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Abstract. In this article we propose a new formulation of the equations of the humid
atmosphere with a multi-phase saturation generalizing thus the model introduced in
[TWu15] and [TWa15]. More precisely, we consider the more realistic situation where
the humid atmosphere comprises these components, namely water vapor, liquid water
and cloud condensates and furthermore the saturation concentration is not constant.
With the additional constraint that the vapor mass ratio qv is less than the saturation
concentration qvs, which depends itself on the state, we are led, from the mathematical
point of view, to introduce and handle a system of equations and inequations involving
some quasi-variational inequalities for which we prove the existence of solutions.

1. Introduction

A phenomenon as common as the clouds is nevertheless far to be understood from
the physical point of view and the specialists believe that the clouds (and the aerosols
participating in their formation and evolution) is the greatest source of uncertainty
regarding the current numerical simulations for weather and climate predictions.

Clouds are made of many components, air, water, liquid water, ice, pollutants, etc.

The mathematical theory of the equations of the humid atmosphere [Gil82], [Ped87]
has been initiated in [LTW92] and more recently in [GH06, GH11]. However, in these
references, the humidity is only accounted for through the mass fraction q of air vapor; in
addition the saturation of water vapor in the air is not accounted for, so that the equation
for the concentration q of water vapor in the air is a mere transport equation. To the
best of our knowledge the first articles accounting for the water saturation are [CT12],
[CFTT13], and [BCT14]. In these articles the existence of a change of phase leads to the
introduction of a Heaviside function, so that the equations for q and T (the temperature)
appear as nonlinear, discontinuous and non-monotone. Nevertheless results of existence,
uniqueness, maximum principle and regularity of solutions were established. For other
equations involving a discontinuous Heaviside function in geophysics see e.g. [Dia93,
DT99], and [Fei91, FN91, Gil82] in more general contexts.
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Two simplifying assumptions were made in the references [BCT14, CFTT13, CT12]:
namely that the velocity of the fluid u is known and that the saturation concentration
qvs is constant. In [CHKTZ], the authors removed the hypothesis that the velocity is
known and they studied the coupled system for q, T,u, thus combining the methods
in [CFTT13, CT12] with the methods for the 3-dimensional primitive equations (PEs),
[CT07], [Kob06].

In the article [TWu15] the authors assumed again that the velocity u is prescribed
but they also assumed, for simplicity, that the saturation concentration qvs is constant.
They then observed that the basic equations for q and T as reported e.g. in the classical
references [Hal71, HW80, RY89] are inconsistent for the limit values q “ 0 and q “ 1.
This difficulty was reported in the geophysics literature in [TT16], and, in [TWu15] and
[TT16] the authors propose to resolve the contradiction in the equations by introducing a
unilateral equation (an inequality) valid for q “ 0 and q “ 1, and then the whole problem
is set as a variational inequality. For general results on variational inequalities and their
utilization in mechanics and physics, see e.g. [Bre72, DL76, Fre02, KS80, ET76].

In the present article, we generalize the work of [TWu15] (see also [TWa15]) by con-
sidering a more detailed description of the humid atmosphere, namely we assume that
the humid quantities comprise the water vapor, the cloud-condensates, and rain water
with respective mass densities qv, qc and qr. In the earlier works ([TWu15], [TWa15] and
before) qv is the quantity which was called q (and qvs was called qvs) . Because of the
increased complexity of the model we first recall in Section 2 all the equations, mostly
based on the references [Gra98, Hal71, KW78, KBH98, RY89, Xue89] in view also of
setting the notations, and putting the equations in a form suitable for mathematical
treatment. The mathematical treatment of the problem is conducted in Sections 3 and
4.

The multi-species model that we consider in this article is described below. Meanwhile,
a different model for multi-species humid atmosphere was introduced in [KM06] and
studied from the mathematical viewpoint in the recent article [HKLT17]. As explained
in [KM06] (see after p9q in [KM06]), it is often assumed in cloud microphysics param-
eterizations that the vapor-to-cloud water conversion is instantaneous, i.e. that either
the air is saturated, such that the water vapor content matches its saturation value,
qv “ qvspT, pq, and the cloud water droplets can exist with qc ą 0, or the air is un-
dersaturated , i.e. qv ă qvs, in which case qc ” 0. See [Gra98] and other references
below; this is our point of view here. In [KM06] and [HKLT17], the authors do not
assume this limiting behavior from the outset and demonstrate how it may be derived
in a consistent asymptotic framework given large but finite condensation rates. This
is the main deviation of the bulk microphysics description in [KM06] from the scheme
related to [Gra98] that we study here.

2. Mathematical formulation of the problem

Following the references quoted above above, we consider the conservation equations for
the relative mass densities qv, qc, qr and for the temperature T (or more precisely the
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difference θ
1

between the potential temperature θ and a reference temperature θh, θ
1

“

θ ´ θh).

We let M Ă R3 be the spatial domain for our study and a typical point in M is denoted
by x “ px, y, pq where p is the pressure. We use ρ, q, θ, T and evs to denote density,
concentration, potential temperature, temperature, and saturation vapor pressure, re-
spectively. In earlier works [BCT14], [TWu15], [TWa15], we considered the atmosphere
to be a mixture of dry air and water vapor. In our current investigation, we will con-
sider the water vapor, cloud-condensate and rain water for the humid atmosphere so
as to include the clouds. For a specific quantity, we shall use the subindices v, c, and
r to represent this quantity for the water vapor, cloud-condensate and rain water. For
example, ρv, qv represent the density and concentration of water vapor, ρc, qc the density
and concentration of cloud-condensate, and ρr, qr the density and concentration of rain
water, etc.

Assuming the velocity u “ pu, v, ωq is known, the unknowns for our current study are
the potential temperature θ, the concentrations of the water vapor, cloud-condensate
and rain water qv, qc, qr and the saturation concentration qvs. If T is the temperature
then we classically have

θ “ T p
p0

p
q
κ
“
T

Π
, Π “ p

p

p0

q
κ, (2.1)

where κ “ pγ ´ 1q{γ and γ “ cp{cv is the ratio of specific heats at constant pressure
and at constant volume.

Before going any further, we shall first make some simple observations. Of course,
the quantities qv, qc, qr, qvs being relative mass fractions ratios take their values in the
interval r0, 1s. Furthermore, the air can not be supersaturated (in general). In other
words, we have the constraint 0 ď qv ď qvs.

Following e.g. [MP74] or [KW78] (see in particular p2.5q in [KW78]), the general form
of the equations for qv, qc, qr is given by

dq

dt
“Mq `Dq. (2.2)

In (2.2), the symbol d
dt

is the material derivative given here by Bt ` u ¨∇x, i.e.,

d

dt
“
B

Bt
` u

B

Bx
` v

B

By
` ω

B

Bp
, (2.3)

where ω “ dp
dt

. Corresponding to qv, qc and qr, the terms Dq are the usual dissipation
terms (like the 3D Laplacian ∆3) and the quantities Mq are the rates of the production of
species q, which are described below using the notations in [KW78] (see p2.9bq´p2.9dq):

$

’

’

&

’

’

%

Mqv “ δ dqvs
dt
` Er,

Mqc “ ´δ
dqvs
dt
´ Ar ´ Cr,

Mqr “ ´g
B

Bp
pρqrVtq ´ Er ` Ar ` Cr .

(2.4)
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Note that in (2.4), ρ is given by the ideal gas law:

p “ ρRT, ρ “
p

RT
, (2.5)

and that T in (2.5) is the total temperature and not the deviation T 1 appearing in
(2.12) below; Vt appearing in the expression of Mqr is the terminal velocity of the falling
rain. The term Ar is the rate of auto-conversion of the rain water; Cr is the rate of the
collection of cloud water by falling rain; and Er represents the evaporation rate of the
rain water. Most important for our study is the term δ dqvs

dt
, which represents the rate

of condensation or evaporation of the cloud water, and this occurs only when ω ă 0
falling water and qv ě qvs. Hence the coefficient δ is defined as:

δ “ 1, if ω ă 0 and qv ě qvs ,

δ “ 0, if ω ě 0 or qv ă qvs .
(2.6)

The function qvs is a diagnostic variable; it is explicitly given at each instant of time as
a function of p and T (or θ), that is

qvs “ Qvspp, T q. (2.7)

The expression of qvs as a function of T and p results from the application of the
Clausius–Clapeyron equation. According to ([RY89], p. 14), qvs can be expressed as a
function of the saturation vapor pressure evs

qvs “
3.8

p´ 0.378 evs

evs
6.11

“ 0.6219
evs

p´ 0.378 evs
, (2.8)

where by Tetens’ formula (see p2.11q of [KW78]),

evs “ 6.11 exppa
T ´ 273

T ´ b
q. (2.9)

Here T is in Kelvin, a “ 17.27, b “ 35.5. Because we only consider the above freezing
case in our model, b ! 273, b ! T , and from now on we set b “ 0 for simplicity.

Remark 2.1. We see that es is a strictly positive, bounded and smooth function of the
temperature T for the temperature ranges found in the troposphere. Considering the
usual range for pressure p, e.g. 200 ď p ď 1000 (see [BCHTT15]), we can avoid the
possible singularity at p “ 0.378 evs in (2.8) by a suitable modification of (2.9) outside
the physical relevant values of T (see ϕpT q in Remark 2.3). So qvs is a positive smooth
and increasing function of evs, which in turn implies that qvs “ Qvspp, T q is a positive
bounded smooth function of p and T for all values of p ě 0 and T P R. In particular, we
will use the properties that Qvspp, T q has bounded first order and second order partial
derivatives with respect to the variables p and T in Section 4.

Now we need to find the expression dqvs{dt which appears in the right-hand sides of
equations (2.4) and (2.11). As in [Hal71] and [HW80], the expression of dqvs

dt
results from

combining the first law of thermodynamics with the Clausius-Clapeyron equations, so
that

dqvs
dt

“ F pp, T q “
qvsT

p

` LR ´ cpRvT

cpRvT 2 ` qvsL2

˘

ω, (2.10)
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where p and T are the pressure and temperature; L is the latent heat of vaporization;
R, Rv are the gas constants for dry air and water vapor respectively and cp represents
the specific heat of dry air at constant pressure.

Finally we have to supplement the equations above with the equation for the temper-
ature T . In fact, instead of T , we consider the potential temperature θ previously
introduced, or more precisely the deviation θ

1

“ θ´ θh, where θh is a reference temper-
ature.

