematical treatment of the problem is conducted in Sections 3 and
4.

The multi-species model that we consider in this article is described below. Meanwhile,
a different model for multi-species humid atmosphere was introduced in [KMO06] and
studied from the mathematical viewpoint in the recent article [HKLT17]. As explained
in [KMO6] (see after (9) in [KMO6]), it is often assumed in cloud microphysics param-
eterizations that the vapor-to-cloud water conversion is instantaneous, i.e. that either
the air is saturated, such that the water vapor content matches its saturation value,
v = qus(T,p), and the cloud water droplets can exist with ¢. > 0, or the air is un-
dersaturated , i.e. ¢, < @us, in which case ¢. = 0. See [Gra98] and other references
below; this is our point of view here. In [KMO06] and [HKLT17], the authors do not
assume this limiting behavior from the outset and demonstrate how it may be derived
in a consistent asymptotic framework given large but finite condensation rates. This
is the main deviation of the bulk microphysics description in [KMO06] from the scheme
related to [Gra98] that we study here.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Following the references quoted above above, we consider the conservation equations for
the relative mass densities ¢,, ¢., ¢- and for the temperature T (or more precisely the
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difference 6" between the potential temperature 6 and a reference temperature 6, 6 =

0—0,).

We let M < R3 be the spatial domain for our study and a typical point in M is denoted
by x = (z,y,p) where p is the pressure. We use p, ¢, 0, T" and e, to denote density,
concentration, potential temperature, temperature, and saturation vapor pressure, re-
spectively. In earlier works [BCT14], [TWulb]|, [TWal5|, we considered the atmosphere
to be a mixture of dry air and water vapor. In our current investigation, we will con-
sider the water vapor, cloud-condensate and rain water for the humid atmosphere so
as to include the clouds. For a specific quantity, we shall use the subindices v, ¢, and
r to represent this quantity for the water vapor, cloud-condensate and rain water. For
example, p,, q, represent the density and concentration of water vapor, p., ¢. the density
and concentration of cloud-condensate, and p,, ¢, the density and concentration of rain
water, etc.

Assuming the velocity u = (u,v,w) is known, the unknowns for our current study are
the potential temperature 6, the concentrations of the water vapor, cloud-condensate
and rain water q,, q., ¢, and the saturation concentration q,,. If T" is the temperature
then we classically have

o=y =T = (L) 2.)

where K = (v — 1)/ and v = ¢,/c, is the ratio of specific heats at constant pressure
and at constant volume.

Before going any further, we shall first make some simple observations. Of course,
the quantities q,, q., ¢, qus being relative mass fractions ratios take their values in the
interval [0,1]. Furthermore, the air can not be supersaturated (in general). In other
words, we have the constraint 0 < ¢, < qus.

Following e.g. [MP74] or [KW78] (see in particular (2.5) in [KWT78]), the general form
of the equations for q,, q., ¢, is given by

dgq

In (2.2), the symbol % is the material derivative given here by ¢; + u - Vy, i.e.,

i—£+ui+vﬁ+wi (2.3)

dt ot ox Oy op’ '
where w = %. Corresponding to g, ¢. and g,, the terms D, are the usual dissipation
terms (like the 3D Laplacian A3z) and the quantities M, are the rates of the production of
species ¢, which are described below using the notations in [KW78] (see (2.9b) —(2.9d)):

d VS
M,, = 6% + E,,

M, =—6%= _ A —C, (2.4)
M,, = —9&(pg: Vi) — Er + A, + G,
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Note that in (2.4), p is given by the ideal gas law:

b
RT’

and that T in (2.5) is the total temperature and not the deviation 7" appearing in
(2.12) below; V; appearing in the expression of M,, is the terminal velocity of the falling
rain. The term A, is the rate of auto-conversion of the rain water; C, is the rate of the
collection of cloud water by falling rain; and E, represents the evaporation rate of the
rain water. Most important for our study is the term ¢ dflit”, which represents the rate
of condensation or evaporation of the cloud water, and this occurs only when w < 0
falling water and g, > ¢,s. Hence the coefficient ¢ is defined as:

p=pRT, p= (2.5)

521 if w<0 anquZva
(2.6)
0=0, if w=0 or ¢, < qus-

The function ¢, is a diagnostic variable; it is explicitly given at each instant of time as
a function of p and T (or ), that is

Qvs = st(p; T) (27)

The expression of ¢,s as a function of 7" and p results from the application of the
Clausius—Clapeyron equation. According to ([RY89], p. 14), g,s can be expressed as a
function of the saturation vapor pressure e,

3.8 Cus Cus
s = =0.6219—— 2.8
Tos = 0378 ey, 6.11 p—0378ey’ (28)
where by Tetens’ formula (see (2.11) of [KWT78]),

T —27 3)

T—-b "
Here T is in Kelvin, a = 17.27, b = 35.5. Because we only consider the above freezing
case in our model, b « 273, b « T', and from now on we set b = 0 for simplicity.

eps = 6.11exp(a (2.9)

Remark 2.1. We see that e; is a strictly positive, bounded and smooth function of the
temperature T' for the temperature ranges found in the troposphere. Considering the
usual range for pressure p, e.g. 200 < p < 1000 (see [BCHTT15]), we can avoid the
possible singularity at p = 0.378 e, in (2.8) by a suitable modification of (2.9) outside
the physical relevant values of T' (see ¢(T') in Remark 2.3). So ¢, is a positive smooth
and increasing function of e,s, which in turn implies that g,s = Q.s(p,T) is a positive
bounded smooth function of p and 7" for all values of p = 0 and 7" € R. In particular, we
will use the properties that Q,s(p, T') has bounded first order and second order partial
derivatives with respect to the variables p and 7" in Section 4.

Now we need to find the expression dg,s/dt which appears in the right hand sides of
equations (2.4) and (2.11). As in [Hal71] and [HWS80], the expression of “%+ results from
combining the first law of thermodynamics with the Clausms—Clapeyron equations, so
that

dqys Qs , LR —c,R,T
= F(p,T
dt . T) ==, (ch T2 + quL2)

(2.10)
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where p and T are the pressure and temperature; L is the latent heat of vaporization;
R, R, are the gas constants for dry air and water vapor respectively and ¢, represents
the specific heat of dry air at constant pressure.

Finally we have to supplement the equations above with the equation for the temper-
ature T. In fact, instead of T, we consider the potential temperature 6 previously
introduced, or more precisely the deviation 8 = § — 8),, where 6, is a reference temper-
ature.

Hence, as with (2.2) and (2.4), the equation for ¢’ is given by

o’ IR Q
— = N2, + My + Dy + —= 2.11
dit gttt Mo Bt (2.11)
with
L dqys
My=——-(§ E,);
o cpH( dt +Er)

(see e.g. (2.9a) in [KWT78]). Also, following [KW78] (see (2.2) — (2.3) in [KWT78] ) we
have
T Ty
o - —_
0 = 0’ eh I’
where T' = T}, + T"; see also equation (6) in [MP74]. Furthermore we have (see [Xue89],
(1.2.27)-(1.2.28)):

(2.12)

gry 00, gp
Nij = === ==, 1% = gpn = 5

= . 2.1
9h 5]9 RTh ( 3)

The source terms. The coefficients describing the microphysics A,, C,., E, and the
terminal velocity V; are defined empirically. Common expressions of these terms are as
follows (see e.g. [KW78]):

Ar = kl(QC - qcrit)+a Or = k’2chg'875, E?“ = k3(q:_)0.5(qq)s - C]u)+, (214)
Vi = 5.32¢%%. (2.15)
We observe that all these quantities are continuous functions of U = (gu, ¢e, ¢, 0 ).

We will slightly modify some terms in a way which simplifies the mathematical study
but does not modify the physical relevance of the equations. For example, after a
suitable extension outside the physical relevant values of q,, ¢, ¢, &, all what we need
is to assume that the coefficients are continuous bounded functions of U, compactly
supported in the region of R? corresponding to ¢, qc, ¢r.

Remark 2.2. For mathematical convenience and in agreement with the physical mean-
ing of ¢, (0 < ¢, < 1), we will replace ¢, in (2.14) by 7(q,) = 0 if ¢. < 0; = g, if
0<g¢g-<l;and =1if g > 1.

Remark 2.3. We similarly need to comment on (2.10) and change its expression outside
the physically relevant values of ¢,s, T and w. Firstly, since (2.10) is only relevant for
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w < 0, we replace w by —w™. Then to avoid a possible singularity at 7" = 0, we replace
T by ¢(T), where ¢ is a smooth (e.g. C?) positive real function with o(7T') :

=T for Ty, <T < Ty,
=>T,/2 for T < T, (2.16)
=0 for T = 2T,,.

Here T, > 0 is smaller than any temperature on earth (e.g. 100K) and Ty, is larger
than any temperature on earth (e.g. 355K). We see that the function F(p,T) in (2.10)
is actually uniformly bounded in p and T. Moreover, replacing T' by ¢(7) in (2.10) and
for a given initial value ¢,5(0) = 0 we see that the modified equation (2.10) gives g, as
a positive smooth (C?) bounded function of T" and p after we integrate (2.10):

QUs<pa T) - st(p>T) = 0. (217)
Remark 2.4. Some authors consider, instead of the expression of E, in (2.14),
ET = kST(q:)B<qu o CIU)+7 ﬂ € (Ov 1]7 (218)

see e.g. [HKLT17]. We could likewise consider this form of E, if we replace T by ¢(T)
which is physically equivalent as we already discussed.

The rest of the article is organized as follows. In Sections 3 and 4 we develop the
mathematical setting for these equations. Sections 3 is devoted to presenting the general
mathematical setting, the initial and boundary conditions, and the handling of the
quantity d by using Heaviside functions, in continuation of [CT12] and [CFTT13]. In
Section 4, we account for the constraint ¢, < ¢,s and introduce the quasi-variational
inequality that we intend to study, that is, prove the existence of its solution. To this
aim, we introduce, in Section 4, a penalization procedure, by which we approximate
the quasi variational inequality by a relatively standard nonlinear problem which can
be treated by classical methods. Note that the use of the penalization method is a
convenient mathematical tool and we do not try to give a physical meaning to the
penalized problem. Penalization has been introduced by R. Courant [Cou43] and it is
very common in Optimization Theory (see e.g. [Cea78|, [Karll] and [PT80]). Then
we prove some a priori estimates for the penalized (¢—regularized) solution, and finally
pass to the limit as € — 0 to end up with the existence of the solution for the initial (non
regularized) problem. The passage to the limit relies on using some classical compactness
results and convex analysis tools. Other properties concerning the solutions such as
uniqueness, maximum principle, etc., will be addressed elsewhere.

3. DISCONTINUITY AND BOUNDARY VALUE PROBLEM

In this part and the next one, we will consider the above equations which will be
supplemented with initial and boundary conditions. There are two additional issues:

(1) The coefficient § which is discontinuous and that we will replace by a Heaviside
function, as in [CT12], [CFTT13].
(2) The inequality constraint on the variable ¢,: ¢, < gys.
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The first issue is addressed in this section, the second issue is addressed in Section 4.

We are going to write the differential equations and the boundary value problems for
the quantities ¢y, ¢, g-,0’. We assume for simplicity that the velocity u = (v,w) is
prescribed, otherwise we would have to add the equations governing the evolution of u.

The flow takes place in a domain M in the (z,y, p)-space, M = M’ x (pg,p1), where
M’ = R? is smooth and bounded, and 0 < py < p < p; is the range of values of p that
we consider; here pg, p; are two fixed real numbers. We use “n” to denote the outward
normal vector field to the boundary 0M of M which consists of three parts I, I';, I,
namely the upper and lower interface with the ocean and the lateral components of the
boundary. They are defined by

Iy = {(z,y,p) € M;p = po},
Iy = {(z,y,p) € M;p = p1}, (3.1)
Iy = {(z,y,p) € M;po < p < p1, (z,y) € OM'}.

We set V = (0;,0,) and A = 07 + 02 to be the horizontal gradient and horizontal
Laplace operators, respectively and Vi = (V,0,), Ag = A + 0“5 to be the 3D gradient

and Laplace operators, respectively. In this way, the heat and vapor diffusion operators
Ay and A, are described as

gp gp
Ag = —poA — V0ap((R_6—)2ap)a Ag = —1gA — anp((R_§>2ap)a (3.2)
where f1,,v, (¢ € {qu,qe, @ }), o, Ve, g, R, c, are all positive constants and § = 0(p) is

the average potential temperature over the isobar with pressure p. We assume that 6
satisfies:

0. < 0(p) < 6*, |0,0(p)| < M, for some positive constants 0, 0*, M and p € [po, p1].
(3.3)

We set U = (qu, G, ¢, 0"). We will now describe in details the boundary value problem
for each of the quantities under consideration.

3.1. The equation for g,. The equation for g, is written

aqv aQ’U
- T ‘A(quU +v: VQ'U + w% € fqu(QUa qe, qr, 0,) + F%(QU - QUs)

ot
= fqv(U) + FH(QU - qUS)7 (34)

where H is the multi-valued Heaviside function such that H = [0, 1] at 0 and (see (2.10)
as well as Remark 2.3):
_quso(T) ( LR — c¢,R,p(T)

F=FTp =—
(T.p) w P cpRyo(T)? + qus L2

), (3.5)

foU) = f0,(00: 4cy 4, 0') = B (3.6)
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We will use the form E, = kgT(q,,,)O"r’(q,l,s — ¢v)" as indicated in (2.14). Note that we

have replaced (¢,)" by 7(g,) according to Remark 2.2.

We consider the following boundary conditions to be associated with the above equation:
Opdv = Bo(Gus — o) on Iy, Opqy =0on Ty,  Jn,qo =0o0n I, (3.7)

where 0, = 0
to

na,, 18 the co-normal derivative associated with A,, which reduces on I
v

— Mg, H - qu7 (38)

where ny is the horizontal component of the unit outward normal n on M (that is the
unit outward normal on T7).

We also associate with (3.4) the following initial condition

¢ (2, Y, p,0) = guo(z,y,p). (3.9)

In (3.7), qu« = qus(x,y,t) is a specific humidity distribution at the bottom of the
atmosphere and f3, is a given positive constant.

3.2. The equation for g.. The equation for ¢. is written

A
Cc

o /
+ Aq,;Qc +v- ch + W% € ch(q'l)J qe, qr, 9) - FH(QU - qu)

= ch(U) - FH(Q@ - QUS>7 (310)

0qc
ot

where I, ‘H are defined below (3.4) and
ch(U) = ch (QU7 qe, qr, 9/) = _kl (qc - qm-t)+ — quCT(qT)O'Sﬁ. (311)

Similar to what we did for E,., here we have replaced ¢, in C, by 7(g.) (compare to
(2.14)).

We supplement the above equation with the following natural boundary conditions
Opqec = Be(@es —qc) on Iy, 0pge =0o0n 'y, 0On.qc =0 on I, (3.12)
and the initial condition

%(37’3/71% O) = qu(fﬂa%p)- (313)

In (3.12), gex = qex(,y,t) is a critical specific humidity distribution at the bottom of
the atmosphere and S, is a given positive constant, and 0, q. is defined as 0, ¢, in (3.8).

3.3. The equation for ¢.. The equation for ¢, is written

04, 7
+Aqrqr+v-Vqr+w% = - a(—p(pqut) —E, + A +C,. (3.14)

gy
ot

Here, we will continue to use the expression FE, = /ng(qT)O"G(q,Us —¢,)" in accordance
with the ¢,-equation.
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By (2.15), we have

Kk 00n(p) 00
= +—). (3.15
P dp 029) (3.15)

~ RIIA TR oJp RIIH?

1 a & pq1.2 q1.2 12p q0.2 aQT P q12
- 'r'V —_ T . T r r
Sy aV) = 3 () (

Referring to (3.15) and replacing again g, by 7(g.), the equation for ¢, takes the following
form

g,
op

0gr

Fn + Ay gr +v - Vg +w—

0 ;
= —5.32 ga—p(pqiz) - k737_(Q7”)0“ (q?)S - (Jv)+
+ kl (QC - QCrit)+ + k2QcT(Q7‘)O.875‘ (316)

By the ideal gas law (2.5), the above equation can be further transformed to

1.2
a}i + Aggr + V-V + wa}(; —5.32 g%(%qﬂe) — ks ()" (Gus — q0)
+ k1(ge = qerie) T + koger(g,) "™ (3.17)
By (3.15), we obtain
q, oq,
AV ) = L), 619

where

flb-(U) = fQT(qU) QC7 q’rv 9/)

T(Qr)l'z + 1'2pT(QT)O.2 aQr pT(Q?“) ( E agh(]?) + (9_«9/))
RIIA,, RIIG,  op RH02 “ op op

- kST(QT)O.S((]vs - q'u)+ + kl (QC - qcrit) + kQQCT( r)

= —5.32¢(
0.875‘

(3.19)

In (3.19) we have also replaced 6 by 6,, = min(f,«) where a > 0 is less than any
temperature on earth. This is physically relevant and mathematically useful.