Hence, as with (2.2) and (2.4), the equation for θ1 is given by

dθ1

dt
“ ´

ΠR

g2Φ
ωN2

hθh `Mθ `Dθ `
9Q

cpΠ
, (2.11)

with

Mθ “ ´
L

cpΠ
pδ
dqvs
dt

` Erq;

(see e.g. p2.9aq in [KW78]). Also, following [KW78] (see p2.2q ´ p2.3q in [KW78] ) we
have

θ1 “
T 1

Π
, θh “

Th
Π
, (2.12)

where T “ Th`T
1; see also equation p6q in [MP74]. Furthermore we have (see [Xue89],

(1.2.27)-(1.2.28)):

N2
h “ ´

grh
θh

Bθh
Bp

, rh “ gρh “
gp

RTh
. (2.13)

The source terms. The coefficients describing the microphysics Ar, Cr, Er and the
terminal velocity Vt are defined empirically. Common expressions of these terms are as
follows (see e.g. [KW78]):

Ar “ k1pqc ´ qcritq
`, Cr “ k2qcq

0.875
r , Er “ k3pq

`
r q

0.5
pqvs ´ qvq

`, (2.14)

Vt “ 5.32 q0.2
r . (2.15)

We observe that all these quantities are continuous functions of U “ pqv, qc, qr, θ
1

q.
We will slightly modify some terms in a way which simplifies the mathematical study
but does not modify the physical relevance of the equations. For example, after a
suitable extension outside the physical relevant values of qv, qc, qr, θ

1

, all what we need
is to assume that the coefficients are continuous bounded functions of U , compactly
supported in the region of R3 corresponding to qv, qc, qr.

Remark 2.2. For mathematical convenience and in agreement with the physical mean-
ing of qr (0 ď qr ď 1), we will replace qr in (2.14) by τpqrq “ 0 if qr ď 0; “ qr if
0 ď qr ď 1; and “ 1 if qr ě 1.

Remark 2.3. We similarly need to comment on (2.10) and change its expression outside
the physically relevant values of qvs, T and ω. Firstly, since (2.10) is only relevant for
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ω ă 0, we replace ω by ´ω´. Then to avoid a possible singularity at T “ 0, we replace
T by ϕpT q, where ϕ is a smooth (e.g. C2) positive real function with ϕpT q :

$

’

&

’

%

“ T for T˚ ď T ď T˚˚,

ě T˚{2 for T ď T˚,

“ 0 for T ě 2T˚˚.

(2.16)

Here T˚ ą 0 is smaller than any temperature on earth (e.g. 100K) and T˚˚ is larger
than any temperature on earth (e.g. 355K). We see that the function F pp, T q in (2.10)
is actually uniformly bounded in p and T . Moreover, replacing T by ϕpT q in (2.10) and
for a given initial value qvsp0q ě 0 we see that the modified equation (2.10) gives qvs as
a positive smooth (C2) bounded function of T and p after we integrate (2.10):

qvspp, T q “ Qvspp, T q ě 0. (2.17)

Remark 2.4. Some authors consider, instead of the expression of Er in (2.14),

Er “ k3T pq
`
r q

β
pqvs ´ qvq

`, β P p0, 1s, (2.18)

see e.g. [HKLT17]. We could likewise consider this form of Er if we replace T by ϕpT q
which is physically equivalent as we already discussed.

The rest of the article is organized as follows. In Sections 3 and 4 we develop the
mathematical setting for these equations. Sections 3 is devoted to presenting the general
mathematical setting, the initial and boundary conditions, and the handling of the
quantity δ by using Heaviside functions, in continuation of [CT12] and [CFTT13]. In
Section 4, we account for the constraint qv ď qvs and introduce the quasi-variational
inequality that we intend to study, that is, prove the existence of its solution. To this
aim, we introduce, in Section 4, a penalization procedure, by which we approximate
the quasi variational inequality by a relatively standard nonlinear problem which can
be treated by classical methods. Note that the use of the penalization method is a
convenient mathematical tool and we do not try to give a physical meaning to the
penalized problem. Penalization has been introduced by R. Courant [Cou43] and it is
very common in Optimization Theory (see e.g. [Cea78], [Kar11] and [PT80]). Then
we prove some a priori estimates for the penalized (ε´regularized) solution, and finally
pass to the limit as εÑ 0 to end up with the existence of the solution for the initial (non
regularized) problem. The passage to the limit relies on using some classical compactness
results and convex analysis tools. Other properties concerning the solutions such as
uniqueness, maximum principle, etc., will be addressed elsewhere.

3. Discontinuity and boundary value problem

In this part and the next one, we will consider the above equations which will be
supplemented with initial and boundary conditions. There are two additional issues:

(1) The coefficient δ which is discontinuous and that we will replace by a Heaviside
function, as in [CT12], [CFTT13].

(2) The inequality constraint on the variable qv: qv ď qvs.
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The first issue is addressed in this section, the second issue is addressed in Section 4.

We are going to write the differential equations and the boundary value problems for
the quantities qv, qc, qr, θ

1. We assume for simplicity that the velocity u “ pv, ωq is
prescribed, otherwise we would have to add the equations governing the evolution of u.

The flow takes place in a domain M in the px, y, pq-space, M “ M1 ˆ pp0, p1q, where
M1 Ă R2 is smooth and bounded, and 0 ă p0 ď p ď p1 is the range of values of p that
we consider; here p0, p1 are two fixed real numbers. We use “n” to denote the outward
normal vector field to the boundary BM of M which consists of three parts Γu,Γi,Γl,
namely the upper and lower interface with the ocean and the lateral components of the
boundary. They are defined by

Γu “ tpx, y, pq PM; p “ p0u,

Γi “ tpx, y, pq PM; p “ p1u,

Γl “ tpx, y, pq PM; p0 ď p ď p1, px, yq P BM1
u.

(3.1)

We set ∇ “ pBx, Byq and ∆ “ B2
x ` B

2
y to be the horizontal gradient and horizontal

Laplace operators, respectively and ∇3 “ p∇, Bpq, ∆3 “ ∆ ` B2
p to be the 3D gradient

and Laplace operators, respectively. In this way, the heat and vapor diffusion operators
Aθ and Aq are described as

Aθ “ ´µθ∆´ νθBp
`

p
gp

Rθ̄
q
2
Bp
˘

, Aq “ ´µq∆´ νqBp
`

p
gp

Rθ̄
q
2
Bp
˘

, (3.2)

where µq, νq (q P tqv, qc, qru), µθ, νθ, g, R, cp are all positive constants and θ̄ “ θ̄ppq is
the average potential temperature over the isobar with pressure p. We assume that θ̄
satisfies:

θ̄˚ ď θ̄ppq ď θ̄˚, |Bpθ̄ppq| ďM, for some positive constants θ̄˚, θ̄
˚,M and p P rp0, p1s.

(3.3)

We set U “ pqv, qc, qr, θ
1q. We will now describe in details the boundary value problem

for each of the quantities under consideration.

3.1. The equation for qv. The equation for qv is written

Bqv
Bt
`Aqvqv ` v ¨∇qv ` ω

Bqv
Bp

P fqvpqv, qc, qr, θ
1
q ` FHpqv ´ qvsq

“ fqvpUq ` FHpqv ´ qvsq, (3.4)

where H is the multi-valued Heaviside function such that H “ r0, 1s at 0 and (see (2.10)
as well as Remark 2.3):

F “ F pT, pq “ ´ω´
qvsϕpT q

p

` LR ´ cpRvϕpT q

cpRvϕpT q2 ` qvsL2

˘

, (3.5)

fqvpUq “ fqvpqv, qc, qr, θ
1
q “ Er. (3.6)
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We will use the form Er “ k3τpqrq
0.5
pqvs ´ qvq

` as indicated in (2.14). Note that we
have replaced pqrq

` by τpqrq according to Remark 2.2.

We consider the following boundary conditions to be associated with the above equation:

Bpqv “ βvpqv˚ ´ qvq on Γi, Bpqv “ 0 on Γu, Bnvqv “ 0 on Γl, (3.7)

where Bnv “ BnAqv
is the co-normal derivative associated with Aqv which reduces on Γl

to

´ µqvnH ¨∇qv, (3.8)

where nH is the horizontal component of the unit outward normal n on M (that is the
unit outward normal on Γl).

We also associate with (3.4) the following initial condition

qvpx, y, p, 0q “ qv0px, y, pq. (3.9)

In (3.7), qv˚ “ qv˚px, y, tq is a specific humidity distribution at the bottom of the
atmosphere and βv is a given positive constant.

3.2. The equation for qc. The equation for qc is written

Bqc
Bt
`Aqcqc ` v ¨∇qc ` ω

Bqc
Bp

P fqcpqv, qc, qr, θ
1
q ´ FHpqv ´ qvsq

“ fqcpUq ´ FHpqv ´ qvsq, (3.10)

where F , H are defined below (3.4) and

fqcpUq “ fqcpqv, qc, qr, θ
1
q “ ´k1pqc ´ qcritq

`
´ k2qcτpqrq

0.875. (3.11)

Similar to what we did for Er, here we have replaced qr in Cr by τpqrq (compare to
(2.14)).

We supplement the above equation with the following natural boundary conditions

Bpqc “ βcpqc˚ ´ qcq on Γi, Bpqc “ 0 on Γu, Bncqc “ 0 on Γl, (3.12)

and the initial condition

qcpx, y, p, 0q “ qc0px, y, pq. (3.13)

In (3.12), qc˚ “ qc˚px, y, tq is a critical specific humidity distribution at the bottom of
the atmosphere and βc is a given positive constant, and Bncqc is defined as Bnvqv in (3.8).

3.3. The equation for qr. The equation for qr is written

Bqr
Bt
`Aqrqr ` v ¨∇qr ` ω

Bqr
Bp

“ ´g
B

Bp
pρqrVtq ´ Er ` Ar ` Cr. (3.14)

Here, we will continue to use the expression Er “ k3τpqrq
0.5
pqvs ´ qvq

` in accordance
with the qv-equation.
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By (2.15), we have

1

5.32

B

Bp
pρqrVtq “

B

Bp
p
p q1.2

r

RΠθ
q “

q1.2
r

RΠθ
`

1.2p q0.2
r

ΠθR

Bqr
Bp
´
p q1.2

r

RΠθ2

`

θ
κ

p
`
Bθhppq

Bp
`
Bθ1

Bp

˘

. (3.15)

Referring to (3.15) and replacing again qr by τpqrq, the equation for qr takes the following
form

Bqr
Bt
`Aqrqr ` v ¨∇qr ` ω

Bqr
Bp

“ ´5.32 g
B

Bp
pρq1.2

r q ´ k3τpqrq
0.5
pqvs ´ qvq

`

` k1pqc ´ qcritq
`
` k2qcτpqrq

0.875. (3.16)

By the ideal gas law (2.5), the above equation can be further transformed to

Bqr
Bt
`Aqrqr ` v ¨∇qr ` ω

Bqr
Bp

“ ´5.32 g
B

Bp

`pq1.2
r

RΠθ

˘

´ k3τpqrq
0.5
pqvs ´ qvq

`

` k1pqc ´ qcritq
`
` k2qcτpqrq

0.875. (3.17)

By (3.15), we obtain

Bqr
Bt
`Aqrqr ` v ¨∇qr ` ω

Bqr
Bp

“ fqrpqv, qc, qr, θ
1
q “ fqrpUq, (3.18)

where

fqrpUq “ fqrpqv, qc, qr, θ
1
q

“ ´5.32 g
`τpqrq

1.2

RΠθα
`

1.2p τpqrq
0.2

RΠθα

Bqr
Bp
´
p τpqrq

1.2

RΠθ2
α

`

θα
κ

p
`
Bθhppq

Bp
`
Bθ1

Bp

˘˘

´ k3τpqrq
0.5
pqvs ´ qvq

`
` k1pqc ´ qcritq

`
` k2qcτpqrq

0.875.
(3.19)

In (3.19) we have also replaced θ by θ^α “ minpθ, αq where α ą 0 is less than any
temperature on earth. This is physically relevant and mathematically useful.