We supplement equation (3.18) with the following boundary conditions and initial con-
ditions:
pQr = /BT(QT* (_Z’I“) on Fia apQr =0 on Fua anrqr =0 on Fh (320)

0 (x,y,p,0) = go(z,y,p). (3.21)
Here ¢+ = qq+(z,y,t) is a specific humidity distribution at the bottom of the atmo-
sphere; f3, is a given positive constant. Also 0, ¢, is defined as 0, g, in (3.8).

3.4. The equation for 0 (~ ¢'). The deviation ¢ from the reference state 6 (p) sat-
isfies the following equation

o’ ol L
— 4 0 — / ) — —F —
o + At +v -V +wap € fo(qw, e, g, 0") ol H(qw — Gus)
L
= fo(U) — —=FH(q, — qus), (3.22)

cpll
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where

Jo(U) = Jolgorder a0 @) = — 0y - L () e — ) ) + o (323)

g cpll

Here fy = f3+ f#, with f} a source term and f§ = waag_}gm after observing that Ayf,(p) +
v - VO,(p) vanishes.

We consider the boundary conditions
pf =a@,—0)onT;, 00 =0onTl,, 0,0 =0onTy, (3.24)
and initial condition
0 (x,y,p,0) = Oy(z,y,p). (3.25)
Here the function 6/, = 0’ (z,y, ) is a typical potential temperature; « is a given positive
constant, and 0y, 0" is defined as 0,,q, in (3.8).

4. VARIATIONAL AND WEAK FORMULATION OF THE PROBLEM.

From the mathematical point of view, a new difficulty as compared to [CT12], [CFTT13]
is the constraint ¢, < ¢,s which leads us to the concept of quasi variational inequality
(instead of a variational inequality). Indeed in the notations below the velocity u is still
given and the set of unknowns U consists of ¢,, ¢,, ¢. and the temperature 1" ; in fact we
rather consider the potential temperature 6, and replace it by the difference 6/ = 6 — 0,
between 6 and a reference temperature 0. Hence U = (qy, ¢, q.,0"). Now, as recalled
in Remark 2.3, the saturation concentration ¢, is itself a function of 7" and p, which
we express as Gus = Qus(p,U) or qus = Qus(p, T) for simplicity. Hence the constraint
v < Qus appears as a quasi variational inequality where the solution U is subject to
belonging to a convex set which depends itself on the solution:

UeK =K().

Quasi variational inequalities have been introduced by Bensoussan and Lions, motivated
by the study of economical problems [BL76], [BL77]; see also [BF78|, [BL84|, [BL73al,
[BL73b], [BL74] and [BL75]. Subsequently quasi variational inequalities have been used
for problems in mechanics, physics and imagery, see e.g. [KNO07|, [Kan14], [Mil14] and
[LLBS14].

We start in Section 4.1 by giving the weak form of the problem and then in Section 4.2
we account for the constraint U € (U) and introduce the quasi-variational inequality.

4.1. Notations. We denote as usual H = L*(M), V = H'(M) and we set H =
HxHxHxHandV=VxVxVxV. Weuse ()2 (regarded the same as (-, ) )
and |- |72 to denote the usual scalar product and induced norm in H. In the space V', we
will use ((+,+)) to denote the scalar product adapted to the problem under investigation

((:9) 1= (V4.V9) + (. 00) + | w0l

L
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and the induced norm is denoted | - ||. The symbol (-, ) will denote the duality pair
between a Banach space E and its dual space E*. Associated with the Navier-Stokes
equations, we also use the following standard notations:

={ueH x H x H|diva=0and u-n =0 on oM},

V={ueVxVxV]|divu=0andu-n=0ondM},

which will serve as the natural function spaces for the vector field u. In fact we will
assume that

ue L*(0,t; HY(M)?) n L7((0,t1) x M). (4.1)

In view of deriving the weak (variational) formulation of the boundary value problem,
we multiply e.g. the expression A,,¢, by a test function ¢5. Assuming smoothness and
taking into account the boundary conditions (3.7) for ¢, we find

Agondl) = (0 = 10,5 ((35)70,) )

= MQ'U(VQQH qu)H + Vg, f (%)Z&pqvapqg dM
M
+quJ (gpl) Bau (@ = quw)q; dTs. (4.2)
T,

We do the same for ¢., ¢, and 8’ and thus

(Ag. e, qg> = 14.(Vee, Vq(l:))H + Vg J (%)26199081@2 dM

+ chfl“ (gp1> Ba.(ge QC*)QS dr;, (4.3)

Aol = 10 (Ve Vel + v, | (0)0,0,0,00 M
M

Foa | ()8, (0~ gL (4.4
Tr;
and
(Agl 0" = 1g(VO,VO") 51 + v f (22)?0,6'0,0" AM
‘RO
+ UQJ (LY’ (0 — 0,)0" dr;. (4.5)
- VRO

Consequently, we define the following bilinear forms

ag(0/,0") = 119(VO', V0) 1 + v f (22)20,0'6,0" AM + vpa J (LY ?g9% ar,, (4.6)
RO RO

r;

(22)20,00,0" dM +vqﬁqf (if;) q¢" dU;.  (4.7)

ay(q,q") = 1,(Vq, V') + v, JM 70
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Similarly, we define b(u, ¢, 1°) as follows:
b(u, ¥, y’) = f (v - Vi + wdph)p? dM, (4.8)
M

which we will use with (¢, 9*) = (¢,0"), (g0, 4%), (¢, ¢°), (¢c, ¢2). We recall here that
u = (v,w) is the three dimensional velocity, v is the horizontal velocity and w is the
vertical velocity of the air in the z,y, p system.

Analogously, we define the linear functionals:

/ gp ) gp1y2
15(0") = WL (R;) 0.0 dl;, 1,(¢") = yqﬁqf (R;) ¢xq"dTy, (4.9)

WU®) = L. (a2) + 1o, (a7) + Lo, (a7) + 16(6"), (4.10)
which correspond to the constant terms in Ay, A, and A respectively.

We introduce the multilinear forms for U and U® = (¢%, ¢4, ¢°, 0")

a(U,U") = ag.(¢e: 42) + g, (40, 42) + g, (ar, @) + ag(6',6"), (4.11)
b(u,U,U") = f (w- V., ,U) UPdM. (4.12)
It is easy to see that "
b(u, U, U") = b(u, e, ¢¢) + b(W, ¢v, 4;) + b(W, gr, ¢;) + b(w,0",6").  (4.13)
In view of V - u = 0, we readily see by performing integration by parts that
b(u,,9) =0, Ve V. (4.14)

Before we move further, we first give the following well-known estimates.

More precisely, we have the following lemma concerning the boundedness of the above
functionals.

Lemma 4.1. Assume U = (qy, ¢, ¢,0), U = (¢¢,¢*,¢%,0") € V and u € V. There
exist universal positive constants X\ and rk such that (q denotes here qy,q. or q,):

|ag(0,6°)| < k[0']16°], a(6,0) = N|6|* (4.15)
lag(q,4")| < lalld"]. aq(q> q) = Mq|* (4.16)
b(w, U, U")] < wljullv U] U5 [T7)] (4.17)

16(0")] < 50", llg(a")] < slld”. (4.18)

The proof of Lemma 4.1 is based on a routine use of the Cauchy-Schwarz inequality
and the trace theorem. We shall omit the details here.

It is well-known that the linear operators Ay, A, : V' — V* defined through the relations
(Agu, v) := ag(u,v), (Aqu,v) = ay,(u,v),Vu,veV, (4.19)

are both bounded linear operators.
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Similarly, the operator B(u,U) = (b(u,U),b(u,q)) : V x V — V* defined by
(B(u,U),U% := (b(u,d,0"),b(u,q,¢")) YVue V,U,U" €V, (4.20)
where V* is the dual space of V.