We supplement equation (3.18) with the following boundary conditions and initial con-
ditions:

Bpqr “ βrpqr˚ ´ qrq on Γi, Bpqr “ 0 on Γu, Bnrqr “ 0 on Γl, (3.20)

qrpx, y, p, 0q “ qr0px, y, pq. (3.21)

Here qr˚ “ qr˚px, y, tq is a specific humidity distribution at the bottom of the atmo-
sphere; βr is a given positive constant. Also Bnrqr is defined as Bnvqv in (3.8).

3.4. The equation for θ („ θ1). The deviation θ1 from the reference state θhppq sat-
isfies the following equation

Bθ1

Bt
`Aθθ

1
` v ¨∇θ1 ` ωBθ

1

Bp
P fθ1pqv, qc, qr, θ

1
q ´

L

cpΠ
FHpqv ´ qvsq

“ fθ1pUq ´
L

cpΠ
FHpqv ´ qvsq, (3.22)
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where

fθ1pUq “ fθ1pqv, qc, qr, θ
1
q “ ´

θhN
2
h

g
ω ´

L

cpΠ

`

k3τpqrq
0.5
pqvs ´ qvq

`
˘

` fθ. (3.23)

Here fθ “ f 1
θ `f

2
θ , with f 1

θ a source term and f 2
θ “ ω Bθhppq

Bp
after observing that Aθθhppq`

v ¨∇θhppq vanishes.

We consider the boundary conditions

Bpθ
1
“ αpθ1˚ ´ θ

1
q on Γi, Bpθ

1
“ 0 on Γu, Bnθ1θ

1
“ 0 on Γl, (3.24)

and initial condition
θ1px, y, p, 0q “ θ10px, y, pq. (3.25)

Here the function θ1˚ “ θ1˚px, y, tq is a typical potential temperature; α is a given positive
constant, and Bnθ1θ

1 is defined as Bnvqv in (3.8).

4. Variational and weak formulation of the problem.

From the mathematical point of view, a new difficulty as compared to [CT12], [CFTT13]
is the constraint qv ď qvs which leads us to the concept of quasi variational inequality
(instead of a variational inequality). Indeed in the notations below the velocity u is still
given and the set of unknowns U consists of qv, qr, qc and the temperature T ; in fact we
rather consider the potential temperature θ, and replace it by the difference θ1 “ θ´ θh
between θ and a reference temperature θh. Hence U “ pqv, qr, qc, θ

1q. Now, as recalled
in Remark 2.3, the saturation concentration qvs is itself a function of T and p, which
we express as qvs “ Qvspp, Uq or qvs “ Qvspp, T q for simplicity. Hence the constraint
qv ď qvs appears as a quasi variational inequality where the solution U is subject to
belonging to a convex set which depends itself on the solution:

U P K “ KpUq.

Quasi variational inequalities have been introduced by Bensoussan and Lions, motivated
by the study of economical problems [BL76], [BL77]; see also [BF78], [BL84], [BL73a],
[BL73b], [BL74] and [BL75]. Subsequently quasi variational inequalities have been used
for problems in mechanics, physics and imagery, see e.g. [KN07], [Kan14], [Mil14] and
[LLBS14].

We start in Section 4.1 by giving the weak form of the problem and then in Section 4.2
we account for the constraint U P KpUq and introduce the quasi-variational inequality.

4.1. Notations. We denote as usual H “ L2pMq, V “ H1pMq and we set H “

H ˆH ˆH ˆH and V “ V ˆ V ˆ V ˆ V . We use p¨, ¨qL2 (regarded the same as p¨, ¨qH)
and | ¨ |L2 to denote the usual scalar product and induced norm in H. In the space V , we
will use pp¨, ¨qq to denote the scalar product adapted to the problem under investigation

ppϕ, φqq :“ p∇ϕ,∇φq ` pBpϕ, Bpφq `
ż

Γi

ϕφdΓi,



VARIATIONAL INEQUALITY, HUMID ATMOSPHERE 11

and the induced norm is denoted } ¨ }. The symbol x¨, ¨y will denote the duality pair
between a Banach space E and its dual space E˚. Associated with the Navier-Stokes
equations, we also use the following standard notations:

H “ tu P H ˆH ˆH
ˇ

ˇ div u “ 0 and u ¨ n “ 0 on BMu,

V “ tu P V ˆ V ˆ V
ˇ

ˇ div u “ 0 and u ¨ n “ 0 on BMu,

which will serve as the natural function spaces for the vector field u. In fact we will
assume that

u P L8p0, t1;H1
pMq

3
q X L8pp0, t1q ˆMq. (4.1)

In view of deriving the weak (variational) formulation of the boundary value problem,
we multiply e.g. the expression Aqvqv by a test function qbv. Assuming smoothness and
taking into account the boundary conditions (3.7) for qv we find

xAqvqv, q
b
vy “

´

´µqv∆´ νqvBp
`

p
gp

Rθ̄
q
2
Bp
˘

, qbv

¯

:“ µqvp∇qv,∇qbvqH ` νqv
ż

M

` gp

Rθ̄

˘2
BpqvBpq

b
v dM

` νqv

ż

Γi

`gp1

Rθ̄

˘2
βqvpqv ´ qv˚qq

b
v dΓi. (4.2)

We do the same for qc, qr and θ1 and thus

xAqcqc, q
b
cy “ µqcp∇qc,∇qbcqH ` νqc

ż

M

` gp

Rθ̄

˘2
BpqcBpq

b
c dM

` νqc

ż

Γi

`gp1

Rθ̄

˘2
βqcpqc ´ qc˚qq

b
c dΓi, (4.3)

xAqrqr, q
b
ry “ µqrp∇qr,∇qbrqH ` νqr

ż

M

` gp

Rθ̄

˘2
BpqrBpq

b
r dM

` νqr

ż

Γi

`gp1

Rθ̄

˘2
βqrpqr ´ qr˚qq

b
r dΓi, (4.4)

and

xAθθ
1, θ1by “ µθp∇θ1,∇θ1bqH ` νθ

ż

M

` gp

Rθ̄

˘2
Bpθ

1
Bpθ

1b dM

` νθ

ż

Γi

`gp1

Rθ̄

˘2
αpθ1 ´ θ1˚qθ

1b dΓi. (4.5)

Consequently, we define the following bilinear forms

aθpθ
1, θ1bq “ µθp∇θ1,∇θ1bqH ` νθ

ż

M

` gp

Rθ̄

˘2
Bpθ

1
Bpθ

1b dM` νθα

ż

Γi

`gp1

Rθ̄

˘2
θ1θ1b dΓi, (4.6)

aqpq, q
b
q “ µqp∇q,∇qbqH ` νq

ż

M

` gp

Rθ̄

˘2
BpqBpq

b dM` νqβq

ż

Γi

`gp1

Rθ̄

˘2
qqb dΓi. (4.7)
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Similarly, we define bpu, ψ, ψbq as follows:

bpu, ψ, ψbq “

ż

M
pv ¨∇ψ ` ωBpψqψb dM, (4.8)

which we will use with pψ, ψbq “ pθ1, θ1bq, pqv, q
b
vq, pqr, q

b
rq, pqc, q

b
cq. We recall here that

u “ pv, ωq is the three dimensional velocity, v is the horizontal velocity and ω is the
vertical velocity of the air in the x, y, p system.

Analogously, we define the linear functionals:

lθpθ
1b
q “ νθα

ż

Γi

`gp1

Rθ̄

˘2
θ˚θ

1b dΓi, lqpq
b
q “ νqβq

ż

Γi

`gp1

Rθ̄

˘2
q˚q

b dΓi, (4.9)

lpU b
q “ lqcpq

b
cq ` lqvpq

b
vq ` lqrpq

b
rq ` lθpθ

1b
q, (4.10)

which correspond to the constant terms in Aθ, Aq and A respectively.

We introduce the multilinear forms for U and U b “ pqbc, q
b
v, q

b
r, θ

1bq

apU,U b
q “ aqcpqc, q

b
cq ` aqvpqv, q

b
cq ` aqrpqr, q

b
rq ` aθpθ

1, θ1bq, (4.11)

bpu, U, U b
q “

ż

M
pu ¨∇x,y,pUq ¨ U

b dM. (4.12)

It is easy to see that

bpu, U, U b
q “ bpu, qc, q

b
cq ` bpu, qv, q

b
vq ` bpu, qr, q

b
rq ` bpu, θ

1, θ1bq. (4.13)

In view of ∇ ¨ u “ 0, we readily see by performing integration by parts that

bpu, ψ, ψq “ 0, @ ψ P V. (4.14)

Before we move further, we first give the following well-known estimates.

More precisely, we have the following lemma concerning the boundedness of the above
functionals.

Lemma 4.1. Assume U “ pqv, qc, qr, θ
1q, U b “ pqbv, q

b
c, q

b
r, θ

1bq P V and u P V. There
exist universal positive constants λ and κ such that (q denotes here qv, qc or qr):

|aθpθ, θ
b
q| ď κ}θ1}}θb}, aθpθ, θq ě λ}θ}2; (4.15)

|aqpq, q
b
q| ď κ}q}}qb}, aqpq, qq ě λ}q}2; (4.16)

|bpu, U, U b
q| ď κ}u}V|U |

1
2

L2}U}
1
2 }U 1b}; (4.17)

|lθpθ
1b
q| ď κ}θ1b}, |lqpq

b
q| ď κ}qb}. (4.18)

The proof of Lemma 4.1 is based on a routine use of the Cauchy-Schwarz inequality
and the trace theorem. We shall omit the details here.

It is well-known that the linear operators Aθ, Aq : V Ñ V ˚ defined through the relations

xAθu, vy :“ aθpu, vq, xAqu, vy :“ aqpu, vq, @u, v P V, (4.19)

are both bounded linear operators.
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Similarly, the operator Bpu, Uq “
`

bpu, Uq, bpu, qq
˘

: V ˆ VÑ V˚ defined by

xBpu, Uq, U b
y :“

`

bpu, θ1, θ1bq, bpu, q, qbq
˘

@u P V, U, U b
P V, (4.20)

where V˚ is the dual space of V.

4.2. Weak formulation of the problem. Our equations can be written in the fol-
lowing compact form

BtU `AU ` u ¨∇x ¨ U P fpU, θ
1
q ` FHpqv ´ qvsq, (4.21)

where F is the vector pF,´F, 0,´ L
cpΠ

F qt.

Alternatively, (4.21) means that there exists single-valued Heaviside function hqv P
Hpqv ´ qvsq taking values in r0, 1s such that

BtU `AU ` u ¨∇x ¨ U “ fpU, θ1q ` Fhqv . (4.22)

If we adopt the following notations for U0 “ U0px, y, pq, U˚ “ U˚px, y, pq and U “

Upx, y, pq

U0 “ pqv0, qc0, qr0, θ
1
0q
t, U˚ “ pqv˚, qc˚, qr˚, θ

1
˚q
t,

and define the coefficient matrix C “ diagtβc, βv, βr, αu, then the initial and boundary
conditions associated with the system (4.21) can be written as follows

Upx, y, p, 0q “ U0px, y, pq, (4.23)

BpU “ CpU˚ ´ Uq on Γi, BnAU “ 0 on Γu Y Γl, (4.24)

where BnAU is defined componentwise as in (3.8).

For the weak formulation we will treat differently the equations for Ū “ pqc, qr, θ
1q and

the equation for qv which is subjected to the constraint qv ď qs.

For Ū , we consider the equations (3.10), (3.18), (3.22) for qc, qr, θ
1, respectively, and

multiply them by test functions qbc, q
b
r, θ

1b. Assuming smoothness as before, we obtain
in view of (4.3)–(4.5),
ż t1

0

“

xBtŪ , Ū
b
y ` āpŪ , Ū b

q ` b̄pu, Ū , Ū b
q ´ l̄pŪ b

q
‰

dt “

ż t1

0

pfpŪq ` F̄hqv , Ū b
qdt, (4.25)

for all Ū b P L2p0, t1; pH1q3q and

Ūpt “ 0q “ Ū0. (4.26)

Recall again that here l̄ represents the constant part of the operator Ā and F̄ represents
the vector p´F, 0,´ L

cpΠ
F qt.

With the constraint qv ď qvs, and by analogy with what was done in [TT16] when qvs
is constant and 0 ď qv ď qvs, we can weaken (3.4) in the form:

Lpqvq ď fqvpUq ` Fhqv , (4.27)

where Lpqvq is the left hand side of (3.4). We note that the equation (3.4) is agreeable
and consistent with (4.27) if qv “ qvs and ω ă 0.
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Take now a test function qbv ď qvs. We see that pointwise

pLpqvq ´ fqvpUq ´ Fhqvqpqbv ´ qvsq ě 0,

in all cases, that is if qbv “ qvs or qbv ă qvs.

This leads us to the formulation of (3.4)-(3.6) as a quasi-variational inequality : qv P
L8p0, t1;L2pMqq X L2p0, t1;H1pMqq, qv ď qvs “ Qvspp, T q and

ż t1

0

“

xBtqv, q
b
v ´ qvy ` aqvpqv, q

b
v ´ qvq ` bpu, qv, q

b
v ´ qvq ´ lqvpq

b
v ´ qvq

‰

dt

ě

ż t1

0

pfqvpUq ` Fhqv , q
b
v ´ qvqdt, (4.28)

for all qbv P L
8p0, t1;H1q with qbv ď qvs “ Qvspp, T q.

In addition,

qvpt “ 0q “ qv0. (4.29)

At this point, let us introduce what we will call here a solution of (4.21) in the weak
sense. Let U0 P V be such that 0 ď qv0 ď qs0 and let t1 ą 0 be an arbitrary but
fixed constant. A vector U “ Uptq “ pqv, Ūq P L

2p0, t1;Kq X Cpr0, t1s;Vq with BtŪ P

L2p0, t1; pV 3q˚q, Btqv P L
5{3p0, t1;V ˚q is a solution to the initial-boundary value problem

(4.21)-(4.23)-(4.24), if, for almost every t P r0, t1s and for every U b P K, we have (4.25)
and (4.28) satisfied.

We recall here that qvs is given by (2.8)-(2.10).

4.3. The penalized and regularized problem. To deal with the inequality con-
straint qv ď qvs and the discontinuity of the Heaviside function H , we introduce a pe-
nalized and regularized version of the problem associated with the parameters ε1, ε2 ą 0.
The penalization is introduced below by introduction of the term ε1

´1ppqv ´ qvsq
`q3{2.

We address the discontinuity of the Heaviside function as in [CFTT13] and [CT12].
Recall the multi-valued Heaviside function

Hprq “

$

’

&

’

%

0 for r ă 0,

r0, 1s for r “ 0,

1 for r ą 0,

(4.30)

and the single-valued function hqv where hqv P Hpqv ´ qvsq. Following [TWu15], we can
characterize hqv P Hpqv ´ qvsq by

prqbv ´ qvss
`, 1q ´ prqv ´ qvss

`, 1q ě xhqv , q
b
v ´ qvy for a.e. t P r0, t1s, @q

b
v P V. (4.31)
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Now we approximate hqv by Hε2pqv ´ qvsq for ε2 ą 0, where Hε2prq is defined as

Hε2prq “

$

’

&

’

%

0 for r ď 0,

r{ε2 for r P p0, ε2s,

1 for r ą ε2.

(4.32)

In this setting, Fhqv („ FH) in the right hand side of (3.4) and (4.28) are replaced by
FHε2pqv ´ qvsq. Similarly, the hqv („ H) in the equations for θ1, qc and qr are replaced
by Hε2pqv ´ qvsq as well. Here the regularized fpUq ` FHε2pqv ´ qvsq has the same
boundedness as the original one. Now the related penalized and regularized system of
equations reads

$

’

’

’

’

&

’

’

’

’

%

Btqv `Avqv ` v ¨∇qv ` ω BqvBp `
1
ε1
ppqv ´ qvsq

`q3{2 “ fqvpUq ` FHε2pqv ´ qvsq,

Btqc `Acqc ` v ¨∇qc ` ω BqcBp “ fqcpUq ´ FHε2pqv ´ qvsq,

Btqr `Arqr ` v ¨∇qr ` ω BqrBp “ fqrpUq,

Btθ
1 `Aθθ

1 ` v ¨∇θ1 ` ω Bθ1
Bp
“ fθ1pUq ´

L
cpΠ

FHε2pqv ´ qvsq.

(4.33)

It is worth noticing that the unknown functions above depend on the small parameter
ε “ pε1, ε2q. Therefore, we will use the notation U ε “ pqεv, q

ε
c , q

ε
r , θ

1εq, etc. The initial
and boundary conditions associated with (4.33) are the same for U :

U ε
px, y, p, 0q “ U0px, y, pq, (4.34)

BpU
ε
“ CpU˚ ´ Uq on Γi, BnAU

ε
“ 0 on Γu Y Γl. (4.35)

To reveal the structural properties of the systems (4.21) and (4.33), we first consider the
products related to the nonlinearity fpUq`FHε2pqv´ qvsq, i.e., the following quantities

pfqcpUq ´ FHε2pqv ´ qvsq, qcq, pfqvpUq ` FHε2pqv ´ qvsq, qvq,

pfqrpUq, qrq, pfθ1pUq ´
L

cpΠ
FHε2pqv ´ qvsq, θ

1
q,

where U P V. By analogy with (4.25) the weak formulation of this problem is to find
a function U ε “ U εptq “ pqεv, q

ε
c , q

ε
r , θ

1εq P L2p0, t1;Vq with BtŪ
ε P L2p0, t1; pV 3q˚q and

Btq
ε
v P L

5{3p0, t1;V ˚q, such that
ż t1

0

rxBtU
ε, U b

y ` apU ε, U b
q ` bpu, U ε, U b

q ´ lpU b
q `

1

ε1

xppqεv ´ q
ε
sq
`
q
3{2, qbvysdt

“

ż t1

0

pfpU ε
q ` FHε2pqv ´ qvsq, U

b
qdt, (4.36)

for all Ū b P L2p0, t1;V 3q and qbv P L
8p0, t1;V q.

U ε
p0q “ U0. (4.37)



16 Y. CAO, M. HAMOUDA, R. TEMAM, J. TRIBBIA AND X. WANG

4.4. The formal a priori estimates and existence of solution for (4.36). We set
U b “ U ε in (4.36) and we deduce a new energy equality which is in fact obtained by
adding the corresponding energy equalities for each component of U ε, namely qεv, q

ε
c , q

ε
r

and θ
1ε. For example, the energy equality for qc is obtained by multiplying (4.33)2 by

qc and integrating over M, etc.

From now, aiming to simplify the presentation, we will omit the dependence on ε of
U ε that we will denote instead by U ; the superscript ε will be reintroduced when it is
necessary. Hence, for qc, using (4.16)–(4.18), we obtain

1

2

d

dt
|qc|

2
L2`pAqcqc, qcq`pv ¨∇qc, qcq`pω

Bqc
Bp
, qcq “ pfqcpUq ´ FHε2pqv ´ qvsq, qcq. (4.38)

The other energy equations can be treated similarly except for the RHS of the analogous
equations similar to (4.38).

Now, we start by computing the terms in the LHS of (4.38). Hence, using the definition
of Aqc as in (3.2) and integrating by parts, we deduce that

pAqcqc, qcq “
´

´µqc∆qc ´ νqcBp
`

p
gp

Rθ̄
q
2
Bp
˘

qc, qc

¯

“ µqc |∇qc|2L2 ` µqc

ż

Γl

Bqc
Bn

qcdΓl ` νqc

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqc
Bp

ˇ

ˇ

ˇ

ˇ

2

` νqc

ż

Γu

p
gp

Rθ̄
q
2
Bpqc qcdΓu ´ νqc

ż

Γi

p
gp

Rθ̄
q
2
Bpqc qcdΓi.

(4.39)

Then, we simply observe that, thanks to (3.12), the second and fourth terms in the RHS
of (4.39) vanish. We use again the boundary conditions (3.12) to replace the value of
the last term in the RHS of (4.39), and we infer that

pAqcqc, qcq “ µqc |∇qc|2L2 ` νqc

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqc
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νqcβc

ż

Γi

p
gp

Rθ̄
q
2q2
cdΓi ´ νqcβc

ż

Γi

p
gp

Rθ̄
q
2qc qc˚dΓi.

(4.40)

The second term in the LHS of (4.38) can be computed using again the integration by
parts formula. Hence we have

pv ¨∇qc, qcq “ ´
1

2

ż

M
div v q2

cdM´
1

2

ż

Γl

pqcq
2v ¨ n dΓl

“ psince u ¨ n “ 0 on BM by definition of Hq

“ ´
1

2

ż

M
div v q2

cdM.

(4.41)

We now calculate the last term in the LHS of (4.38) which reads as follows:

pω
Bqc
Bp
, qcq “ ´

ż

M

Bω

Bp
q2
cdM´

ż

M
ω
Bqc
Bp
qcdM,
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and this yields

pω
Bqc
Bp
, qcq “ ´

1

2

ż

M

Bω

Bp
q2
cdM. (4.42)

We recall here that the velocity u “ pv, ωq satisfies u ¨ n “ 0 on BM and ∇ ¨ u “
div v ` Bω{Bp “ 0 in M. This implies in particular that

pv ¨∇qc, qcq ` pω
Bqc
Bp
, qcq “ 0. (4.43)

Now, combining (4.40) and (4.43) in (4.38), we deduce that

1

2

d

dt
|qc|

2
L2 ` µqc |∇qc|2L2 ` νqc

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqc
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νqcβc

ż

Γi

p
gp

Rθ̄
q
2q2
cdΓi

“ νqcβc

ż

Γi

p
gp

Rθ̄
q
2qc qc˚dΓi ` pfqcpUq ´ FHε2pqv ´ qvsq, qcq.