4.2. Weak formulation of the problem. Our equations can be written in the fol-
lowing compact form

U+ AU +u -V, -Ue f(U0) + FH(q — qus), (4.21)
where F is the vector (F,—F,0, _chnF)t'

Alternatively, (4.21) means that there exists single-valued Heaviside function h,, €
H(qy — qus) taking values in [0, 1] such that

U+ AU +u-Vy-U = f(U0)+ Fhy,. (4.22)
If we adopt the following notations for Uy = Uy(z,y,p), Us = Ui(x,y,p) and U =
U(z,y,p)
UO = (Qv07QCOaQT0a0[,))t7 U* = (qv*ch*a(_Ir*ae;)ta

and define the coefficient matrix C = diag{f., 8., 5, @}, then the initial and boundary
conditions associated with the system (4.21) can be written as follows

U(z,y,p,0) = Up(z, y,p), (4.23)
oWU=ClU,—-U)only, 0, U=00onT,uly (4.24)

where 0, ,U is defined componentwise as in (3.8).

For the weak formulation we will treat differently the equations for U = (g, ¢, ¢') and
the equation for ¢, which is subjected to the constraint ¢, < ¢s.

For U, we consider the equations (3.10), (3.18), (3.22) for g, q,,®", respectively, and
multiply them by test functions ¢, ¢%, 8. Assuming smoothness as before, we obtain
in view of (4.3)—(4.5),
t1 L L B o L t1 _ _ B
f [0, U +a(U,U% + b(u, U,U% — [(U")] dt = J (f(U) + Fhy,, U")dt, (4.25)
0 0
for all U® e L2(0,ty; (H')?) and
Ut =0)=U,. (4.26)

Recall again that here [ represents the constant part of the operator A and F represents
the vector (—F 0, —CPLHF)t.

With the constraint ¢, < gys, and by analogy with what was done in [TT16] when ¢,
is constant and 0 < ¢, < g5, we can weaken (3.4) in the form:

L(qy) < fo,(U) 4+ Fhy,, (4.27)

where L(q,) is the left hand side of (3.4). We note that the equation (3.4) is agreeable
and consistent with (4.27) if ¢, = gus and w < 0.
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Take now a test function ¢® < g,s. We see that pointwise

(L(qv) — fa (U) - thu)(qllj — Qus) = 0,

in all cases, that is if ¢® = q,s or ¢ < qus.

This leads us to the formulation of (3.4)-(3.6) as a quasi-variational inequality : ¢, €
Lw(oatl; LQ(M)> N LQ(Oatl; H1<M))7 D) < Qvs = st(p7 T) and

t1
J [€Cqv, @) — qu) + g, (0, & — @) + bW, @, @ — @) — 1g, (¢} — qu) ] dt
0

t1
> J (Jo(U) + Fhoodb — q)dt,  (4.28)
0

for all ¢ € L(0,t1; H') with ¢© < qus = Qus(p, T).

In addition,
qv(t = 0) = qvo- (429)

At this point, let us introduce what we will call here a solution of (4.21) in the weak
sense. Let Uy € V be such that 0 < ¢, < ¢s and let £; > 0 be an arbitrary but
fixed constant. A vector U = U(t) = (q,,U) € L*(0,t1;K) n C([0,1,]; V) with o,U €
L2(0,t1; (V3)*), 0,qy € L3(0,11; V*) is a solution to the initial-boundary value problem
(4.21)-(4.23)-(4.24), if, for almost every t € [0,¢;] and for every U® € K, we have (4.25)
and (4.28) satisfied.

We recall here that g,s is given by (2.8)-(2.10).

4.3. The penalized and regularized problem. To deal with the inequality con-
straint ¢, < ¢,s and the discontinuity of the Heaviside function H , we introduce a pe-
nalized and regularized version of the problem associated with the parameters 1, 5 > 0.
The penalization is introduced below by introduction of the term ;7 ((q, — qus)*)¥?.
We address the discontinuity of the Heaviside function as in [CFTT13] and [CT12].
Recall the multi-valued Heaviside function

0 for r <O,
H(r) = < [0,1] for r=0, (4.30)
1 forr >0,

and the single-valued function h,, where h,, € H(g, — qus). Following [TWul5], we can
characterize hy, € H(q, — qvs) by

([¢° = qus] T 1) — ([qo — qus] T, 1) = (hg,, ¢ —q) forae tel0,t], V¢ e V. (4.31)
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Now we approximate h,, by H.,(q, — qus) for €2 > 0, where H,,(r) is defined as

0 forr <0,
He,(r) =<r/ea  forre(0,ea, (4.32)
1 for r> e,

In this setting, Fhy, (~ FH) in the right hand side of (3.4) and (4.28) are replaced by
FH.,(qy — qus). Similarly, the h,, (~ H) in the equations for ¢, ¢. and ¢, are replaced
by H.,(q, — qus) as well. Here the regularized f(U) + FHec,(q, — qvs) has the same
boundedness as the original one. Now the related penalized and regularized system of
equations reads

0o + Avy +V - Vo + 05 + (g — que) )P = f4,(U) + FHo, (g — qus),
Oge + Acge +V - Ve + WG = [ (U) = FH,(¢0 — Gus),

Ogr + Argr +v - Vg + 0 = £, (U),

00" + Agd' + v - VO + w%—i’ = fo(U) — CPLHFHQ(QU — Qus)-

(4.33)

It is worth noticing that the unknown functions above depend on the small parameter
e = (e1,22). Therefore, we will use the notation U® = (¢, ¢, ¢5,0¢), etc. The initial
and boundary conditions associated with (4.33) are the same for U:

U*(z,y,p,0) = Up(w,y,p), (4.34)

opUs=CU,—-U)only, 0,,U°=0onl, ul]. (4.35)

To reveal the structural properties of the systems (4.21) and (4.33), we first consider the
products related to the nonlinearity f(U)+ FHe,(qy — qus), i-€., the following quantities

(ch(U) - FHEQ (QU - QUs)v QC)7 (fqu (U> + FHsz (qv - qu)’ Qv)a

L

(fQT(U>7 %’)7 (f@’(U) - ﬁFHEQ (QU - qUS)) 9/>7

P
where U € V. By analogy with (4.25) the weak formulation of this problem is to find
a function U¢ = U*(t) = (¢5, ¢, ¢5,0°) € L*(0,t1; V) with 0,U° € L*(0,t;(V?)*) and
0vqc € L°3(0,t1; V*), such that

| a0 + a7 0%+ b, U 0~ 0% (G = ) )l

= (MW Pt a0, a0

0
for all U® € L2(0,t,;V?) and ¢% € L*(0,t1; V).
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4.4. The formal a priori estimates and existence of solution for (4.36). We set
U’ = U® in (4.36) and we deduce a new energy equality which is in fact obtained by
adding the corresponding energy equalities for each component of U®, namely ¢, ¢, q;
and 6. For example, the energy equality for ¢, is obtained by multiplying (4.33), by
¢. and integrating over M, etc.

From now, aiming to simplify the presentation, we will omit the dependence on ¢ of
U¢ that we will denote instead by U; the superscript € will be reintroduced when it is
necessary. Hence, for ¢., using (4.16)—(4.18), we obtain

1d 0.
2 dt|qc|L2 +(AqCQC7QC)+(V‘V(]C7(]C)+(W%7QC> = (fqp(U> - FHEQ(QU - QUs)ﬂ]c)‘ (438)

The other energy equations can be treated similarly except for the RHS of the analogous
equations similar to (4.38).

Now, we start by computing the terms in the LHS of (4.38). Hence, using the definition
of A, asin (3.2) and integrating by parts, we deduce that

(Ag e, qe) = (_uchqc VO (( Rg)Qﬁp)qc,qc)

2
gp 04c

0q.
= ,qu|ch|%2 + e, on CchFl + Vg,
Iy
gp gp
+ Vqe Jl"u (R_§)2apqc chFu — Vg J;Z (R_§)2§pqc chFZ

Then, we simply observe that, thanks to (3.12), the second and fourth terms in the RHS
of (4.39) vanish. We use again the boundary conditions (3.12) to replace the value of
the last term in the RHS of (4.39), and we infer that

9p %[’
RO 0Op |;»

gpP 2 2 9P 2
c Y dFZ - c c c*dr

(chq07 QC) = :uqc|Vq0|%2 + Vg,

(4.40)

The second term in the LHS of (4.38) can be computed using again the integration by
parts formula. Hence we have

1
(v Ve, q.) = —= [‘ divv ¢?dM — (g.)*v - ndl,
2 JM 2 Iy
= (since u-n =0 on dM by definition of H) (4.41)
1
= —= f divv ¢g2dM.
2 Jum

We now calculate the last term in the LHS of (4.38) which reads as follows:

0q. f ow ﬁqc
W—1,q;) = — q:dM — dM,
( op q) M ap M apq
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and this yields
0qec 1 ow o
(W%,CIC) = - J 8p q.dM. (4.42)

We recall here that the velocity u = (v,w) satisfies u-n = 0 on OM and V - u =
divv + dw/dp = 0 in M. This implies in particular that

0qe
(v Ve ge) + (w5 4c) = 0. (4.43)
p
Now, combining (4.40) and (4.43) in (4.38), we deduce that

1d
2 dt

9p %[’
RO Op |-

= B | (Pl () e = ) )

|qC|L2 + Hq. VQC‘L2 + Vg,

gp 2 2
Hqﬁcji(%) o (4.44)

At this level we are able to estimate the RHS of (4.44) starting by its first term. For
that purpose, we use the Cauchy-Schwarz inequality and the identity 2ab < a® +b?. We
then infer that

e | (G Peadar, < M | (S s Bk [ (i s

Finally, we observe that, on the one hand, a part of the last term in the RHS of (4.44)
is negative, and, on the other hand, the remaining part can be handled using some
estimates for F' and the Cauchy-Schwarz inequality. Indeed, using (3.11), we have

(f(Ic(U)7 QC> = _kl((QC - QCm't)Jr; QC) - kZ(QCT(qr)()B?E), qc>, (446)

where the RHS of (4.46) are negative since ky,ky > 0, and using the definition of
(ge — qerit)T and of 7(g,). Furthermore, we use the fact that H.,(¢, — qus) and F are
uniformly bounded (see remark 2.3) to estimate the quantity (—FHe,(qy — qus), Gc)- We
deduce that

|(_FH€2 (QU - q7}5)7 QC)| (4.47)

where x and the k; are generic constants independent of ¢ and taking different values
at different places.

Therefore, combining (4.45), (4.46) and (4.47) in (4.44) we conclude that

2,3
qcl~C 221—\
+2J(R0)d

Ve Be [, 9P
+<k1(QC - QCrit)+ + kQQC|QT|O.875a QC) < qTf (RQ)QQS*CZFZ + "f1|qc|2 + Ko

< Kylge? + Ko

1d
2dt

9P 0qc
RO 0p |,

|qC|L2 + ”qc vqC|L2 + VQC

(4.48)
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Using the Gronwall inequality, we conclude, for ¢. = ¢Z, that

K, (4.49)
K, (4.50)

£
|2 | Lo 0,01522 (M) <
<

|5 22 0,000 (M)

where x and the k; are constants independent of £ as mentioned above.

The same conclusions as in (4.49)-(4.50) hold for ¢, ¢¢ and 6. Although the energy
identity for ¢ contains a penalization term as stated in (4.33), this term does not affect
the analysis above because of its positivity, namely we have (& ~((q0 — qus)™ )32 q,) = 0

since ¢,s = 0. Nevertheless, the estimates for the terms ¢, qT,,HE need a slightly
different treatment for the corresponding right hand sides as they depend on the function
fU) + FH,(q, — qus) and the corresponding value is different for each component of
U.

In the following we will explain how to treat these terms and the emphasis will be
on the differences regarding the analysis done above for g.. First, let us start by the
gv—equation (4.33);. After taking the inner product of (4.33); with ¢,, we end with the
same equation as (4.44) which reads, using (3.6), as follows

1d gp 0qy ? J 2 2
|72 |72 —_— v dF
2dt|q |L + /’LQU|vq |L + QU Re ap qU/B (RH)
1 ) D\ 4.51
5 (= @) 200dM = v, B, f (2124, guudl, (4.51)
€1 Im RO

+ (FH& (qv - st) + kl37-(q7'>0.5(qu - qu) 7QU>~

Using the facts that ¢,s and 7(¢,) are bounded as stated in Remarks 2.1 and 2.2, we
have

‘(kBT((JW')O.E)(CIus - (I’U)Jr-/ QU)‘ < "‘51‘(]’0|2 + Ra. (452)
The other terms in the RHS of (4.51) can be estimated as we did in (4.45) and (4.47),
and we conclude that

2
9P 0 9P \2 o
vlr2 + Vaulz2 + = + » = )*q;dl’;
th’q ‘LZ /"LQU‘ q ‘LQ V‘Iv Re ap 12 quﬁ L(RQ) qv
1 : (4.53)
+ — ((QU - QUS)+)3/QdeM < ’i1|qy|2 + Ka,
&1 Im
and the Gronwall Lemma implies the desired estimates, namely
|5 |z 0,01522 (M) < (4.54)
45| 220,001 (M) < - (4.55)

We also have

f f o — Gs) )P qudMds = — f J » — Qus) T]P2dMds+

f f - qus 3/2quded3 < R,
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and since q,s = 0,

f J — qus) TPPAMds < k. (4.56)

More estimates about the penalization term resulting from (4.53),(4.54) and (4.55) will
be deduced below (see Lemma 4.2).

Then, we consider first the equation of 6’ and let the equation of ¢, to the end since
the RHS of its equation depends on 06’/dp as stated in (3.19). Thus we multiply the
equation of ¢, given by (4.33)4, by ¢ and integrate over M. Since the boundary
conditions for ' are the same as those of ¢., we obtain an equation similar to (4.44).
Remembering also (3.23), we arrive at

1d ) a6’ gp 9P \20
5%'9 72 + 1o |VO'[ 72 + v _8_ + Vg JFZ_(R—Q—)QQ'QdFi = VefaJFi(R—e—)ze 0,.dl’;
HhNQ L 5 80h(p)
+ (- PR (FH (g0 — Qos) + Ea7(0) " (qos — @) 7) + f3 +w o ,0)
Vg X
< f )260"dT; + "2 (RQ) 202dT; + k11022 + ko

(4.57)

Indeed, it is easy to see that the second term in the middle equation (4.57) is bounded by
k1]0|3 2 + Ko since the terms 6, w and 06y (p)/0p are bounded in L*(M). In particular,
(4.57) yields

o 0"
RO dp |,

1d

th < /11\9’\%2 + Kao. (458)

O[22 + 1o |VO' 12 + v

As before, the application of the Gronwall Lemma to (4.58) gives the following estimates

\e,alm(o,tl;m(/vt)) < K, (4.59)
10 L2(0,03:011 (M) < K- (4.60)

Finally, for the g,-equation given by (4.33)3;, we write the equivalent of (4.44), which
is simply obtained by multiplying (4.33)3 by ¢, and integrating over M, and we use
(3.19). Therefore, using the fact that 7(g,) and 06’/dp are bounded independently of &
in L2(M) for a.e. t = 0, see the definition of 7(g,) in the end of Remark ??, we obtain,
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with 0,, = min(0, ), see after (3.19):

9p 04, |
RO 0p |,

14,5, f (gt

o T(QT) 1'2p7—(qr)0.2 aq?"
qrﬁrf (R9> Gr GrsdIl'; + ( 5'329( RIIA,, + RIIH,, op

CpTle)'? Kk d0u(p) 00
RHQ2 (eap op * ﬁp))

- ]{:3T(q7’>0.5<QUS - (Jv)+ + kl (QC - q01"it)+ + kQQC T(qr)0.8757 QT)

< (using the fact that 0 < 7(¢,) < 1 and 6, < a)

VQT 67’ VQT /87"
\

3 | Gt | <R9> o T+ el + bl

1d
5 dt|qr|L2 + 116, |V G 72 + Vg,

2 v 12

+H1|qr|L2+H2+K1J {‘ ‘+|qc|}d/\/l

(4.61)

As mentioned above, ¢, q, and 00'/dp are bounded in L?(0,t; L*(M)) independently
of . Hence we infer that

9p %4, |’
RO 0p |-

1d

Lo <g(t), (4.62)

|QT|L2 + /’LQT|vq" ‘LQ + Vg,

where G = G(t) is a generic function of ¢, bounded in L'(0,¢;) independently of e.

Finally it suffices to apply the Gronwall inequality to conclude that,

|G| Lo 0,002 (M)) < K, (4.63)
|G L2 0,015 (M) < K- 4.64)

4.5. A priori estimates on the time derivative of U. We now aim to derive a priori
estimates for the time derivatives of U in view of obtaining a strong convergence result
for these functions and especially ¢ (~ T'), by application of a compactness theorem.