(4.44)

At this level we are able to estimate the RHS of (4.44) starting by its first term. For
that purpose, we use the Cauchy-Schwarz inequality and the identity 2ab ď a2` b2. We
then infer that

νqcβc

ż

Γi

p
gp

Rθ̄
q
2
|qc qc˚|dΓi ď

νqcβc
2

ż

Γi

p
gp

Rθ̄
q
2q2
cdΓi `

νqcβc
2

ż

Γi

p
gp

Rθ̄
q
2q2
c˚dΓi. (4.45)

Finally, we observe that, on the one hand, a part of the last term in the RHS of (4.44)
is negative, and, on the other hand, the remaining part can be handled using some
estimates for F and the Cauchy-Schwarz inequality. Indeed, using (3.11), we have

pfqcpUq, qcq “ ´k1ppqc ´ qcritq
`, qcq ´ k2pqcτpqrq

0.875, qcq, (4.46)

where the RHS of (4.46) are negative since k1, k2 ě 0, and using the definition of
pqc ´ qcritq

` and of τpqrq. Furthermore, we use the fact that Hε2pqv ´ qvsq and F are
uniformly bounded (see remark 2.3) to estimate the quantity p´FHε2pqv´ qvsq, qcq. We
deduce that

|p´FHε2pqv ´ qvsq, qcq| ď Hε2pqv ´ qvsq|F |8|qc|

ď κ1|qc|
2
` κ2,

(4.47)

where κ and the κi are generic constants independent of ε and taking different values
at different places.

Therefore, combining (4.45), (4.46) and (4.47) in (4.44) we conclude that

1

2

d

dt
|qc|

2
L2 ` µqc |∇qc|2L2 ` νqc

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqc
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

`
νqcβc

2

ż

Γi

p
gp

Rθ̄
q
2q2
cdΓi

`pk1pqc ´ qcritq
`
` k2qc|qr|

0.875, qcq ď
νqcβc

2

ż

Γi

p
gp

Rθ̄
q
2q2
c˚dΓi ` κ1|qc|

2
` κ2

ď κ1|qc|
2
` κ2.

(4.48)
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Using the Gronwall inequality, we conclude, for qc “ qεc , that

|qεc |L8p0,t1;L2pMqq ď κ, (4.49)

|qεc |L2p0,t1;H1pMqq ď κ, (4.50)

where κ and the κi are constants independent of ε as mentioned above.

The same conclusions as in (4.49)-(4.50) hold for qεv, q
ε
r and θ

1ε. Although the energy
identity for qεv contains a penalization term as stated in (4.33), this term does not affect
the analysis above because of its positivity, namely we have p 1

ε1
ppqv ´ qvsq

`q3{2, qvq ě 0

since qvs ě 0. Nevertheless, the estimates for the terms qεv, q
ε
r , θ

1ε need a slightly
different treatment for the corresponding right hand sides as they depend on the function
fpUq ` FHε2pqv ´ qvsq and the corresponding value is different for each component of
U .

In the following we will explain how to treat these terms and the emphasis will be
on the differences regarding the analysis done above for qc. First, let us start by the
qv´equation (4.33)1. After taking the inner product of (4.33)1 with qv, we end with the
same equation as (4.44) which reads, using (3.6), as follows

1

2

d

dt
|qv|

2
L2 ` µqv |∇qv|2L2 ` νqv

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqv
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νqvβv

ż

Γi

p
gp

Rθ̄
q
2q2
vdΓi

`
1

ε1

ż

M
ppqv ´ qvsq

`
q
3{2qvdM “ νqvβv

ż

Γi

p
gp

Rθ̄
q
2qv qv˚dΓi

` pFHε2pqv ´ qvsq ` k3τpqrq
0.5
pqvs ´ qvq

`, qvq.

(4.51)

Using the facts that qvs and τpqrq are bounded as stated in Remarks 2.1 and 2.2, we
have

|pk3τpqrq
0.5
pqvs ´ qvq

`, qvq| ď κ1|qv|
2
` κ2. (4.52)

The other terms in the RHS of (4.51) can be estimated as we did in (4.45) and (4.47),
and we conclude that

1

2

d

dt
|qv|

2
L2 ` µqv |∇qv|2L2 ` νqv

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqv
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νqvβv

ż

Γi

p
gp

Rθ̄
q
2q2
vdΓi

`
1

ε1

ż

M
ppqv ´ qvsq

`
q
3{2qvdM ď κ1|qv|

2
` κ2,

(4.53)

and the Gronwall Lemma implies the desired estimates, namely

|qεv|L8p0,t1;L2pMqq ď κ, (4.54)

|qεv|L2p0,t1;H1pMqq ď κ. (4.55)

We also have

1

ε1

ż t1

0

ż

M
ppqv ´ qvsq

`
q
3{2qvdMds “

1

ε1

ż t1

0

ż

M
rpqv ´ qvsq

`
s
5{2dMds`

1

ε1

ż t1

0

ż

M
ppqv ´ qvsq

`
q
3{2qvsdMds ď κ,
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and since qvs ě 0,

1

ε1

ż t1

0

ż

M
rpqv ´ qvsq

`
s
5{2dMds ď κ. (4.56)

More estimates about the penalization term resulting from (4.53),(4.54) and (4.55) will
be deduced below (see Lemma 4.2).

Then, we consider first the equation of θ1 and let the equation of qr to the end since
the RHS of its equation depends on Bθ1{Bp as stated in (3.19). Thus we multiply the
equation of θ1, given by (4.33)4, by θ1 and integrate over M. Since the boundary
conditions for θ1 are the same as those of qc, we obtain an equation similar to (4.44).
Remembering also (3.23), we arrive at

1

2

d

dt
|θ1|2L2 ` µθ1 |∇θ1|2L2 ` νθ1

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bθ1

Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νθ1α

ż

Γi

p
gp

Rθ̄
q
2θ12dΓi “ νθ1α

ż

Γi

p
gp

Rθ̄
q
2θ1 θ1˚dΓi

`
`

´
θhN

2
h

g
ω ´

L

cpΠ

`

FHε2pqv ´ qvsq ` k3τpqrq
0.5
pqvs ´ qvq

`
˘

` f 1
θ ` ω

Bθhppq

Bp
, θ1

˘

ď
νθ1α

2

ż

Γi

p
gp

Rθ̄
q
2θ12dΓi `

νθ1α

2

ż

Γi

p
gp

Rθ̄
q
2θ12˚ dΓi ` κ1|θ

1
|
2
L2 ` κ2.

(4.57)

Indeed, it is easy to see that the second term in the middle equation (4.57) is bounded by
κ1|θ

1|2L2 ` κ2 since the terms θh, ω and Bθhppq{Bp are bounded in L8pMq. In particular,
(4.57) yields

1

2

d

dt
|θ1|2L2 ` µθ1 |∇θ1|2L2 ` νθ1

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bθ1

Bp

ˇ

ˇ

ˇ

ˇ

2

L2

ď κ1|θ
1
|
2
L2 ` κ2. (4.58)

As before, the application of the Gronwall Lemma to (4.58) gives the following estimates

|θ
1ε
|L8p0,t1;L2pMqq ď κ, (4.59)

|θ
1ε
|L2p0,t1;H1pMqq ď κ. (4.60)

Finally, for the qr-equation given by (4.33)3, we write the equivalent of (4.44), which
is simply obtained by multiplying (4.33)3 by qr and integrating over M, and we use
(3.19). Therefore, using the fact that τpqrq and Bθ1{Bp are bounded independently of ε
in L2pMq for a.e. t ě 0, see the definition of τpqrq in the end of Remark ??, we obtain,
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with θ^α “ minpθ, αq, see after (3.19):

1

2

d

dt
|qr|

2
L2 ` µqr |∇qr|2L2 ` νqr

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqr
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` νqrβr

ż

Γi

p
gp

Rθ̄
q
2q2
rdΓi

“ νqrβr

ż

Γi

p
gp

Rθ̄
q
2qr qr˚dΓi `

ˆ

´ 5.32 g
`τpqrq

1.2

RΠθα
`

1.2p τpqrq
0.2

RΠθα

Bqr
Bp

´
p τpqrq

1.2

RΠθ2
α

`

θα
κ

p
`
Bθhppq

Bp
`
Bθ1

Bp

˘˘

´ k3τpqrq
0.5
pqvs ´ qvq

`
` k1pqc ´ qcritq

`
` k2qc τpqrq

0.875, qr

˙

ď pusing the fact that 0 ď τpqrq ď 1 and θα ď αq

ď
νqrβr

2

ż

Γi

p
gp

Rθ̄
q
2q2
rdΓi `

νqrβr
2

ż

Γi

p
gp

Rθ̄
q
2qr˚dΓi ` β|qv|L2 |qr|L2 ` k1|qc|L2 |qr|L2

` κ1|qr|
2
L2 ` κ2 ` κ1

ż

M

 ˇ

ˇ

Bqr
Bp

ˇ

ˇ`
ˇ

ˇ

Bθ1

Bp

ˇ

ˇ` |qc|
(

dM.

(4.61)

As mentioned above, qc, qv and Bθ1{Bp are bounded in L2p0, t1;L2pMqq independently
of ε. Hence we infer that

1

2

d

dt
|qr|

2
L2 ` µqr |∇qr|2L2 ` νqr

ˇ

ˇ

ˇ

ˇ

gp

Rθ̄

Bqr
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

ď Gptq, (4.62)

where G “ Gptq is a generic function of t, bounded in L1p0, t1q independently of ε.

Finally it suffices to apply the Gronwall inequality to conclude that,

|qεr |L8p0,t1;L2pMqq ď κ, (4.63)

|qεr |L2p0,t1;H1pMqq ď κ. (4.64)

4.5. A priori estimates on the time derivative of U . We now aim to derive a priori
estimates for the time derivatives of U in view of obtaining a strong convergence result
for these functions and especially θ1 („ T ), by application of a compactness theorem.

More precisely, we prove in this subsection some a priori estimates for the solution U of
the system (4.33) associated with the initial and boundary conditions (4.34) and (4.35),
respectively. The intent is to show that the time derivative of Ū “ Ū ε “ pqεc , q

ε
r , θ

1εq and
qεv, recalling here the dependence of the solution U on ε, are bounded independently of
ε. Therefore, for Ū ε, as we did in Subsection 4.4 we will develop here the computations
for one component of Ū and then explain only the differences for the other components.
The estimate for the time derivative of qεv is more subtle and will be treated differently
later on (see a similar easier situation in [TWu15], [TWa15]). More precisely, let us
start with the qc´equation (4.33)2 that we multiply by Bqc{Bt and integrate over M.
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Hence, using the symmetry of Ac and then the Cauchy-Schwarz inequality, we obtain

ż

M

ˇ

ˇ

ˇ

ˇ

Bqc
Bt

ˇ

ˇ

ˇ

ˇ

2

dM`
1

2

d

dt
pAcqc, qcq “

ˆ

fqcpUq ´ FHε2pqv ´ qvsq ´ v ¨∇qc ´ ω
Bqc
Bp
,
Bqc
Bt

˙

ď J1 `
1

2

ˇ

ˇ

ˇ

ˇ

Bqc
Bt

ˇ

ˇ

ˇ

ˇ

2

L2

, (4.65)

where

J1 “ c|fqcpUq ´ FHε2pqv ´ qvsq ´ v ¨∇qc ´ ω
Bqc
Bp
|
2
L2 (4.66)

for an appropriate constant c.