More precisely, we prove in this subsection some a priori estimates for the solution U of
the system (4.33) associated with the initial and boundary conditions (4.34) and (4 35),

respectively. The intent is to show that the time derivative of U = U¢ = (¢, ¢, 6¢) and
q;, recalling here the dependence of the solution U on ¢, are bounded independently of
e. Therefore, for U¢, as we did in Subsection 4.4 we will develop here the computations
for one component of U and then explain only the differences for the other components.
The estimate for the time derivative of ¢ is more subtle and will be treated differently
later on (see a similar easier situation in [TWulb], [TWalb]). More precisely, let us
start with the g.—equation (4.33)s that we multiply by dq¢./0t and integrate over M.
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Hence, using the symmetry of A, and then the Cauchy-Schwarz inequality, we obtain

J aqcsz+1i(A )=\ fo.(U) — FH-(qp — qus) — V-V —waqc 04e
M 6t th cle;4e) = qc £2 Qv Qus dc ap, at
1|0q. 2
< v 4.
where
0qc
Ji = | fo (U) = FHy(q0 — Gus) = V- Ve — wa—i!iQ (4.66)

for an appropriate constant c.

To bound the term J; in the RHS of (4.65), we need first to estimate |f,. (U)|z2. Let
us recall the definition of f, (U), which is given by (3.11) and it involves itself the
expression of 7(g,.) stated just after (3.11). Hence, we estimate the terms in the RHS
of (3.11), one by one, as follows:

(1 + lge|2), (4.67)

|k1 (QC - QCTit>+ <K
< K. (4.68)

‘k2QCT(qr)

Therefore, using the fact that ¢,s and 7(g,) are bounded in L*(M x (0,t1)) and ¢, is
bounded in L*(0,t; L*(M)), we deduce that

[foeO)]r2 < K(L 4 |gelr2) <k, V1€ (0,t1). (4.69)
Secondly, as F' and H.,(q, — qus) are bounded in L*(M x (0,t;)), we also have
|FH, (o — qus)|2 < K, Y te(0,t). (4.70)
Then, assuming that ue L*(M x (0,¢;)) and using (4.50), we obtain
V- V|2 < [V|o o) | Ve 2 < G(1), (4.71)

where we denoted again by G = G () a generic function of time ¢, bounded in L'(0,t)
independently of € and we recall that [Vg.|7, has been already bounded in L*(0, #).
Using again u € L*(M x (0,t1)) and (4.50), we infer that

0qc
op

w——lre < K= [z < G(1), (4.72)

op
and we recall that |dg./dp|3, has been by now bounded in L'(0,;).

Now we derive similar estimates for the other terms ¢, and 6. For that purpose,
we follow the same steps as we did for ¢., and we write the equations analogous to
(4.65). Hence, the only difference will be here the estimates of the terms || f,. (U)| .2 and
[ for(U) — CPLHF’;'-l52 (¢» — qus)| 2. To do that we make use of the expressions of f,, (U)

and fo (U) — C%HFH@((_]U — qus), given respectively by (3.19) and (3.23). For f, (U), we
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have

T(QT)lz + 1'2p7—(QT)0'2 aQT . pT(QT)l.Z( E 59h(p) + 6_9/>)
RII6,, RIIG, Op RITH2 ¢ op op

|~ 532/

- ksT((]r)OS(ch - (JU)JF + kl (qc - qcrit)+ + k2QCT(qr)O.875

oq, Vol
“1{‘52 B

L2

+ |QC|L2 + |Qv|L2} + Ko

2

+1el72 + lal7e, (4.73)
L2

+
L2 31? L2

L2 ap

oqy
op

<g(t)+‘

and we already showed that |0q,./dpl3s,[00'/0p|%s, |gel2s, and |g,|2, are bounded in
L'(0, ;) thanks to (4.64), (4.60), (4.49) and (4.54).

Similarly, for fy (U) — CPLHF”HQ(QU — (ys), we assume that u e L*(M x (0,¢1)) and we
obtain

L
[for(U) = — FHe (g0 = @)z < () + a2 (4.74)
P
Therefore we conclude that J; < G(t) for all t € (0,¢;), and we infer that
|5tQE|L2(0,t1;L2(M)) < K, (4.75)

here k is a constant independent of ¢ and t.

Now we take the L?(M) inner product of A.q. with (4.33),, and we can apply a similar
argument as what we did for dyq. and obtain

|ACQC|L2(O,t1;L2) < K. (4.76)
Consequently, using (4.50), (4.75), (4.76) and (4.33),, we deduce that
a £
6qtc and A.q° are bounded in L?*(0,¢;; L?), independently of ¢, (4.77)

that is ¢, is bounded in L?(0,¢;; H?) independently of e.
Similar estimates to (4.75) follow in a straightforward manner for ¢, and ¢’

Before we move on to bound the time derivative of ¢,, we add one more estimate on U.
Integrating (4.65) on (0,t) for any ¢ € [0, ], we have
0qe

1 (*0g.|”
2 L ot
where J; was defined in (4.66). Again, the constant  is independent of £ and ¢. So
(Aq(t), go(t)) is bounded uniformly in time for any ¢ € [0,¢;]. This implies

t1

dt + (Acqe(t), qe(t)) < J Jidt + (Acqeo; 4eo) < K, (4.78)
0

L2

G2 L2 0,15 (M) < K- (4.79)



VARIATIONAL INEQUALITY, HUMID ATMOSPHERE 23

Estimates similar to (4.79) hold for ¢, and ¢'. In particular, we will use the bound

0| Lo (0,001 (M) < K (4.80)

in the estimate of the time derivative of ¢;.

For ¢¢, we will show its time derivative is bounded independently of € in L>/(0,;; V*).
The main issue here is to control the penalization term which contains the ”large” factor
é. We begin with Lemma 4.2 .

Lemma 4.2. The following bound holds:

1 h +15/2
857 L ‘(qla) - qu) |L/5/2 /{, (481)
1

where k is a constant independent of <.

Proof. We multiply (4.33); by (¢, — ¢us)* and integrate on M, we find

(iq: (@ qu)+) + (At (00— 00)) + JM((qu — qus)+)”2dM
- (fq“(U> FEH = ) =V VG wi;, (g0 — qu)+> . (4.82)

The first two terms in the LHS can be rewritten as

(5tQU7 (Q’U - st)+)

(AUQw <QU - qu) )

( ( (:Z’US) (QU - qu)+) + (atQ’US’ ((:Z’U - QUS)+)
1d
24t

_’( st)+|%2(/\4) + (atQUsy (%} - qUS)+>7

( qu) <QU - st)+) + (AvaSa (Qv - QU5)+)

(A,
(A ( qUS) ) (QH - QUS)Jr) + (A'UqUS7 (%} - st>+)'

Dropping the positive term: (A, (¢, — qus) ™, (¢ — qus) ™) in the LHS, we can deduce from

(4.82) that

1d 1 5/2
5 gl (@ = @) "I + 1o — @)+l

|( vqvs) (CIU - st)+) + (atqu7 (QU - QU5)+) + (11 ’ VSQU» (qv - QU8>+)
(f%( ) + FHaz(Qv - %}5))) (QU - qUS)+)|' (483)

Using Holder and Young inequalities, the RHS of (4.83) can be estimated in the following
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way:
2 5 q qUS
’(Av%m( Qv %s ’ = ‘J / Augos - 2/5 dM‘
gkﬁm%mmgg%i_
€1 L5/2
1

The other terms can be addressed similarly. Then (4.83) becomes

1d 1
5% (QU - qu)+|%2 + _|(QU - qu>+ 1/52/2

<&%m%%ﬁ@%mﬁwm%ﬁmﬁg
1
+ ) 5 l(g = aus) 17 (4.85)
€1
Here |qv|i/5?;3 + 4 in the RHS of (4.85) is the bound for |f,, (U) + FH.,(qw — qus) i/;%

Integrating now (4.85) in time on (0,%;), we have

1 1 1 ("
§|(q'u(t1> - Q’us(tl))-i_ﬁ? - §|(QUO - QS0)+|%2 + 2_&f ’(QU - Q'us> i?pdt
0
t1
<Cey BJ ([ Auusya + 100usls + V3ol Jora gy + |00l 3o + Ch)dt. (4.86)
0

The first term in the LHS of (4.86) is positive and the second term is 0 because of the
constraint on the initial value ¢,0 < q0.

To reach the desired bound (4.81) on the penalization term, we will bound the integral
in the RHS of (4.86) independently of &, drop the positive term in the LHS and divide

both sides of (4.86) by 5?/3. We now estimate each term in the RHS of (4.86).

Both |g,| and |V3q,| are bounded in L>3((0,t,) x M), thanks to (4.54),(4.55) and the
fact that L2((0,t,) x M) < L33((0,t;) x M).