To bound the term J1 in the RHS of (4.65), we need first to estimate |fqcpUq|L2 . Let
us recall the definition of fqcpUq, which is given by (3.11) and it involves itself the
expression of τpqrq stated just after (3.11). Hence, we estimate the terms in the RHS
of (3.11), one by one, as follows:

|k1pqc ´ qcritq
`
| ď κp1` |qc|L2q, (4.67)

|k2qcτpqrq| ď κ. (4.68)

Therefore, using the fact that qvs and τpqrq are bounded in L8pM ˆ p0, t1qq and qc is
bounded in L8p0, t1;L2pMqq, we deduce that

|fqcpUq|L2 ď κp1` |qc|L2q ď κ, @ t P p0, t1q. (4.69)

Secondly, as F and Hε2pqv ´ qvsq are bounded in L8pMˆ p0, t1qq, we also have

|FHε2pqv ´ qvsq|L2 ď κ, @ t P p0, t1q. (4.70)

Then, assuming that u P L8pMˆ p0, t1qq and using (4.50), we obtain

|v ¨∇qc|L2 ď |v|L8pMˆp0,T qq|∇qc|L2 ď Gptq, (4.71)

where we denoted again by G “ Gptq a generic function of time t, bounded in L1p0, t1q
independently of ε and we recall that |∇qc|2L2 has been already bounded in L1p0, t1q.
Using again u P L8pMˆ p0, t1qq and (4.50), we infer that

|ω
Bqc
Bp
|L2 ď κ |

Bqc
Bp
|L2 ď Gptq, (4.72)

and we recall that |Bqc{Bp|
2
L2 has been by now bounded in L1p0, t1q.

Now we derive similar estimates for the other terms qr and θ1. For that purpose,
we follow the same steps as we did for qc, and we write the equations analogous to
(4.65). Hence, the only difference will be here the estimates of the terms }fqrpUq}L2 and
}fθ1pUq ´

L
cpΠ

FHε2pqv ´ qvsq}L2 . To do that we make use of the expressions of fqrpUq

and fθ1pUq ´
L
cpΠ

FHε2pqv ´ qvsq, given respectively by (3.19) and (3.23). For fqrpUq, we
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have

|fqrpUq|L2 “

ˇ

ˇ

ˇ
´ 5.32 g

`τpqrq
1.2

RΠθα
`

1.2p τpqrq
0.2

RΠθα

Bqr
Bp
´
p τpqrq

1.2

RΠθ2
α

`

θα
κ

p
`
Bθhppq

Bp
`
Bθ1

Bp

˘˘

´ k3τpqrq
0.5
pqvs ´ qvq

`
` k1pqc ´ qcritq

`
` k2qcτpqrq

0.875
ˇ

ˇ

ˇ

L2

ď κ1

"
ˇ

ˇ

ˇ

ˇ

Bqr
Bp

ˇ

ˇ

ˇ

ˇ

L2

`

ˇ

ˇ

ˇ

ˇ

Bθ1

Bp

ˇ

ˇ

ˇ

ˇ

L2

` |qc|L2 ` |qv|L2

*

` κ2

ď Gptq `
ˇ

ˇ

ˇ

ˇ

Bqr
Bp

ˇ

ˇ

ˇ

ˇ

2

L2

`

ˇ

ˇ

ˇ

ˇ

Bθ1

Bp

ˇ

ˇ

ˇ

ˇ

2

L2

` |qc|
2
L2 ` |qv|

2
L2 , (4.73)

and we already showed that |Bqr{Bp|
2
L2 , |Bθ1{Bp|

2
L2 , |qc|

2
L2 , and |qv|

2
L2 are bounded in

L1p0, t1q thanks to (4.64), (4.60), (4.49) and (4.54).

Similarly, forfθ1pUq ´
L
cpΠ

FHε2pqv ´ qvsq, we assume that u P L8pM ˆ p0, t1qq and we

obtain

|fθ1pUq ´
L

cpΠ
FHε2pqv ´ qvsq|L2 ď Gptq ` |qv|2L2 . (4.74)

Therefore we conclude that J1 ď Gptq for all t P p0, t1q, and we infer that

|Btq
ε
c |L2p0,t1;L2pMqq ď κ; (4.75)

here κ is a constant independent of ε and t.

Now we take the L2pMq inner product of Acqc with (4.33)2, and we can apply a similar
argument as what we did for Btqc and obtain

|Acqc|L2p0,t1;L2q ď κ. (4.76)

Consequently, using (4.50), (4.75), (4.76) and (4.33)2, we deduce that

Bqεc
Bt

and Acq
ε
c are bounded in L2

p0, t1;L2
q, independently of ε, (4.77)

that is qc is bounded in L2p0, t1;H2q independently of ε.

Similar estimates to (4.75) follow in a straightforward manner for qr and θ1.

Before we move on to bound the time derivative of qv, we add one more estimate on Ū .
Integrating (4.65) on p0, tq for any t P r0, t1s, we have

1

2

ż t

0

ˇ

ˇ

ˇ

ˇ

Bqc
Bt

ˇ

ˇ

ˇ

ˇ

2

L2

dt` pAcqcptq, qcptqq ď

ż t1

0

J1dt` pAcqc0, qc0q ď κ, (4.78)

where J1 was defined in (4.66). Again, the constant κ is independent of ε and t. So
pAcqcptq, qcptqq is bounded uniformly in time for any t P r0, t1s. This implies

|qεc |L8p0,t1;H1pMqq ď κ. (4.79)
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Estimates similar to (4.79) hold for qr and θ1. In particular, we will use the bound

|θ1ε|L8p0,t1;H1pMqq ď κ (4.80)

in the estimate of the time derivative of qεv.

For qεv, we will show its time derivative is bounded independently of ε in L5{3p0, t1;V ˚q.
The main issue here is to control the penalization term which contains the ”large” factor
1
ε1

. We begin with Lemma 4.2 .

Lemma 4.2. The following bound holds:

1

ε
5{3
1

ż t1

0

|pqεv ´ q
ε
vsq

`
|
5{2

L5{2pMq
dt ď κ, (4.81)

where κ is a constant independent of ε.

Proof. We multiply (4.33)1 by pqv ´ qvsq
` and integrate on M, we find

ˆ

Bqv
Bt
, pqv ´ qvsq

`

˙

` pAvqv, pqv ´ qvsq
`
q `

1

ε1

ż

M
ppqv ´ qvsq`q

5{2dM

“

ˆ

fqvpUq ` FHε2pqv ´ qvsq ´ v ¨∇qv ´ ω
Bqv
Bp

, pqv ´ qvsq
`

˙

. (4.82)

The first two terms in the LHS can be rewritten as

`

Btqv, pqv ´ qvsq
`
˘

“ pBtpqv ´ qvsq, pqv ´ qvsq
`
q ` pBtqvs, pqv ´ qvsq

`
q

“
1

2

d

dt
|pqv ´ qvsq

`
|
2
L2pMq ` pBtqvs, pqv ´ qvsq

`
q,

pAvqv, pqv ´ qvsq
`
q “ pAvpqv ´ qvsq, pqv ´ qvsq

`
q ` pAvqvs, pqv ´ qvsq

`
q

“ pAvpqv ´ qvsq
`, pqv ´ qvsq

`
q ` pAvqvs, pqv ´ qvsq

`
q.

Dropping the positive term: pAvpqv´qvsq
`, pqv´qvsq

`q in the LHS, we can deduce from
(4.82) that

1

2

d

dt
|pqv ´ qvsq

`
|
2
L2 `

1

ε1

|ppqv ´ qvsq`q|
5{2

L5{2

ď |pAvqvs, pqv ´ qvsq
`
q ` pBtqvs, pqv ´ qvsq

`
q ` pu ¨∇3qv, pqv ´ qvsq

`
q

´ pfqvpUq ` FHε2pqv ´ qvsqq, pqv ´ qvsq
`
q|. (4.83)

Using Hölder and Young inequalities, the RHS of (4.83) can be estimated in the following
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way:

|pAvqvs, pqv ´ qvsq
`
q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

M
ε

2{5
1 Avqvs ¨

pqv ´ qvsq
`

ε
2{5
1

dM

ˇ

ˇ

ˇ

ˇ

ˇ

ď |ε
2{5
1 Avqvs|L5{3

ˇ

ˇ

ˇ

ˇ

ˇ

pqv ´ qvsq
`

ε
2{5
1

ˇ

ˇ

ˇ

ˇ

ˇ

L5{2

ď Cε
2{3
1 |Avqvs|

5{3

L5{3 `
1

8ε1

|pqv ´ qvsq
`
|
5{2

L5{2 . (4.84)

The other terms can be addressed similarly. Then (4.83) becomes

1

2

d

dt
|pqv ´ qvsq

`
|
2
L2 `

1

ε1

|pqv ´ qvsq
`
|
5{2

L5{2

ď Cε
2{3
1 p|Avqvs|

5{3

L5{3 ` |Btqvs|
5{3

L5{3 ` |∇3qv|
5{3

L5{3 ` |qv|
5{3

L5{3

` C1q `
1

2ε1

|pqv ´ qvsq
`
|
5{2

L5{2 . (4.85)

Here |qv|
5{3

L5{3 ` C1 in the RHS of (4.85) is the bound for |fqvpUq ` FHε2pqv ´ qvsq|
5{3

L5{3 .

Integrating now (4.85) in time on p0, t1q, we have

1

2
|pqvpt1q ´ qvspt1qq

`
|
2
L2 ´

1

2
|pqv0 ´ qs0q

`
|
2
L2 `

1

2ε1

ż t1

0

|pqv ´ qvsq
`
|
5{2

L5{2dt

ď Cε
2{3
1

ż t1

0

p|Avqvs|
5{3

L5{3 ` |Btqvs|
5{3

L5{3 ` |∇3qv|
5{3

L5{3pMq
` |qv|

5{3

L5{3 ` C1qdt. (4.86)

The first term in the LHS of (4.86) is positive and the second term is 0 because of the
constraint on the initial value qv0 ď qs0.

To reach the desired bound (4.81) on the penalization term, we will bound the integral
in the RHS of (4.86) independently of ε, drop the positive term in the LHS and divide

both sides of (4.86) by ε
2{3
1 . We now estimate each term in the RHS of (4.86).

Both |qv| and |∇3qv| are bounded in L5{3pp0, t1q ˆMq, thanks to (4.54),(4.55) and the
fact that L2pp0, t1q ˆMq Ă L5{3pp0, t1q ˆMq.

Then for Btqvs, we see that Btqvs “
BQvs
BT
pp, T q ¨ BtT . Because of the relationship between

T (resp. T 1) and θ (resp. θ1) and recalling that Btθ
1 has already been bounded in

L2pp0, t1qˆMq, BtT is bounded in L2pp0, t1qˆMq. Also, BQvs
BT
pp, T q is uniformly bounded

by Remark 2.1. Thus we have |Btqvs| bounded in L5{3pp0, t1q ˆMq.