(?st

Then for 0,q,s, we see that d;q,s = (p,T)-,T. Because of the relationship between
T (resp. T’) and 6 (resp. €') and recalhng that ;0" has already been bounded in

L*((0,t1) x M), &, T is bounded in L*((0, 1) x M). Also, aéQq’is (p, T') is uniformly bounded

by Remark 2.1. Thus we have |d,q,s| bounded in L>3((0,;) x M).

The most problematic term is \Aqus\i@g. We begin by exploring the relationship be-

tween Aszq,s and T. By the expressions (2.7) and (2.8),
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Pqus ﬁ(&st(p, T)a_T)
ox? 8x oT ox
(5st(p, )) T . 0Qus(p. T) O°T
T o

or ox or  ox? (4.87)

Use the fact that dg,s(p,T)/0T is uniformly bounded as stated in Remark 2.1, we can
easily deduce that

0 6Qv3(p,T) oT
P =t

for some generic constant C that does not depend on ¢.

Recalling (4.87), we can further deduce that, pointwisely,
or iz | 0*T
<co(|1=| +|=5])-
¢ <‘ ox - Ox? )
or iz | 0*T
o (|2 4 27)).
oy 0y?

The second derivative of ¢,, with respect to p is slightly different with ¢¢,,/dz* and
0%qus/0Y?, as q,s depends on p explicitly.

*qus
ox?

Similarly,

2
0" Gus

By (2.8), it can be easily calculated that

Oqvs 1 (273ap oT )q

= — =1
op (p —0.378¢,s) 2  Op

Differentiating with respect to p one more time, we can deduce that, after some algebra:

\o(\g_gpg_gu%ﬂwl).

P qus
op?

It follows that

|-Avas i/sg;s( C (’A3T|i/53/3(M) + |v3T|2%33 M) + Cl) . (488)

By Gagliardo-Nirenberg’s interpolation inequality, we have

VsT 2y < C (19T + VT 115 00 AT 2 ) (4:89)
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Note that we also have V3T € L*(0,t; H) and AT € L*((0,¢,) x M) by (4.76) and
(4.80), and thus

t1
[ 1t < € Q8T + 9518 + oy
0

t1
<CJGAJ@%+WJ@B+NJWWMNH+Q)

5/3
(|A3T|L/5/3((0t oy T (es[ﬁ fl]lp V3T |2)' 3 ¢,
sU1
+ (88[2 fl]lp V3T 12) | AT 720,11y + Oﬁl)
< K. (4.90)
By now all the terms in the integral in the RHS of (4.86) have been bounded indepen-
dently of ¢, this finishes the proof of Lemma 4.2. O

With the help of Lemma 4.2, we are ready to estimate the time derivative of ¢,. We
multiply (4.33); by ¢% € L%?(0,t,; V) and integrate on M:

0o 40 + (Avtor a3) + (- Vagy, ;) + (é((qv —qus) )%, 40) = (f2(U),qp).  (4.91)

Rearranging (4.91), we have

1
|<atqqnqs>| = | - aqU(QU)QS) - b(uv Qv qg) - (€_1<<QU - st)+)3/27q2) + lqu (qg) + ( gf’qg”
1 3/2
< Cllgllv + [ufviglv + 5_1|(q” = us) e + ]2 + CO v, (4.92)

Here we used the Lemma 4.1 and the fact that
1 1
—f (20 = qus) )M < —|((q0 — qus)*)* 1518105 512
€1 Jm €1
< (V< L*(M) in R?)

1 3/2
< ola = ges) iRl (4.93)
Hence,
1
|0l < Cllawllv + [ullvlg]v + 8—1\(% — Gus) T 3502 + lgulrz + C1), (4.94)

5/3 5/3 5/3 5/3 1 5/2 5/3
o7 < Calv + [l lalv + 51a = @) 5 + ally + €. (495)
1
Then thanks to (4.54),(4.55) and Lemma 4.2,
t1
f@h%ﬁém (4.96)
0

where &, as before, is a constant independent of £. So we have bound d,q, in L%3(0, t,; V*)
as desired.
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Finally, we summarize all the estimates that we obtained componentwise and write this
for the solution U®. More precisely, we now have

U% o) < 85 |US| 20wy < Ky [0 |r20sm2 a0y < 6o (007 | L2(0,0020m92) < K,
”UE||Lw(07t1;H1(M)3)) < R, and |atqqi|L5/3(0,t1;V*) < K. (497)

Remark 4.3. As usual by implementing a Galerkin approximation for the problem
(4.33)-(4.37) we can obtain a priori estimates similar to the above estimates for the
Galerkin approximation. Then passing to the lower limit we obtain these very estimates
(independent of ¢) for the actual solution U of (4.33)-(4.37). We state this existence
result in the following theorem, but we will skip the proof since it is straightforward
after the analysis above on the a priori estimates.

Theorem 4.4. Let ¢ > 0 be fized and assume that u € L*((0,t;) x M) and Uy € V
are given. Then, the system (4.33) associated with the initial and boundary conditions
(4.34) and (4.35), respectively, has a solution U such that

U e L*(0,t; H) n L*(0,t1; V), (4.98)

and B B
U e L2(0,t; H?), 0,U° e L*(0,t1;L%), 0iq° € L¥3(0,t; V*). (4.99)
Furthermore the norms of U, U¢ and 0,U° in the corresponding spaces are bounded

independently of € by quantities which depend on the norm of Uy in H and on the other
data.

4.6. Passage to the limit. In the following we will pass to the limit, as ¢ — 0,
in the penalized system (4.33), and to avoid a possible confusion we reintroduce here
the dependence on e. First, using (4.97) and Aubin-Lions compactness theorem, we
deduce the existence of a subsequence, still denoted U = (¢¢, ¢¢, ¢%,6°¢), and a function
U = (9, 4c, qr, 0') both verifying (4.98), (4.99), such that, as € — 0,

i) U® — U weakly in L*(0,t;; V) and weak-+ in L% (0, t;; H),
(ii) 0,U° — 0,U weakly in L?(0,t; L2(M)?),

(iil) diq5 — 0rqy weakly in LO(0,t,;V*),
i
(

1)
)
)
v)
)
i)
)

~

(iv) Us — U strongly in L2(0,ty; Hl) and weakly in L?(0,t,; H?),

v) ¢& — q, strongly in L*(0,ty; L*(M)) and weakly in L*(0,¢,; H'),
(vi) (¢¢ — ¢5,)* — 0 strongly in L%?((0,,) x M), thanks to Lemma 4.2,
(vil) Heo (¢S — ¢&5) — hy, weak-+ in L®((0,t1) x M) for hy, € H(qy — Gus),

In view of (i) and (iii), we also have

¢ (t) — qu(t1) weakly in L*(M). (4.100)

For the inequality constraint on g,, after showing that ¢, — qus = Qus(p,T) in
L?(0,t1;V) (see Lemma 4.5 below), (vi) implies in particular that q, < qys.

It is worth noting here that the strong convergence in L?(0, ¢;;H) is in fact available in
LP(0,ty; H), for all p > 1, thanks to the continuity of U® € C([0, ¢1]; H).
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By the continuity and boundedness of f(U), using (iv) and (v), we have
f(U?) — f(U) strongly in L*(0,ty; L*(M)). (4.101)

where f(U) is seen componentwise as f(U) = (f,, (U), f,.(U), fo.(U), for(U)) and F
represents the vector (F,—F0, —CPLHF) :

Moreover, thanks to the estimates showing the boundedness of FH.,(q, — qus)as per-
formed above, using (vii) and [Lio76, Lemma 1.3], we have

F(p, T)Hcoy (g — Gus) — F(p, T)hy, weakly in L*(0,ty; L*(M)), (4.102)

Therefore one can pass to the limit, as ¢ — 0, in (4.33)2 34 (remember here the depen-
dence of the solutions on ¢), see [TWalb] and [TWul5.

Moreover, we need the following results which will be used in the proof of the convergence
of the penalized term, namely (4.33);.

Lemma 4.5. If T¢ converges to T strongly in L*(0,t1;V), then ¢¢, = Qus(p,T%), as
given by (2.7), converges to qus = Qus(p, T) strongly in L*(0,t1; V).