The most problematic term is |Avqvs|
5{3

L5{3 . We begin by exploring the relationship be-
tween ∆3qvs and T . By the expressions (2.7) and (2.8),
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B2qvs
Bx2

“
B

Bx

`BQvspp, T q

BT

BT

Bx

˘

“
B

Bx

ˆ

BQvspp, T q

BT

˙

BT

Bx
`
BQvspp, T q

BT

B2T

Bx2
. (4.87)

Use the fact that Bqvspp, T q{BT is uniformly bounded as stated in Remark 2.1, we can
easily deduce that

ˇ

ˇ

ˇ

B

Bx

`BQvspp, T q

BT

˘

ˇ

ˇ

ˇ
ď C

ˇ

ˇ

ˇ

BT

Bx

ˇ

ˇ

ˇ
,

for some generic constant C that does not depend on ε.

Recalling (4.87), we can further deduce that, pointwisely,

ˇ

ˇ

ˇ

B2qvs
Bx2

ˇ

ˇ

ˇ
ď C

ˆ

ˇ

ˇ

ˇ

BT

Bx

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

B2T

Bx2

ˇ

ˇ

ˇ

˙

.

Similarly,

ˇ

ˇ

ˇ

B2qvs
By2

ˇ

ˇ

ˇ
ď C

ˆ

ˇ

ˇ

ˇ

BT

By

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

B2T

By2

ˇ

ˇ

ˇ

˙

.

The second derivative of qvs with respect to p is slightly different with B2qvs{Bx
2 and

B2qvs{By
2, as qvs depends on p explicitly.

By (2.8), it can be easily calculated that

Bqvs
Bp

“
1

pp´ 0.378evsq

ˆ

273ap

T 2
¨
BT

Bp
´ 1

˙

qvs.

Differentiating with respect to p one more time, we can deduce that, after some algebra:

ˇ

ˇ

ˇ

B2qvs
Bp2

ˇ

ˇ

ˇ
ď C

ˆ

ˇ

ˇ

ˇ

BT

Bp

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

BT

Bp

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

B2T

Bp2

ˇ

ˇ

ˇ
` C1

˙

.

It follows that

|Avqvs|
5{3

L5{3pMq
ď C

´

|∆3T |
5{3

L5{3pMq
` |∇3T |

10{3

L10{3pMq
` C1

¯

. (4.88)

By Gagliardo-Nirenberg’s interpolation inequality, we have

|∇3T |
10{3

L10{3pMq
ď C

´

|∇3T |
10{3

L2pMq
` |∇3T |

4{3

L2pMq
|∆3T |

2
L2pMq

¯

. (4.89)
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Note that we also have ∇3T P L
8p0, t1;Hq and ∆3T P L

2pp0, t1q ˆMq by (4.76) and
(4.80), and thus

ż t1

0

|Avqvs|
5{3

L5{3pMq
dt ď C

ż t1

0

p|∆3T |
5{3

L5{3 ` |∇3T |
10{3

L10{3 ` C1qdt

ď C

ż t1

0

p|∆3T |
5{3

L5{3 ` |∇3T |
10{3

L2 ` |∇3T |
4{3

L2 |∆3T |
2
L2 ` C1qdt

ď C
´

|∆3T |
5{3

L5{3pp0,t1qˆMq
` pess sup

r0,t1s

|∇3T |L2q
10{3

¨ t1

` pess sup
r0,t1s

|∇3T |L2q
4{3
|∆3T |

2
L2pp0,t1qˆMq ` C1t1

¯

ď κ. (4.90)

By now all the terms in the integral in the RHS of (4.86) have been bounded indepen-
dently of ε, this finishes the proof of Lemma 4.2. �

With the help of Lemma 4.2, we are ready to estimate the time derivative of qv. We
multiply (4.33)1 by qbv P L

5{2p0, t1;V q and integrate on M:

xBtqv, q
b
vy ` pAvqv, q

b
vq ` pu ¨∇3qv, q

b
vq ` p

1

ε1

ppqv ´ qvsq
`
q
3{2, qbvq “ pf

ε2pUq, qbvq. (4.91)

Rearranging (4.91), we have

|xBtqv, q
b
vy| “ | ´ aqvpqv, q

b
vq ´ bpu, qv, q

b
vq ´ p

1

ε1

ppqv ´ qvsq
`
q
3{2, qbvq ` lqvpq

b
vq ` pf

ε2
qv , q

b
vq|

ď Cp}qv}V ` }u}V}qv}V `
1

ε1

|pqv ´ qvsq
`
|
3{2

L5{2 ` |qv|L2 ` C1q}q
b
v}V . (4.92)

Here we used the Lemma 4.1 and the fact that
1

ε1

ż

M
ppqv ´ qvsq

`
q
3{2qbvdM ď

1

ε1

|ppqv ´ qvsq
`
q
3{2
|L5{3 |qbv|L5{2

ď pV Ă L5{2
pMq in R3

q

ď
1

ε1

|pqv ´ qvsq
`
|
3{2

L5{2}q
b
v}V . (4.93)

Hence,

}Btqv}V ˚ ď Cp}qv}V ` }u}V}qv}V `
1

ε1

|pqv ´ qvsq
`
|
3{2

L5{2 ` |qv|L2 ` C1q, (4.94)

}Btqv}
5{3
V ˚ ď Cp}qv}

5{3
V ` }u}

5{3
V }qv}

5{3
V `

1

ε
5{3
1

|pqv ´ qvsq
`
|
5{2

L5{2 ` |qv|
5{3

L2 ` C1q. (4.95)

Then thanks to (4.54),(4.55) and Lemma 4.2,
ż t1

0

}Btqv}
5{3
V ˚dt ď κ, (4.96)

where κ, as before, is a constant independent of ε. So we have bound Btqv in L5{3p0, t1;V ˚q
as desired.
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Finally, we summarize all the estimates that we obtained componentwise and write this
for the solution U ε. More precisely, we now have

|U ε
|L8p0,t1;Hq ď κ, }U ε

}L2p0,t1;Vq ď κ, }Ū ε
}L2p0,t1;H2pMq3qq ď κ, }BtŪ

ε
}L2p0,t1;L2pMq3q ď κ,

}Ū ε
}L8p0,t1;H1pMq3qq ď κ, and |Btq

ε
v|L5{3p0,t1;V ˚q ď κ. (4.97)

Remark 4.3. As usual by implementing a Galerkin approximation for the problem
(4.33)-(4.37) we can obtain a priori estimates similar to the above estimates for the
Galerkin approximation. Then passing to the lower limit we obtain these very estimates
(independent of ε) for the actual solution U of (4.33)-(4.37). We state this existence
result in the following theorem, but we will skip the proof since it is straightforward
after the analysis above on the a priori estimates.

Theorem 4.4. Let ε ą 0 be fixed and assume that u P L8pp0, t1q ˆMq and U0 P V
are given. Then, the system (4.33) associated with the initial and boundary conditions
(4.34) and (4.35), respectively, has a solution U ε such that

U ε
P L8p0, t1;Hq X L2

p0, t1;Vq, (4.98)

and
Ū ε
P L2

p0, t1;H2
q, BtŪ

ε
P L2

p0, t1;L2
q, Btq

ε
v P L

5{3
p0, t1;V ˚q. (4.99)

Furthermore the norms of U ε, Ū ε and BtŪ
ε in the corresponding spaces are bounded

independently of ε by quantities which depend on the norm of U0 in H and on the other
data.

4.6. Passage to the limit. In the following we will pass to the limit, as ε Ñ 0,
in the penalized system (4.33), and to avoid a possible confusion we reintroduce here
the dependence on ε. First, using (4.97) and Aubin-Lions compactness theorem, we
deduce the existence of a subsequence, still denoted U ε “ pqεv, q

ε
c , q

ε
r , θ

1εq, and a function
U “ pqv, qc, qr, θ

1q both verifying (4.98), (4.99), such that, as εÑ 0,

(i) U ε á U weakly in L2p0, t1;Vq and weak-˚ in L8p0, t1;Hq,
(ii) BtŪ

ε á BtŪ weakly in L2p0, t1;L2pMq3q,
(iii) Btq

ε
v á Btqv weakly in L5{3p0, t1;V ˚q,

(iv) Ū ε á Ū strongly in L2p0, t1;H1q and weakly in L2p0, t1;H2q,
(v) qεv á qv strongly in L2p0, t1;L2pMqq and weakly in L2p0, t1;H1q,

(vi) pqεv ´ q
ε
vsq

` Ñ 0 strongly in L5{2pp0, t1q ˆMq, thanks to Lemma 4.2,
(vii) Hε2pq

ε
v ´ q

ε
vsq á hqv weak-˚ in L8pp0, t1q ˆMq for hqv P Hpqv ´ qvsq,

In view of (i) and (iii), we also have

qεvpt1q á qvpt1q weakly in L2
pMq. (4.100)

For the inequality constraint on qv, after showing that qεvs Ñ qvs “ Qvspp, T q in
L2p0, t1;V q (see Lemma 4.5 below), (vi) implies in particular that qv ď qvs.

It is worth noting here that the strong convergence in L2p0, t1;Hq is in fact available in
Lpp0, t1;Hq, for all p ě 1, thanks to the continuity of U ε P Cpr0, t1s;Hq.
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By the continuity and boundedness of fpUq, using (iv) and (v), we have

fpU ε
q á fpUq strongly in L2

p0, t1;L2
pMqq. (4.101)

where fpUq is seen componentwise as fpUq “ pfqvpUq, fqcpUq, fqrpUq, fθ1pUqq and F
represents the vector pF,´F, 0,´ L

cpΠ
F q .

Moreover, thanks to the estimates showing the boundedness of FHε2pqv ´ qvsqas per-
formed above, using (vii) and [Lio76, Lemma 1.3], we have

Fpp, T εqHε2pqv ´ qvsq á Fpp, T qhqv weakly in L2
p0, t1;L2

pMqq, (4.102)

Therefore one can pass to the limit, as εÑ 0, in (4.33)2,3,4 (remember here the depen-
dence of the solutions on ε), see [TWa15] and [TWu15].

Moreover, we need the following results which will be used in the proof of the convergence
of the penalized term, namely (4.33)1.

Lemma 4.5. If T ε converges to T strongly in L2p0, t1;V q, then qεvs “ Qvspp, T
εq, as

given by (2.7), converges to qvs “ Qvspp, T q strongly in L2p0, t1;V q.