Proof. By the expressions (2.7)-(2.9) and Remark 2.1, we see that ¢, = Q.s(p, T7)
converges t0 qus = Qus(p, T') in L?(0,t1; L?). Indeed, on the one hand, we recall here the
relationship between T' (resp. 7" and T°¢) and 6 (resp. §' and §°¢) thanks to e.g. (2.12),
and on the other hand, we use the fact that U converges to U strongly in (L?(0,¢1;V))3.
Similarly since the derivative of @),s with respect to T is uniformly bounded, thanks to
2.1, we see that Vy¢, = a?%(p, T%) - Vi T*¢ converges to Vxqys = angvs (p,T) - VxT in
L2((0,t1) x M).

We thus conclude that ¢°, converges to g,s strongly in L?(0,¢;; V). U

Lemma 4.6. For all ¢ € K = K(U), we consider ¢ = ¢® — (¢° — ¢¢,)" = min(¢, ¢,).

Then ¢% converges to ¢© strongly in L*(0,ty; V).

Proof. We first observe, using the definitions of ¢% and of the set K, that ¢*° converges
to ¢® in L2(0,t;; L?). Then we see that the derivative of ¢% with respect to the space
variable x can be written as Viug’® = Viuq® — 1ip-ge V(@) — ¢5,). Using Lemma 4.5
we deduce that ¢* converges to ¢© strongly in L%(0,¢; V). O

Remark 4.7. From the proof of Lemma 4.6, we see that |V3¢S,| < C|V3T¢|+ C. Then
noting that V37° € L®(0,ty; L?(M)) by (4.80), here ¢¢, actually lies in a bounded set of
L*(0,t1; V). And by our assumption, ¢%° € L*(0,#; V). Hence, ¢ = min(¢’, ¢¢,) lies
in a bounded set in L*(0,¢; V) as well. Also ¢” converges to ¢° almost everywhere in
V for t € [0,¢;]. Lemma 4.6 together with Lebesgue’s dominated convergence theorem
yields

¢ — ¢" strongly in LP(0,t,; V) for any p > 1. (4.103)
In particular, we will use the result with p = g for passing to limit in the ¢,-equation.

Now, for the ¢,-equation (4.33);, the treatment will be different because of the penal-
ization term as we will see below. Let us first rewrite as follows the weak formulation
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of the penalized equation (4.33); in view of (4.28). For all ¢® € K(U), we consider
& =t —(¢¢—¢,)" = min(¢®, ¢¢,) < ¢¢,. We then write the first equation (g, —equation)
of (4.36) with ¢° replaced by ¢¥ — ¢¢, and we find

v

Oy d — a5y + ag, (65,4 — @) + b(u, ¢, ¢ — &) — 1o, (a2 — )

1 IS
- 5_1<((q§i — )Pl — 45 = (fo,(U") + FHey(qo — qus), 4 — &)

(4.104)
Regarding (4.104), we first observe that
(ag = a5) ") 0 — a6
={((a; —a:) )0l — g+ (@ — ) ) (@ —¢;)) <0 (4.105)
< 0 (because ¢%¢ < ¢5,) < 0 (by definition of the positive function)

Then, after integrating in time on (0, ¢;) and using (4.105), we rewrite (4.104) as follows:
1
J Oy, 4 — a5 dt + J
0

’ 0
t1 t1
—J‘@Aﬁ“—ﬁwt>f o (UF) + FHo (o — qus)od — )dE. (4.106)
0 0

t1 t1

aq, (65,4 — ¢)dt + | b(u, ¢, ¢ — ¢)dt
quv \1v’ v v 0 v 1o v

In what follows we will justify the passage to the limit in (4.106), term by term. First,
we observe that

t1<9 o — )t = 1f1 i = —2lgz )2 + 3ol (4.107)
0 /tqvu qU - 2 0 dt q'u 2 — 2 qv 1)112 2 qvo L2 :

b1 1 1
lim Supf (04, —q; )dt = — liminf —|q§(t1)]%2 + —|qvo\%g
0 e—0 2 2

e—0

1 1
< _§|QU(t1)|2L2 + §|Qv0|i2

t1
- | @ana (4.108)
0
In addition, by (iii), Lemma 4.6 and Remark 4.7, we have
(O, 5 — {04qu, @), as € — 0. (4.109)
We then obtain
t1 t1
lim SUPJ (05, g — gpydt < f (O, G — ot (4.110)
e—0 0 0

The convergence of the a,, —term in (4.106) is straightforward. Indeed, on the one hand,
using Lemma 4.6 and the expression of a as in (4.7), we have

t1 t1
J aqv(qi,que)dtﬁf ag, (v, q))dt. (4.111)
0 0
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On the other hand, we can now pass to the lower limit in the remaining part of the
aq, —term and we obtain

t1 t1
lim ian g, (¢5, q;)dt = J g, (qv, @) dt. (4.112)
0

e—0 0

Then, using the expressions of the linear and trilinear forms [ and b, as in (4.10), (4.8),
the convergence results in (i) and Lemma 4.6, we deduce, as ¢ — 0 and for all ¢° € K,
that

i1 t1
f b(u, ¢S, ¢ — ¢)dt — J b(u, qo, ¢ — q,)dt, (4.113)
0

J ll]v (qv - qv dt - J qu - QU t (4114)
0

In fact, the convergence result (4.114) is obvious. However, for (4.113), we used the
following estimates:

t1
J [b(u, ¢, ¢> — ¢¢)dt — b(u, q,,q) — qv)]dt‘
0

i

< Julpo oy em [165 = lrzomvy + 16 — lrzn)] - (4.115)

t1
f [b(w, ¢ — g, ¢ — ¢5)dt + b(u, qu, ¢ — ¢°) — b(u, qv, ¢ — qv)]dtD
0

Now for the RHS of (4.106), we use (4.101) together with (v) and Lemma 4.5 and we
obtain

(fQ'u (U‘E)—i—F’HaQ(qU—qu),qgg—qi) - (fQ'u (U)+thv,q2—q§), ase — 0, qu e K. (4.116)

We are left to check that h,, belongs to H(q, — qus), i.€., to prove (4.31). For 4 € (0, 1],
we define the real function

0 for r <0,
Ke,(r) = § 1°/2e for e (0,es], (4.117)
r—e9/2 forr>e,.

It is straightforward to check that K/ = H.,, and for Vry, € R

1
[Heo (1) = Hey(ro)| < 1 = 72l, (4.118)
2
|K€2(T1) - Kez(r2)| < |Tl - 7’2|- (4119)
Moreover,
Koy (r) — 7| < 82—2 Vr = 0. (4.120)

Becuase H.,(¢¢ — ¢5,) is the Gateaux derivative at the point ¢5 — ¢¢, of the convex
function

Jtl(KEQ(-), Dt = L2(0,: V) — R.
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For every ¢, we have

t1

t1
[ et == [ (it 0> [t~ = 2120

0 0
for each ¢° € L?(0,1; V). By (v), (vii) and Lemma 4.6, we see that, as e — 0T,

fo t1<Hag(qqf — @), 4 — a)dt —>J Cha,r @y — quydt (4.122)
for Vg° € L?(0,t,; V).
Moreover, owing to (4.118) and (4.120), we observe that
[ttt = e v = [l

t1

t1
< f (|(K€2 (%i - Qis) - Kaz (QU - QU8)|7 1)dt + f (|K82 (QU - QvS) - [QU - Q'US]+|7 1)dt

0 0
' 5 €
< u(M)2(165 — dolzzoaan) + 165 — Guslzonis) + 5 (M), (4.123)
where p(M) is the volume of M. Therefore
t1
Kolaf = g6 Dt = | (lan = 0] 1. (4.124)
0
From the calculation above, it is also clear that
Ko, (g — q3,), 1)dt —>J — qus| T, 1)dt, (4.125)

for Vgb e L2(0,t; V).

Consequently, we can pass to the limit in (4.121) and conclude that

JI([ﬁ—qw]*,l)dt—fi([q — qus]*, 1)d J (hgyy @b — quydt (4.126)

0 0
for Vq® € L?(0,t,; V), which implies (4.31) as desired.

Finally, we obtain the existence of the solution of (4.28) for which we state the following
theorem.

Theorem 4.8. Let Uy € V, t; > 0 be given and assume that u € L*((0,t,) x M) is
given. Then, the system (4.25)-(4.28) associated with the initial and boundary conditions
(4.34) and (4.35), respectively, has a solution U such that

Ue L*(0,t;H) n L*(0,t; V), (4.127)
Furthermore, we have

Ue L*0,t;; H?), 6,0 e L*0,ty;L?), &gy € L(0,t1; V7). (4.128)
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