Proof. By the expressions (2.7)-(2.9) and Remark 2.1, we see that qεvs “ Qvspp, T
εq

converges to qvs “ Qvspp, T q in L2p0, t1;L2q. Indeed, on the one hand, we recall here the
relationship between T (resp. T 1 and T

1ε) and θ (resp. θ1 and θ
1ε) thanks to e.g. (2.12),

and on the other hand, we use the fact that Ū ε converges to Ū strongly in pL2p0, t1;V qq3.
Similarly since the derivative of Qvs with respect to T is uniformly bounded, thanks to
2.1, we see that ∇xq

ε
vs “

BQvs
BT
pp, T εq ¨ ∇xT

ε converges to ∇xqvs “
BQvs
BT
pp, T q ¨ ∇xT in

L2pp0, t1q ˆMq.
We thus conclude that qεvs converges to qvs strongly in L2p0, t1;V q. �

Lemma 4.6. For all qbv P K “ KpUq, we consider qbεv “ qbv ´ pq
b
v ´ q

ε
vsq

` “ minpqbv, q
ε
vsq.

Then qbεv converges to qbv strongly in L2p0, t1;V q.

Proof. We first observe, using the definitions of qbεv and of the set K, that qbεv converges
to qbv in L2p0, t1;L2q. Then we see that the derivative of qbεv with respect to the space
variable x can be written as ∇xq

bε
v “ ∇xq

b
v ´ 1tqbvąqεvsu∇xpq

b
v ´ qεvsq. Using Lemma 4.5

we deduce that qbεv converges to qbv strongly in L2p0, t1;V q. �

Remark 4.7. From the proof of Lemma 4.6, we see that |∇3q
ε
vs| ď C|∇3T

ε|`C1. Then
noting that ∇3T

ε P L8p0, t1;L2pMqq by (4.80), here qεvs actually lies in a bounded set of
L8p0, t1;V q. And by our assumption, qbεv P L

8p0, t1;V q. Hence, qbεv “ minpqbv, q
ε
vsq lies

in a bounded set in L8p0, t1;V q as well. Also qbεv converges to qbv almost everywhere in
V for t P r0, t1s. Lemma 4.6 together with Lebesgue’s dominated convergence theorem
yields

qbεv á qbv strongly in Lpp0, t1;V q for any p ą 1. (4.103)

In particular, we will use the result with p “ 5
2

for passing to limit in the qv-equation.

Now, for the qv-equation (4.33)1, the treatment will be different because of the penal-
ization term as we will see below. Let us first rewrite as follows the weak formulation
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of the penalized equation (4.33)1 in view of (4.28). For all qbv P KpUq, we consider
qbεv “ qbv´pq

b
v´q

ε
vsq

` “ minpqbv, q
ε
vsq ď qεvs. We then write the first equation (qv´equation)

of (4.36) with qbv replaced by qbεv ´ q
ε
v, and we find

xBtq
ε
v, q

bε
v ´ q

ε
vy ` aqvpq

ε
v, q

bε
v ´ q

ε
vq ` bpu, q

ε
v, q

bε
v ´ q

ε
vq ´ lqvpq

bε
v ´ q

ε
vq

`
1

ε1

xppqεv ´ q
ε
vsq

`
q
3{2, qbεv ´ q

ε
vy “ pfqvpU

ε
q ` FHε2pqv ´ qvsq, q

bε
v ´ q

ε
vq.

(4.104)

Regarding (4.104), we first observe that

xppqεv ´ q
ε
vsq

`
q
3{2, qbεv ´ q

ε
vy

“ xppqεv ´ q
ε
vsq

`
q
3{2, qbεv ´ q

ε
vs

loooooooooooooomoooooooooooooon

ď 0 (because qbεv ď qεvs)

y ` xppqεv ´ q
ε
vsq

`
q
3{2, pqεvs ´ q

ε
vqy

loooooooooooooooomoooooooooooooooon

ď 0 (by definition of the positive function)

ď 0. (4.105)

Then, after integrating in time on p0, t1q and using (4.105), we rewrite (4.104) as follows:
ż t1

0

xBtq
ε
v, q

bε
v ´ q

ε
vydt`

ż t1

0

aqvpq
ε
v, q

bε
v ´ q

ε
vqdt`

ż t1

0

bpu, qεv, q
bε
v ´ q

ε
vqdt

´

ż t1

0

lqvpq
bε
v ´ q

ε
vqdt ě

ż t1

0

pfqvpU
ε
q ` FHε2pqv ´ qvsq, q

bε
v ´ q

ε
vqdt. (4.106)

In what follows we will justify the passage to the limit in (4.106), term by term. First,
we observe that

ż t1

0

xBtq
ε
v,´q

ε
vydt “ ´

1

2

ż t1

0

d

dt
|qεv|

2
L2 “ ´

1

2
|qεvpt1q|

2
L2 `

1

2
|qv0|

2
L2 , (4.107)

lim sup
εÑ0

ż t1

0

xBtq
ε
v,´q

ε
vydt “ ´ lim inf

εÑ0

1

2
|qεvpt1q|

2
L2 `

1

2
|qv0|

2
L2

ď ´
1

2
|qvpt1q|

2
L2 `

1

2
|qv0|

2
L2

“ ´

ż t1

0

xBtqv, qvydt (4.108)

In addition, by (iii), Lemma 4.6 and Remark 4.7, we have

xBtq
ε
v, q

bε
v y Ñ xBtqv, q

b
vy, as εÑ 0. (4.109)

We then obtain

lim sup
εÑ0

ż t1

0

xBtq
ε
v, q

bε
v ´ q

ε
vydt ď

ż t1

0

xBtqv, q
b
v ´ qvydt. (4.110)

The convergence of the aqv´term in (4.106) is straightforward. Indeed, on the one hand,
using Lemma 4.6 and the expression of a as in (4.7), we have

ż t1

0

aqvpq
ε
v, q

bε
v qdtÑ

ż t1

0

aqvpqv, q
b
vqdt. (4.111)
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On the other hand, we can now pass to the lower limit in the remaining part of the
aqv´term and we obtain

lim inf
εÑ0

ż t1

0

aqvpq
ε
v, q

ε
vqdt ě

ż t1

0

aqvpqv, qvqdt. (4.112)

Then, using the expressions of the linear and trilinear forms l and b, as in (4.10), (4.8),
the convergence results in (i) and Lemma 4.6, we deduce, as ε Ñ 0 and for all qbv P K,
that

ż t1

0

bpu, qεv, q
bε
v ´ q

ε
vqdtÑ

ż t1

0

bpu, qv, q
b
v ´ qvqdt, (4.113)

ż t1

0

lqvpq
bε
v ´ q

ε
vqdtÑ

ż t1

0

lqvpq
b
v ´ qvqdt. (4.114)

In fact, the convergence result (4.114) is obvious. However, for (4.113), we used the
following estimates:

ˇ

ˇ

ˇ

ˇ

ż t1

0

rbpu, qεv, q
bε
v ´ q

ε
vqdt´ bpu, qv, q

b
v ´ qvqsdt

ˇ

ˇ

ˇ

ˇ

“

ˆˇ

ˇ

ˇ

ˇ

ż t1

0

rbpu, qεv ´ qv, q
bε
v ´ q

ε
vqdt` bpu, qv, q

bε
v ´ q

b
vq ´ bpu, qv, q

ε
v ´ qvqsdt

ˇ

ˇ

ˇ

ˇ

˙

ď |u|L8pp0,t1qˆMq

“

|qεv ´ qv|L2p0,t1;V q ` |q
bε
v ´ q

b
v|L2p0,t1;V q

‰

. (4.115)

Now for the RHS of (4.106), we use (4.101) together with (v) and Lemma 4.5 and we
obtain

pfqvpU
ε
q`FHε2pqv´qvsq, q

bε
v ´q

ε
vq Ñ pfqvpUq`Fhqv , q

b
v´q

ε
vq, as εÑ 0, @ qbv P K. (4.116)

We are left to check that hqv belongs to Hpqv´ qvsq, i.e., to prove (4.31). For ε2 P p0, 1s,
we define the real function

Kε2prq “

$

’

&

’

%

0 for r ď 0,

r2{2ε2 for r P p0, ε2s,

r ´ ε2{2 for r ą ε2.

(4.117)

It is straightforward to check that K 1
ε2
“ Hε2 , and for @r1, r2 P R

|Hε2pr1q ´Hε2pr2q| ď
1

ε2

|r1 ´ r2|, (4.118)

|Kε2pr1q ´Kε2pr2q| ď |r1 ´ r2|. (4.119)

Moreover,

|Kε2prq ´ r| ď
ε2

2
, @r ě 0. (4.120)

Becuase Hε2pq
ε
v ´ qεvsq is the Gâteaux derivative at the point qεv ´ qεvs of the convex

function
ż t1

0

pKε2p¨q, 1qdt : L2
p0, t1;V q Ñ R.
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For every ε, we have
ż t1

0

pKε2pq
bε
v ´q

ε
vsq, 1qdt´

ż t1

0

pKε2pq
ε
v´q

ε
vsq, 1qdt ě

ż t1

0

xHε2pq
ε
v´q

ε
vsq, q

bε
v ´q

ε
vydt (4.121)

for each qbv P L
2p0, t1;V q. By (v), (vii) and Lemma 4.6, we see that, as εÑ 0`,

ż t1

0

xHε2pq
ε
v ´ q

ε
vsq, q

bε
v ´ q

ε
vydtÑ

ż t1

0

xhqv , q
b
v ´ qvydt (4.122)

for @qbv P L
2p0, t1;V q.

Moreover, owing to (4.118) and (4.120), we observe that

|

ż t1

0

pKε2pq
ε
v ´ q

ε
vsq, 1qdt´

ż t1

0

prqv ´ qvss
`, 1qdt|

ď

ż t1

0

p|pKε2pq
ε
v ´ q

ε
vsq ´Kε2pqv ´ qvsq|, 1qdt`

ż t1

0

p|Kε2pqv ´ qvsq ´ rqv ´ qvss
`
|, 1qdt

ď µpMq
1{2t

1{2
1 p|qεv ´ qv|L2p0,t1;L2q ` |q

ε
vs ´ qvs|L2p0,t1;L2qq `

ε2

2
µpMqt1, (4.123)

where µpMq is the volume of M. Therefore

Kε2pq
ε
v ´ q

ε
vsq, 1qdtÑ

ż t1

0

prqv ´ qvss
`, 1qdt. (4.124)

From the calculation above, it is also clear that

Kε2pq
bε
v ´ q

ε
vsq, 1qdtÑ

ż t1

0

prqbv ´ qvss
`, 1qdt, (4.125)

for @qbv P L
2p0, t1;V q.

Consequently, we can pass to the limit in (4.121) and conclude that
ż t1

0

prqbv ´ qvss
`, 1qdt´

ż t1

0

prqv ´ qvss
`, 1qdt ě

ż t1

0

xhqv , q
b
v ´ qvydt (4.126)

for @qbv P L
2p0, t1;V q, which implies (4.31) as desired.

Finally, we obtain the existence of the solution of (4.28) for which we state the following
theorem.

Theorem 4.8. Let U0 P V, t1 ą 0 be given and assume that u P L8pp0, t1q ˆMq is
given. Then, the system (4.25)-(4.28) associated with the initial and boundary conditions
(4.34) and (4.35), respectively, has a solution U such that

U P L8p0, t1;Hq X L2
p0, t1;Vq, (4.127)

Furthermore, we have

Ū P L2
p0, t1;H2

q, BtŪ P L
2
p0, t1;L2

q, Btqv P L
5{3
p0, t1;V ˚q. (4.128)
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